F isher Inforpdtion

Assume X~ fx[0) with 6@k,
Pa{{-’or
pmf

Define

value of 6.

Fisher IV\FOTmaﬂah 'S meanin ful for families
of distribufions which are peqular !
\J

() Fixed support s { x: £(xI6) >0 is
+he same Tor all 6.

@ & logfxi®) must exist and be firife
for all X and 6,

® If E W(X)< o V8, then

(S%)K Ee W(X) = (&)Kjwmﬁ(x(e)afx
~—> or >_

= (Wi (35) Fixi@dz




Reqular Families

One—pararneter exponential families,
Cauchy localion or scale ‘}ami\y’.’

f(xi8) = \
n((+*—6)%)

fxle) = !
6 (1+ (%)?)
and l6Ts mare , |

(Most families of dishs used in
app\'ncaﬁians are mgu\ar. )

Non-treqular Families
Uniform (0,9)
Uniform (©,0+1)

f(x10) = c@®] [+I(x>8)]

for o<x< |,
o< 6<| .

2¢ - .




Facls aboud Fisher Informalion

(assume a r‘ejular ]Cam”y)

O £ (5 ogf(xle)) =0
Proof : T T Tre “score! ‘Func’hOr\ S©),

@ (oe IOj‘F(XlG :f[é% 10j F(x( @)}70(%!6)&/%

a% Fexle), f(xlo) dx

f(x18)
_ Pl _ 9
- g 2 fxie)dx = %W
=] for all ©

=0
— d
@ IX(G) = \/are( a—@(ajﬁx)e))
Proof® Since E(—a% \oi\aﬁ&xle)) =o,
Vare(% \Ojﬁ(x(e)) = E@ (’éa‘e{afj‘/j(xle))z
=TI (©) .
X



B) If X=(Xi,Xz,.eesXn) and
X')X’A; ><Y'\ aqare )n&Q,PQY]JQn‘\— I"VS

then T (©0) =T @)+L (Ot -+ T (©)
X X| >3 y Xn .

Proof °
£(x10) = T— qf (%;19)

1=

where E.L('* (©) is the unz (mec) of Xi.

d < ;
36 (%)C(X\Q) = LZ:‘ 5% fcﬁ‘pi(xm\e)
and the rv’s inThe Sum are ivdzpewo@#.

Thus
\/ar[——’ajjc(xl@)] Z\/ar[ lOﬁWC;L(X;LIG)J
so thaf Ix(e)=§ 6 by @.

1

@ I]C ><\)><1) ) are nc[
avol X =CXis.. ><n) +hen T (9) I(e)

$or all 1 sO that” T (9) nI (e) :



_ _ 2 logf(X|e
S L (© Ee( 2, logf(xie))
(Alternate formula_ for Fisher im%rmcrﬁon)

Proof :
Abbreviate  § F(x1)dx as j$ ete.

= [ f.

App)y —ab—é ‘o both STG@ZS.
a‘p _ Q‘F
0=3Jt = S B —'af‘“ - F

= ((F1eaf)F
Apply f5 a9ain-
— 5% s’(ééélosf).{
= (2 [65'")f]

J(é [oj‘F) -F—\—g (/— [o ég
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QED



Example: Fisher information for a Poisson sample.
Observe X = (Xi,...,X,) iid Poisson(\). Find Ix(X\).

We know Ix(A) = nlx,(A).

We shall calculate Ix,(\) in three ways. Let X = X;.
Preliminaries:

ATe=A
[y = =5
xZ.
log f(x|\) = xzlogA—\—loguz!
0 T
— o A) = ——1
B3 g f(x|N) 3
_ 02 T
ﬁ'ogf@fp\) = ﬁ
Method # 1:
) 2 X 2
Ix(\) = FE — o X | A = F ——1
W = B (a0 | = 5] (3 )]
X _ X EX A
= Var, | — since F|— | =—=—-—=1
(5) (3)=5=3
_ Var(X) _ A 1
o A2 A2 )

Method # 2 (almost the same):

Ix(A\) = Var, ((%Iog f(X| A)) = Var (% — 1)
= Var (£> = 1 as in Method #1
A A
Method #3:
_ 07 X A 1
Ix(A\) = FE — | XIN|=E|=) =2 ==
W = B Tpplee s ) = B () = % =3

n

e [ hus I‘Z,(()\) = TLIXI(A) = B



Example ! Fisher information for
Cauchy location w%mily.

