












Example: Fisher information for a Poisson sample.

Observe X˜ = (X1, . . . , Xn) iid Poisson(λ). Find IX˜(λ).
We know IX˜(λ) = nIX1

(λ).

We shall calculate IX1
(λ) in three ways. Let X = X1.

Preliminaries:

f(x |λ) =
λxe−λ

x!
log f(x |λ) = x logλ− λ− logx!

∂

∂λ
log f(x |λ) =

x

λ
− 1

− ∂2

∂λ2
log f(x |λ) =

x

λ2

Method # 1:

IX(λ) = Eλ

[(
∂

∂λ
log f(X |λ)

)2
]

= Eλ

[(
X

λ
− 1

)2
]

= Varλ

(
X

λ

)
since E

(
X

λ

)
=
EX

λ
=
λ

λ
= 1

=
Var(X)

λ2
=

λ

λ2
=

1

λ
Method # 2 (almost the same):

IX(λ) = Varλ

(
∂

∂λ
log f(X |λ)

)
= Var

(
X

λ
− 1

)
= Var

(
X

λ

)
=

1

λ
as in Method #1

Method #3:

IX(λ) = Eλ

(
− ∂2

∂λ2
log f(X |λ)

)
= Eλ

(
X

λ2

)
=

λ

λ2
=

1

λ

• Thus IX˜(λ) = nIX1
(λ) =

n

λ
.









Uses of Fisher Information:

• Asymptotic distribution of MLE’s

• Cramér-Rao Inequality (Information Inequality)

Asymptotic distribution of MLE’s

• IID Case:

If f(x | θ) is a regular one-parameter family of pdf’s (or pmf’s)
and θ̂n = θ̂n(Xn) is the MLE based on Xn = (X1, . . . , Xn) where
n is large and X1, . . . , Xn are iid from f(x | θ), then

θ̂n ∼ approxN

(
θ ,

1

nI(θ)

)
where I(θ) ≡ IX1

(θ)

and θ is the true value. Note that nI(θ) = IXn
(θ).

More formally,

θ̂n − θ√
1

nI(θ)

=
√
nI(θ)(θ̂n − θ)

d−→ N(0,1) as n→∞.

• More general case:

(Assuming various regularity conditions)
If f(x˜ | θ) is a one-parameter family of joint pdf’s (or joint

pmf’s) for data Xn = (X1, . . . , Xn) where n is large (think of a
large data set arising from a regression or time series model)
and θ̂n = θ̂n(Xn) is the MLE, then

θ̂n ∼ approxN

(
θ ,

1

IXn
(θ)

)
(θ ≡ true value).



Estimation of the Fisher Information

If θ is unknown, then so is IX(θ).

Two estimates Î of the Fisher information IX(θ) are

Î1 = IX(θ̂) and Î2 = −
∂2

∂θ2
log f(X | θ)

∣∣∣∣
θ=θ̂

where θ̂ is the MLE of θ based on the data X.

Î1 is the obvious plug-in estimator. It can be difficult to com-
pute when IX(θ) does not have a known closed form.

The estimator Î2 is suggested by the formula

IX(θ) = E

(
−
∂2

∂θ2
log f(X | θ)

)
.

It is often easy to compute, and is required in many Newton-
Raphson style algorithms for finding the MLE (so that it is
already available without extra computation).

The two estimates Î1 and Î2 are often referred to as the “ex-
pected” and “observed” Fisher information, respectively.

As n→∞, both estimators are consistent (after normalization)
for IXn

(θ) under various regularity conditions.

For example: in the iid case: Î1/n, Î2/n, and IXn
(θ)/n all con-

verge to I(θ) ≡ IX1
(θ).



Approximate Confidence Intervals for θ

Choose 0 < α < 1 (say, α = 0.05). Let z∗ be such that

P (−z∗ < Z < z∗) = 1− α where Z ∼ N(0,1).

When n is large,√
IX(θ)(θ̂ − θ) ∼ approx N(0,1) so that

P
{
−z∗ <

√
IX(θ)(θ̂ − θ) < z∗

}
≈ 1− α or equivalently

P

{
θ̂ − z∗

√
1

IX(θ)
< θ < θ̂ + z∗

√
1

IX(θ)

}
≈ 1− α .

