Evaluating the Performance of Estimators
(Section 7.3)

Example: Suppose we observe Xi,..., X, iid N(0,03), with o3
known, and wish to estimate 6.

Two possible estimators are:

0 = X =sample mean and 6 = M = sample median.

Which is better? How to measure performance?

Some possibilities:
1. Compare E|X — 6| with E|M — 0.
2. Compare E(X — 6)? with E(M — 6)2.

3. Compare EL(0,X) with EL(6, M)
where L(-,-) is an appropriate “loss function”: the value
L(0,a) is some measure of the loss incurred when the true
value is 8 and our estimate is a.

absolute error loss: L(6,a) = |a— 0|
squared error loss: L(0,a) = (a — 0)?
game show loss: L(6,a) =I(la—0| > c)

Stein’'s loss (for 6,a > 0): L(0,a) = % — 1 —log (%)

Historically, estimators have been most f[equently compared
using Mean Squared Error: MSE(0) = Ey(6 — 0)=.

This is because the MSE can often be calculated or approxi-
mated (for large samples), and has nice mathematical proper-
ties.



Admissible and Inadmissible Estimators
Let W = W (X) be an estimator of = = 7(0).
Define MSEw (0) = Eg(W — 7(0)2.

An estimator W is inadmissible (w.r.t. squared error loss) if
there exists another estimator V. = V(X)) such that

with strict inequality for at least one value of 6. (An estimator
is inadmissible if there is another estimator that “beats” it.)
An estimator which is not inadmissible is called admissible.

(Draw some pictures.)

Note: An admissible estimator may actually be very bad. An
inadmissible estimator can sometimes be pretty good.

Note: If we are using a loss function L(7,a), we also define in-
admissible and admissible estimators in the same way, replac-
ing the MSE by the more general notion of a risk function
R(0O,W) = EgL (7(0), W(X)).

Examples: Again, suppose we observe X1,..., X, iid N(G,og),
with o3 known, and wish to estimate 6.

Consider the estimator W = 0 that always estimates 6 by O
regardless of the data X.

This is a very bad estimator, but it is admissible because it is
great when 0 = 0. NoO non-degenerate estimator V can possibly
beat W since it would have to satisfy

MSEy(0) < MSEw(0)
= Eo(V-0)> < Eo(W —0)?
= EgV?2 < 0 = P(V=0)=1
= V = 0.



Now consider the estimator M = sample median.

We show later that the sample mean X has a uniformly smaller
MSE than M so that M is inadmissible. (The two MSE func-
tions are constant, i.e., flat.)

However, M is not a bad estimate of 8, and might be used
if there were doubts about the normality assumption (perhaps
the true distribution has thicker tails) or concern about outliers.

Bias, Variance, and MSE (for an estimator W of 7(0))

Biasy () = E,(W —1(0))
Vary () = Ep(W — E;W)? = Varg(W)
Fact: MSEw(9) = Bias3,(9) + Vary(6)
MSE = Bias?+4 Var (in brief)

Proof: For any rv Y with finite second moment, we know
EY? = (EY)? 4+ Var(Y).
Taking Y =W — 7 leads to
MSE = Bias? + Var
since Var(W — r) = Var(W).
Terminology: An estimator W with Biasy (6) = 0, that is,
EgW =7(0) VOec©O
is said to be unbiased. If not, it is biased.

For an unbiased estimator, MSE = Var.
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Which is better? (according to MSE)

Answer: Neither dominates the other.
p20(1 — 0) - 0(1 —0)
n

MSEgayes(0) = (1 — p)?a® > 0 = MSEmLe(0)
and similarly, MSEgayes(1) > MSEmLe(D).

MSEBayes(a) —

= MSEmLe(a),

Thus, the Bayes estimate is superior in the neighborhood of
0 = a, and the MLE is superior near 6 = 0 and 1.

Note: both MSEgayes(6) and MSEwn e(0) are parabolas (quadratic
functions of ).

Note: Regarding (in)admissibility, the above remarks prove
nothing. But it can be shown that both the Bayes estimate
and MLE are admissible here. Typically, Bayes estimates (with
proper priors) are admissible.
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The Rao-Blackwel| Theorem

Tf T=TX) is asufficient statistic
For ,»ej

E_S(X) = 7(8) forall e‘)' and

CE, (S0 -T@) < for all O,

then  S¥(X) = E(sox) | T)
satisties

Ee SEX) = T(©) wccrallej and

£, (S'X)-Te)" = E_(S00-710))"
for al| 6,
Notes :

@ E(SK)[T(X)) does not depend on 6
because. T (X) is sufficient so that
Lx1T) (and thus L(S|T)) does not
szzndz on G.

@ Egual'rly of MSE’s for a parTicu\Qr )
can occur HF %(S(X)SS*(X)):: | .

@ S*¥x) is a function of T(X)
" (fe., AWV such that S¥X) =V (T0) ).



Proof:

Recall: For any rv's X, Y with EX? < co, we have
EX = E(E(X|Y))
Var(X) = E(Var(X |Y)) + Var(E(X | Y))

Now apply these facts:

FEo[S*(X)] = Ep[Ep(S(X)|T(X))]
EgS(X) = 7(0)

E@(S — ’7‘)2 = \/ai’g(S)
= JE[Var‘(rS | T)] +Var[E(S|T)]
>0 S*

> Var(S*) = Ey(S* —7(0))?

Equality can occur only when EyVar(S|T) = 0. But
EgVar(S|T) Eo{E[(S - E(S|T))?|T]}

Eg{(S — E(S|T))?} = Eo{(S - 5%)%}

0 iff Py(S=5")=1.