Suppose Xy, Xz ey Xn i with

& -F( (9): L 2 °
L F ~ 7T( | +A-O )

Let X = (XiyeeyXn) , X £(2]6),

Find I)é(el

I%’(G) = n IX\(Q) = hIX(Q).,
d - of
55 log;wc(%(@) ‘_ég"

- | . 2 (x-6)1)
(1 +x-0)n)*

l
7 ([ + Ge-0)%)
2 (x—9©)
[+ @)

Nm—

——




L®©= E[(g?é 103f(xle))2~j

- F /2&-9) )2'
[+ X -0)"
j 2 (%—@) l _ _dz
(1 + Gc—0)* 7 l'f‘(?c-—@)z)

:45 (%6) d

[+ fe—0))>

ij“’ u e

(I

7T oo (/+u’“ 3
=B (T us du
T Yo ((+u?)
substitute
L (—2x = >
x= +u* [+ u*

dz = —2%  ou ( olont use)
C+u®)*



2%
) -
du = _L(—Q‘C-—-)) (“—-’—7_> x
Then
S (T _u*
< <L du

(

{

u
T <o
2
g OO - % (YT
o n(3/2,+3/9~) T Z]
0 = N
Therefore Ix(e) >



Uses of Fisher Information:
e Asymptotic distribution of MLE's

e Cramér-Rao Inequality (Information Inequality)

Asymptotic distribution of MLE’s
e IID Case:

If f(x|0) is a regular one-parameter family of pdf's (or pmf’s)
and 6, = 6,(X,) is the MLE based on X,, = (X1,...,X,) where
n is large and Xi,..., X, are iid from f(x|0), then

- 1
0, ~ approx N | 0, where I(0) = Ix, (0
pprox v (6, ) (6) = Ix,(6)

and 6 is the true value. Note that nI(f) = IXn(Q).
More formally,

0, — 0

= /nI(0)(6, —6) 4, N(0,1) asn — oo.

1

nl(0)

e More general case:

(Assuming various regularity conditions)
If f(x]|6) is a one-parameter family of joint pdf's (or joint

pmf’s) for data X, = (X1,...,X,) where n is large (think of a
IargeAdataA set arising from a regression or time series model)
and 6, = 6,(X,) is the MLE, then

. 1
0, ~ approx N (9, ) (0 = true value).
Ix,(6)



Estimation of the Fisher Information
If 6 is unknown, then so is Ix(0).

Two estimates I of the Fisher information Ix(0) are

_ - 02
I, =Ix(#) and Igz—ﬁlogf(Xw)

0—=0
where 6 is the MLE of 0 based on the data X.

I; is the obvious plug-in estimator. It can be difficult to com-
pute when Ix(6) does not have a known closed form.

The estimator I, is suggested by the formula

82
Ix(0) = B (— O 10g f(X | 0)) .

It is often easy to compute, and is required in many Newton-
Raphson style algorithms for finding the MLE (so that it is
already available without extra computation).

The two estimates I; and I, are often referred to as the “ex-
pected” and “observed’ Fisher information, respectively.

As n — oo, both estimators are consistent (after normalization)
for Ix (68) under various regularity conditions.

For example: in the iid case: I1/n, I>/n, and Ix (6)/n all con-
verge to I(0) = Ix,(6).



Approximate Confidence Intervals for 6

Choose 0 < a < 1 (say, a = 0.05). Let z* be such that
P(—2"<Z<z')=1—a where Z~ N(0,1).
When n is large,

VIx(6)(6 —6) ~ approx N(0, 1) so that
{ < \Ix(0)(0—-0) <z} ~1—a or equivalently

{Q—zw/ T (0) <9<9+Z1/ X(9 }Nl—a

This approximation continues to hold when Ix(0) is replaced
by an estimate I (either Iy or I>):

Y 1 ~ 1
P{@—z*\/;<9<9—l—z*\/;}%1—a.
- 1 - 1
0 —2z"/=.,0 1=
( Z\/; +Z\/;>

is an approximate 1 — « confidence interval for 6. (Here @ is
the MLE and I an estimate of the Fisher information.)