This approximation continues to hold when IX(θ) is replaced
by an estimate Î (either Î1 or Î2):

P

{
θ̂ − z∗

√
1

Î
< θ < θ̂ + z∗

√
1

Î

}
≈ 1− α .

Thus (
θ̂ − z∗

√
1

Î
, θ̂ + z∗

√
1

Î

)
is an approximate 1 − α confidence interval for θ. (Here θ̂ is
the MLE and Î an estimate of the Fisher information.)











Example: Observe X1, . . . , Xn iid Poisson(λ).

• Estimation of τ (λ) = λ

EX̄ = λ

Does X̄ achieve the CRLB? Yes!

Var(X̄) =
Var(X1)

n
=
λ

n

CRLB =
(τ ′(λ))2

IX(λ)
=

1

n/λ
=
λ

n

Alternative: Check condition for exact attainment of CRLB.

∂

∂λ
log f(X |λ) =

n∑
i=1

∂

∂λ
log f(Xi |λ) =

∑
i

(
Xi

λ
− 1

)
=

n

λ

(
X̄ − λ

)
Note: Since X̄ attains the CRLB (for all λ), it must be the
best unbiased estimator of λ.

Showing that an estimator attains the CRLB is one way to
show it is best unbiased. (But see later remark.)

• Estimation of τ (λ) = λ2

Define W =
T (T − 1)

n2
where T =

∑n
i=1Xi.

EW = λ2 (see calculations below) and W is a function of the
CSS T . Thus W is best unbiased for λ2.

Does W achieve the CRLB? No!!!

CRLB =
(τ ′(λ))2

IX(λ)
=

(2λ)2

n/λ
=

4λ3

n

Var(W ) =
4λ3

n
+

2λ2

n2
(see calculations below)



Alternative: Show condition for achievement of CRLB fails.

As shown earlier:

∂

∂λ
log f(X |λ) =

∑
i

(
Xi

λ
− 1

)
=

T

λ
− n

The CRLB is attained iff there exists a(λ) such that

T

λ
− n = a(λ)

(
T (T − 1)

n2
− λ2

)
.

But the left side is linear in T , and the right is quadratic in T ,
so that no multiplier a(λ) can make them equal for all possible
values of T = 0,1,2, . . .

Remark: This situation is not unusual. The best unbiased
estimator often fails to achieve the CRLB.

But W is asymptotically efficient:

lim
n→∞

Var(W )

CRLB
= lim

n→∞

4λ3

n
+ 2λ2

n2

4λ3

n

= lim
n→∞

(
1 +

1

2nλ

)
= 1

• Calculations:

Suppose Y ∼ Poisson(ξ).

The factorial moments of the Poisson follow a simple pattern:

EY = = ξ

EY (Y − 1) = ξ2

EY (Y − 1)(Y − 2) = ξ3

EY (Y − 1)(Y − 2)(Y − 3) = ξ4 etc.



Proof of one case:

EY (Y − 1)(Y − 2) =
∞∑
i=0

i(i− 1)(i− 2)
ξie−ξ

i!

= ξ3
∞∑
i=3

ξi−3e−ξ

(i− 3)!
= ξ3

∞∑
j=0

ξje−ξ

j!
= ξ3

From the factorial moments, we can calculate everything else.
For example:

Var(Y (Y − 1)) = E
[
{Y (Y − 1)}2

]
− [EY (Y − 1)]2

= E
[
Y 2(Y − 1)2

]
−
[
ξ2
]2

= E [ 〈Y 〉4 + 4〈Y 〉3 + 2〈Y 〉2 ] − ξ4

= [ ξ4 + 4ξ3 + 2ξ2 ]− ξ4 = 4ξ3 + 2ξ2

where 〈Y 〉k ≡ Y (Y − 1) · · · (Y − k + 1) .

In our case T ∼ Poisson(nλ) so that substituting ξ = nλ in the
above results leads to

ET (T − 1) = (nλ)2 = n2λ2

Var[T (T − 1)] = 4(nλ)3 + 2(nλ)2 = 4n3λ3 + 2n2λ2

so that W = T (T − 1)/n2 satisfies:

EW = λ2

Var(W ) =
4λ3

n
+

2λ2

n2








