










Continuation of Simple Linear Regression Example:

What if the variance σ2 is unknown?

Now θ = (β0, β1, σ2) and Θ = R2 × (0,∞).

(Change σ2
0 to σ2 in earlier formulas to indicate this.)
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According to the FC, T (X) =
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is a suffi-

cient statistic for θ = (β0, β1, σ2).



Discussion:

We have described two models.

The model with σ2 known (i.e., σ2 = σ2
0) can be regarded as a

subset of the model where σ2 is unknown.

Θ1 =
{

(β0, β1, σ2) : σ2 = σ2
0

}
= R2 × {σ2

0}.

Θ2 =
{

(β0, β1, σ2) : σ2 > 0
}

= R2 × (0,∞).

Θ1 ⊂ Θ2.

The sufficient statistics we found for these two models were
different:

T1 ≡
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)
is SS for Θ1.

T2 ≡
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2
i ,
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)
is SS for Θ2.

Note: T2 is also a SS for Θ1, but it is not “minimal”. This is
discussed shortly.