Thus



Cramer— Rao Ine%ualii\/ ( X~ P@; ge ® <R)
If F(x(8) isa t’eﬂu\ar O“Q‘Parame+ér Wcam'\\y)

E@\/\/(ZS) = 7(0) forall O, and

T(©) is cgl'%cerzﬁf'fable)

then Var (W(x)) > (7'(€)”
I>< (8)

Proof :

Preliminary Facts
/

) [COV(XJY)jQ_S(VaF XY VarY).

This is a Specfal case of the Cauchy-Schwarz
MQ%ULQ‘H}/. Tt is beter known fo Sf“a‘/’l's‘l’l'chms
= COV(XJ\Q IS ‘e

JVVarX- VvacY

cortrelation befween X and Y.

Cor(%Y) =E XY if etther EX=0or EY=0,

This follows fromthe wel) knawn )Cormu(lcp
Cov(X,¥) = EXY —EXYEY).




Body of Proof:  From @ we have

[@ve (WiX), &logfX1o)] "< (Var wes Yar(S logf x16)
— °
I (e

From we haye
C;ove( W(X), 5% {0379(23!9)) = E[W(,)S) %103,0(%}9)]
(Since E %10370(2&[9): O )

g W(%) IOj?E(% @)) F(%(e)d%

\\/Cz%%

Nst———

§ wiz) éf‘?é’@) dx

jW%ﬁW@M%
(smce L£(%x]0) isa regudar %m\ly)

e[ w(x) = 76 .

~ 3 |
Thas [r7(0)]7< (Var, WX)) T (6).
f ° = QED




Addendum
EgualHy in @ 1S achieveaf 0L

Y = aX+b for some corstarils )b,
More over, f EY=0 D‘ﬂne\n E(aX+b)=0
forces b= —aEX so-thal

Y = a(X—=EX) for some constanl a.

Applying tis fo “the proof of CRLB
with  X=W(X) , Y= & (0g f(XI€)
tells ws That

Var, Wix) = (e)?
T, (e

._F é _
g L i (x16) = 2O WX)-r©)] &
for some Sunction 2(6).

Nofe : F) is true 0hl>/ V\M@Y\

£(xl0) is a IPQ]C and
W(X)= cT(x)+d for same C)0,

Jhere TUR) isthe natural swif. stat
of the [pef.




Asymplotic Efficiency

Givens A seguev\ce of estimators

WY\ = Wh(XlDXQ.)-HJXn) -
X

~"N

If EW,=7(8) forall N,
Then {Wn} 1S asykngl’a‘f'fcal& efficient it

Va re WY\ — 1

> :
(T’(e))/Lx (6) call this V,,(©)

What it Var, W, =o° or if W, is biased ?

[im
Nn-—> oo

An a!ferna‘f'ivz dewc'mi-ﬁon .
{W”’S' is asympfof c:aU}/ efficient for
-es?”fmafinj T(8) if
Wy, ~ AN (118), Vi (9)) .
—
> asympfdf ical)y nocmal
Meaning of AN Wo=70)  , (q,1)

/\{’\/;1?9_) as h—> oo,




Example: Observe Xi,...,X, iid Poisson(\).
e Estimation of 7(\) = A

EX =)\
Does X achieve the CRLB? Yes!
— Var(X A
Var(X) = g ==
mn mn

BN CACO) S S
CRLE = Ix(\)  n/A n

Alternative: Check condition for exact attainment of CRLB.

n

Tlog f(X10) = 3 Tlog f(Xi|A) = Z(%—l)

=1 7
n —
= 3 (X=X

Note: Since X attains the CRLB (for all )\), it must be the
best unbiased estimator of .

Showing that an estimator attains the CRLB is one way to
show it is best unbiased. (But see later remark.)

e Estimation of 7(\) = \°
T(T — 1)

n2

Define W = where T'= 3"  X,.

EW = )2 (see calculations below) and W is a function of the
CSS T. Thus W is best unbiased for \°.

Does W achieve the CRLB? No!!!

