
Evaluating the Performance of Estimators
(Section 7.3)

Example: Suppose we observe X1, . . . , Xn iid N(θ, σ2
0), with σ2

0
known, and wish to estimate θ.

Two possible estimators are:

θ̂ = X̄ ≡ sample mean and θ̂ = M ≡ sample median .

Which is better? How to measure performance?

Some possibilities:

1. Compare E|X̄ − θ| with E|M − θ|.

2. Compare E(X̄ − θ)2 with E(M − θ)2.

3. Compare EL(θ, X̄) with EL(θ,M)

where L(·, ·) is an appropriate “loss function”: the value
L(θ, a) is some measure of the loss incurred when the true
value is θ and our estimate is a.

absolute error loss: L(θ, a) = |a− θ|
squared error loss: L(θ, a) = (a− θ)2

game show loss: L(θ, a) = I(|a− θ| > c)

Stein’s loss (for θ, a > 0): L(θ, a) =
a

θ
− 1− log

(a
θ

)
Historically, estimators have been most frequently compared
using Mean Squared Error: MSE(θ) = Eθ(θ̂ − θ)2.

This is because the MSE can often be calculated or approxi-
mated (for large samples), and has nice mathematical proper-
ties.



Admissible and Inadmissible Estimators

Let W = W (X) be an estimator of τ = τ(θ).

Define MSEW(θ) = Eθ(W − τ(θ)2.

An estimator W is inadmissible (w.r.t. squared error loss) if
there exists another estimator V = V (X) such that

MSEV (θ) ≤MSEW(θ) ∀θ ∈ Θ

with strict inequality for at least one value of θ. (An estimator
is inadmissible if there is another estimator that “beats” it.)
An estimator which is not inadmissible is called admissible.

(Draw some pictures.)

Note: An admissible estimator may actually be very bad. An
inadmissible estimator can sometimes be pretty good.

Note: If we are using a loss function L(τ, a), we also define in-
admissible and admissible estimators in the same way, replac-
ing the MSE by the more general notion of a risk function
R(θ,W ) = EθL (τ(θ),W (X)).

Examples: Again, suppose we observe X1, . . . , Xn iid N(θ, σ2
0),

with σ2
0 known, and wish to estimate θ.

Consider the estimator W ≡ 0 that always estimates θ by 0
regardless of the data X.

This is a very bad estimator, but it is admissible because it is
great when θ = 0. No non-degenerate estimator V can possibly
beat W since it would have to satisfy

MSEV (0) ≤ MSEW(0)
⇒ E0(V − 0)2 ≤ E0(W − 0)2

⇒ E0V 2 ≤ 0 ⇒ P0(V = 0) = 1
⇒ V ≡ 0 .



Now consider the estimator M ≡ sample median.

We show later that the sample mean X̄ has a uniformly smaller
MSE than M so that M is inadmissible. (The two MSE func-
tions are constant, i.e., flat.)

However, M is not a bad estimate of θ, and might be used
if there were doubts about the normality assumption (perhaps
the true distribution has thicker tails) or concern about outliers.

Bias, Variance, and MSE (for an estimator W of τ(θ))

BiasW(θ) = Eθ(W − τ(θ))
VarW(θ) = Eθ(W − EθW )2 ≡ Varθ(W )

Fact: MSEW(θ) = Bias2
W(θ) + VarW(θ)

MSE = Bias2 + Var (in brief)

Proof: For any rv Y with finite second moment, we know

EY 2 = (EY )2 + Var(Y ) .

Taking Y = W − τ leads to

MSE = Bias2 + Var

since Var(W − τ) = Var(W ).

Terminology: An estimator W with BiasW(θ) ≡ 0, that is,

EθW = τ(θ) ∀ θ ∈ Θ

is said to be unbiased. If not, it is biased.

For an unbiased estimator, MSE = Var.





Which is better? (according to MSE)

Answer: Neither dominates the other.

MSEBayes(a) =
p2θ(1− θ)

n
<
θ(1− θ)

n
= MSEMLE(a) ,

MSEBayes(0) = (1− p)2a2 > 0 = MSEMLE(0) ,

and similarly, MSEBayes(1) > MSEMLE(1).

Thus, the Bayes estimate is superior in the neighborhood of
θ = a, and the MLE is superior near θ = 0 and 1.

Note: both MSEBayes(θ) and MSEMLE(θ) are parabolas (quadratic
functions of θ).

Note: Regarding (in)admissibility, the above remarks prove
nothing. But it can be shown that both the Bayes estimate
and MLE are admissible here. Typically, Bayes estimates (with
proper priors) are admissible.