Arguing more loosely, EyVar(S|T) =0 = Var(S|T)=0 =
S is a function of T = S*= E(S|T) =S.
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Clearly
ES*f = p VP
Var(s*) = PU=PYM < VarS = p(i-p)

verifyinj the condusions of e R-RB Th m. Vf’:
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Suppose T' = T'(X) is a complete and sufficient statistic
for 8. Then ... 4

(1) For any parameter 7(6), there is at most one unbi-
ased estimator which is a function of T'.

(2) If S = S(X) is unbiased for 7(0) (and Var(S) < oo
for all 8), then

S (X)=S"=E(S|T)
is the UMVUE for 7(60).

Definition: S = S(X) is the UMVUE (uniformly minimum
variance unbiased estimator) for 7(0) if

EyS = 7(6) for all 6,

~and
Vary(S) < Vary(S') for all 6
for any other unbiased estimator 5.
Note: For unbiased estimators, MSE = Variance.

Terminology: UMVUE = “best unbiased estimator”

(3) An unbiased estimator (with finite variance) which
is a function of T is the UMVUE.



Proof of (D:
Suppose S‘(X)S%(T(X)) ES;:’W,(T)J
S, (K=Y (T)  [sa=%(M]
and ES’\ ‘—‘-ESZ_‘; T(®) ‘VQ'
Then E(S,-S,)=0 V9O

or E 5(1'):0 V& where
©
9t) = Y -% (1),

By compi.d'e hess
P(g(T)=0)=R(5=8,)=1 V9.
e _

Thus S\=S, (with prob | for all 0) .

Proof of @ *S* s unbiased and a . of T

Suppose W is any unbiased estimator
For ™).

Then R—B Thm say's that W¥= EW | T)
's an unbjased estimator of T(O) and

Va‘”e W”s = le’e W for all 6, ("')

BuT W’K 'S unbiased anoq a_ fundion 0707—)
so O 'ymp’ie,s w¥ =¥,




Thus ("') {mphes
Var, S* <Var, W forall ©,
and S* s the UMVUE,

Proof of @
Suppose ESS(X) = 76) ¥VO
and S(X) = V(TX)).
Then S¥= E(S|T) isthe UMVUE

by@.
But S is a function of T so that
E(s|T)=S.
Thus S s The UMVUVE.




Example: Observe Xi,...,X, iid Bernoulli(p).
e Find the UMVUE of p.
T=)>.X;isa CSS. E(T/n)=np.

Since T'/n is an unbiased estimator of p which is a function of
the CSS T, it is the UMVUE.

e Find the best unbiased estimator of p=.

T(T—1)\ _ o { Found indirectly using Rao-Blackwell.
n(n—1)/) For a direct argument, see below.

Since <Zg_‘f))) is an unbiased estimator of p2 which is a function

of the CSS T, it is the UMVUE.

Checking unbiasedness:

ET(T—-1) = E(T?) —ET =Var(T)+ (ET)? - ET
= np(l—p)+ (np)® —np =n(n — 1)p°

Comment: “Estimate a parameter by its UMVUE" is another
approach to estimation, but not a very good one. Often, no
unbiased estimator exists, or the only one that exists is bad.



Example: Observe Xi,...,X, iid N(u,0?) with § = (u,o0?)
unknown.

Here T = (z,s?) is a CSS. (Recall the derivation: T is a 1-1
function of the natural SS for a 2pef.)

e Estimation of 7(u,0?) = pu:
x is unbiased (Exz = p) and a function of T = =z is UMVUE.

MLE of 0 is § = (z,n"*) ,(X; —Z)?). So invariance principle
says MLE of u is 7(8) = z.

MOM estimate is also x since Ex = pu.

Note: For estimating u, the MLE, MOM, UMVUE all agree on
X. But Bayes estimate is different.

What about the sample median M?

M is an unbiased estimator of u. (Proof?) But it is not a
function of the CSS T'. Thus Rao-Blackwellizing M leads to
the UMVUE (which we know is ) which has a strictly smaller
variance than M.

Thus: E(M|T) =z and Var(M) > Var(z) = o?/n.
e Estimating 7(u,0?) = o?:
Let SS =) .(X;— 7).

s> = SS/(n — 1) is an unbiased estimator of o2 and a function
of the CSS T. Therefore s? is the UMVUE.

By the invariance principle, the MLE of &2 is SS/n. This is
slightly biased.



e Estimation of 7(u,o0?) = p?:
The MLE of p? is ()2 by invariance of MLE's.

z2 is biased for p?:
2
E(7%) = Var(z) + (Bz)? = — + 4 > 2.
n

2
An unbiased estimate of 2 is W = 72 — -
n

- 82 O'2 0'2
n n n

Subtracting s?/n removes (or corrects for) the bias in the MLE.
W is the UMVUE since it is unbiased and a function of T.

Which is better: z2 or W7

For n > 3, W has slightly smaller MSE than z2. (Verify?)
Thus z2 is inadmissible for n > 3 (but is a perfectly reasonable

estimator).

But W is also inadmissible because it sometimes takes on

possible” values.
u? > 0, but W can be negative!

P(W < 0) is positive and will be sizeable when p is small

(= 1/2 when p = 0).

A better estimate is clearly W = max(W,0).

Whenever W, #= W, we know W_ is closer to the true

value of p?. More formally

E(WW —p?)? — E(Wy — p?)? = E [(W — p®)? — (W4 — p®)?]
= BE[{(W —p*)? — (0 — p2)?}I(W < 0)] > 0

~
always > 0 and sometimes > 0

But W, is biased! Oh, well.



No unbiased estimator of p? exists which does not take on
negative values.

Fact: There are situations where there are no unbiased esti-
mators (and hence, no UMVUE exists).

Example: Observe Xi,...,X, iid Poisson(\). There exists no
unbiased estimator of 1/\.