(T'(A)° _ (202 _ 4x3

Ix(N) n/A n

4)03  2)\2
Var(W) = " + —

CRLB =

(see calculations below)




Alternative: Show condition for achievement of CRLB fails.

As shown earlier:

d X; T
5logf(X|>\) = Z(T—l) = _——n

The CRLB is attained iff there exists a(\) such that
T T(T -1
——n=a()\)( ( )—)\2).

A n2

But the left side is linear in T, and the right is quadratic in T,
so that no multiplier a(\) can make them equal for all possible
values of T=0,1,2,...

Remark: This situation is not unusual. The best unbiased
estimator often fails to achieve the CRLB.

But W is asymptotically efficient:

Var 4x Q—A; 1
mﬂzlimgzlim 1+—) =1

n

e Calculations:
Suppose Y ~ Poisson(&).

The factorial moments of the Poisson follow a simple pattern:

EY = = ¢

EY(Y —1) = ¢&?2

EY(Y —1)(Y —-2) = &3
EY(Y —1)(Y —=2)(Y —=3) = ¢&* etc.



Proof of one case:

EY(Y —1)(Y —2) = ;z’(i—l)(z’—Q)gi:!
_ 3 i~ fz—3e—£ 3 © 536_5 _ 3
: ;(1—3)! : jz_; ;! .

From the factorial moments, we can calculate everything else.
For example:

Var(Y(Y —1)) = E[{Y(Y - 1)}?] - [EY (Y — 1)]?

E[Y2(y -1)?] - [¢7]°

E[(Y)a+4(Y)s+2(Y)2] — &*

= [£* 445 42¢%] — ¢ = 487 4 2¢7
where (Y), =Y (Y —1)--- (Y —k+ 1) .

In our case T ~ Poisson(n)\) so that substituting £ = n\ in the
above results leads to

ET(T—1) = (n)\)?2=n2)\?
Var[T(T — 1)] = 4(n)\)3 4+ 2(n)\)? = 4n3)3 4 2n2)2
so that W = T(T — 1) /n? satisfies:
EW = )
Var(W) = AN + 2)\22

n n




An_asymptotically i netficient estimator
E_Xampi_é'. [T X,)X27...)Xn be 71

with f:df F(x)e) = %“"Q:__x Ffor 2 >0.
For -thi o
IS /od-F; EX=Var X =«.
Clearly E X =ol. Thus X is MOM
estimator of «. |
L otically effei a+? M Verified
s it asymptotically erticient = Mo\, jow.

Nete : This is /«PZF with ndatural sufficient
statistic T= > log Xy . Since T (s CoMF/@LQ)
1=|

EX(T) is the UMVUE of o¢. Since X

's ndl a function of T, we know
Var(X) > Var[EO‘Zlﬂ] :

But Var[EKID] = CRLB. Th«s, withodl
caleulation, we know fhat X Cczmr_\____z_);f’ achieve
he CRLB for any value of n. We now Show
+ does vt achieve it asympldtically either;



\/ar‘sz = \/CU"'X( _

N n

T (d=nT (0

Xn X | |
=n [ Ll (°<)-n‘ﬂ'(o<)fj
(Me))*
by a routine calculotion
cCRLB= _|
n Ix‘(O()
Thus

Var X _ & T () which does nof
CRLB al

dle'oenaf on n.

Since X does _@_oi'adniéve CRLB foramy n)
we Know o(IX @) =>1. Thus
t

lim VarX _— « T («) > |
n—>0co CRLS Y

so Het X Is Vl(f asynmp- etf.




Nofe ¢ The Ffunclion o(IX () looks
[

(ke thiS .

N

{ U

- m— e =

R
9

o—=20 X é ~
[im X = g E‘
x> 0o 1 @) 1 ;n§
when o is small ; X is horrible . g &
S &

LS -

¢

When & 1s (arSQD X 1s PrQHy SOOJ.

ZS')

N

General Commeﬂf: For ré(jufar famili
the MLE is asympf’oﬁca)/y efFicient.

Thus
i Var Wn essafrhally compaﬁs “‘the

N> RLB(N)
varTamceoF Whn with ~that oF the MLE 1n

[ar%ﬁ, sa mP|6$ .