Proof:

Recall: For any rv’s X, Y with EX2 <∞, we have

EX = E(E(X |Y ))

Var(X) = E(Var(X |Y )) + Var(E(X |Y ))

Now apply these facts:

Eθ[S
∗(X)] = Eθ[Eθ(S(X) |T (X))]

= Eθ S(X) = τ(θ)

Eθ(S − τ)2 = Varθ(S)
= E[Var(S |T )]︸ ︷︷ ︸

≥ 0

+Var[E(S |T )︸ ︷︷ ︸
S∗

]

≥ Var(S∗) = Eθ(S
∗ − τ(θ))2

Equality can occur only when Eθ Var(S |T ) = 0. But

EθVar(S |T ) = Eθ{E[(S − E(S |T ))2 |T ]}
= Eθ{(S − E(S |T ))2} = Eθ{(S − S∗)2}
= 0 iff Pθ(S = S∗) = 1.

Arguing more loosely, Eθ Var(S |T ) = 0 ⇒ Var(S |T ) = 0 ⇒
S is a function of T ⇒ S∗ ≡ E(S |T ) = S.















Example: Observe X1, . . . , Xn iid Bernoulli(p).

• Find the UMVUE of p.

T =
∑

iXi is a CSS. E(T/n) = p.

Since T/n is an unbiased estimator of p which is a function of
the CSS T , it is the UMVUE.

• Find the best unbiased estimator of p2.

E

(
T (T − 1)

n(n− 1)

)
= p2

(
Found indirectly using Rao-Blackwell.
For a direct argument, see below.

)

Since
(
T (T−1)
n(n−1)

)
is an unbiased estimator of p2 which is a function

of the CSS T , it is the UMVUE.

Checking unbiasedness:

ET (T − 1) = E(T 2)− ET = Var(T ) + (ET )2 − ET
= np(1− p) + (np)2 − np = n(n− 1)p2

Comment: “Estimate a parameter by its UMVUE” is another
approach to estimation, but not a very good one. Often, no
unbiased estimator exists, or the only one that exists is bad.



Example: Observe X1, . . . , Xn iid N(µ, σ2) with θ = (µ, σ2)
unknown.

Here T = (x̄, s2) is a CSS. (Recall the derivation: T is a 1-1
function of the natural SS for a 2pef.)

• Estimation of τ (µ, σ2) = µ :

x̄ is unbiased (Ex̄ = µ) and a function of T ⇒ x̄ is UMVUE.

MLE of θ is θ̂ =
(
x̄, n−1

∑
i(Xi − x̄)2

)
. So invariance principle

says MLE of µ is τ(θ̂) = x̄.

MOM estimate is also x̄ since Ex̄ = µ.

Note: For estimating µ, the MLE, MOM, UMVUE all agree on
X̄. But Bayes estimate is different.

What about the sample median M?

M is an unbiased estimator of µ. (Proof?) But it is not a
function of the CSS T . Thus Rao-Blackwellizing M leads to
the UMVUE (which we know is x̄) which has a strictly smaller
variance than M .

Thus: E(M |T ) = x̄ and Var(M) > Var(x̄) = σ2/n.

• Estimating τ (µ, σ2) = σ2 :

Let SS =
∑

i(Xi − x̄)2 .

s2 = SS/(n− 1) is an unbiased estimator of σ2 and a function
of the CSS T . Therefore s2 is the UMVUE.

By the invariance principle, the MLE of σ2 is SS/n. This is
slightly biased.



• Estimation of τ (µ, σ2) = µ2 :

The MLE of µ2 is (x̄)2 by invariance of MLE’s.

x̄2 is biased for µ2:

E(x̄2) = Var(x̄) + (Ex̄)2 =
σ2

n
+ µ2 > µ2 .

An unbiased estimate of µ2 is W ≡ x̄2 −
s2

n
:

E

(
x̄2 −

s2

n

)
=

(
σ2

n
+ µ2

)
−
σ2

n
= µ2.

Subtracting s2/n removes (or corrects for) the bias in the MLE.

W is the UMVUE since it is unbiased and a function of T .

Which is better: x̄2 or W?

For n > 3, W has slightly smaller MSE than x̄2. (Verify?)

Thus x̄2 is inadmissible for n > 3 (but is a perfectly reasonable
estimator).

But W is also inadmissible because it sometimes takes on “im-
possible” values.

µ2 ≥ 0, but W can be negative!

P (W < 0) is positive and will be sizeable when µ is small
(≈ 1/2 when µ = 0).

A better estimate is clearly W+ = max(W,0).

Whenever W+ 6= W , we know W+ is closer to the true
value of µ2. More formally

E(W − µ2)2 − E(W+ − µ2)2 = E
[
(W − µ2)2 − (W+ − µ2)2

]
= E[ {(W − µ2)2 − (0− µ2)2}I(W < 0)︸ ︷︷ ︸

always ≥ 0 and sometimes > 0

] > 0

But W+ is biased! Oh, well.



No unbiased estimator of µ2 exists which does not take on
negative values.

Fact: There are situations where there are no unbiased esti-
mators (and hence, no UMVUE exists).

Example: Observe X1, . . . , Xn iid Poisson(λ). There exists no
unbiased estimator of 1/λ.


