
Example: Sufficient Statistics for Random Samples from Var-
ious Families of Normal Distributions

Let X = (X1, . . . , Xn) where X1, . . . , Xn are iid N(µ, σ2).

Consider different families of normal distributions.

Θ1 = {(µ, σ2) : σ2 > 0} (all normal distns)

Θ2 = {(µ, σ2) : σ2 = σ2
0} (known variance)

Θ3 = {(µ, σ2) : µ = µ0 , σ2 > 0} (known mean)

(Draw Θ1,Θ2,Θ3 in (µ, σ2) plane.)

For each space, the “obvious” sufficient statistic is different.

In all cases, the joint pdf of X is given by

f(x |µ, σ2) =
n∏
i=1

(2πσ2)−1/2 exp

{
−

(xi − µ)2

2σ2

}

= (2πσ2)−n/2 exp

{
−

1

2σ2

∑
i

(xi − µ)2

}
. (†)

Θ3:

Here µ = µ0, (a known value) so the “unknown” parameter
is θ = σ2.



The joint pdf may be factored as

f(x |σ2) =

[
(2πσ2)−n/2 exp

{
−

1

2σ2

∑
i

(xi − µ0)2

}]
· 1

= g
(∑

i(xi − µ0)2 , σ2
)
h(x)

= g
(
T3(x) , σ2

)
h(x)

where
T3(x) ≡

∑
i

(xi − µ0)2

so that T3 = T3(X) =
∑

i(Xi − µ0)2 is a SS for Θ3.

Note: T3 is not even a statistic if µ is unknown (i.e., not
fixed).

For the rest (Θ1 and Θ2), we modify (†) by substituting

n∑
i=1

(xi − µ)2 =
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

where x̄ = n−1
n∑
i=1

xi .

(This is an identity valid for all x1, . . . , xn and µ.)

Substituting in (†) and breaking up the exponential yields

f(x |µ, σ2)

= (2πσ2)−n/2 exp

{
−
∑

i(xi − x̄)2

2σ2

}
exp

{
−
n(x̄− µ)2

2σ2

}
. (‡)



Θ2:

Here σ2 = σ2
0, (a known value) so the “unknown” param-

eter is θ = µ.

Factoring the joint pdf (‡) as

f(x |µ)

=

[
(2πσ2

0)−n/2 exp

{
−
∑

i(xi − x̄)2

2σ2
0

}][
exp

{
−
n(x̄− µ)2

2σ2
0

}]
= h(x) g(x̄, µ) = h(x) g(T2(x), µ)

where T2(x) ≡ x̄
shows that T2 = T2(X) = X̄ is a SS for Θ2.

Θ1:

Here both µ and σ2 are unknown so θ = (µ, σ2).

It is clear that (‡) may be written as

f(x |µ, σ2) = g
(
x̄,
∑

i(xi − x̄)2, µ, σ2
)
· 1

= g(T1(x), θ)h(x)
where T1(x) =

(
x̄,
∑

i(xi − x̄)2
)

so that T1 = T1(X) =
(
X̄,
∑

i(Xi − X̄)2
)

is a SS for Θ1.

Note: T1 is also a SS for Θ2 and Θ3. Neither T2 or T3 is
a SS for Θ1.











Remark on the definition of Minimal Sufficient Statistics:

It is difficult to show a statistic is MSS directly from the defi-
nition. For proving MSS, we usually use the Lehmann-Scheffe
Theorem.

However, it is often very easy to prove a statistic is not MSS
using the definition. If S and T are two different sufficient
statistics, and T cannot be written as a function of S, then T
is not minimal.

Example: Consider the three families of normal distributions
used earlier.

T1 and T2 are both SS for Θ2, but T1 clearly cannot be written
as a function of T2. Thus T1 is not a MSS for Θ2.

Similarly, T1 and T3 are both SS for Θ3, but T1 clearly cannot
be written as a function of T3. Thus T1 is not a MSS for Θ3.















Example: Suppose X ∼ Pθ, θ ∈ Θ and Pθ has a joint pdf (or
pmf) f(x | θ).

Fact: X is a SS for θ.

Define T = T (X) = X. (T is the identity function.)

Proof from FC:

f(x | θ) = f(x | θ) · 1 = g(T (x) | θ) · h(x)

where g ≡ f and h(x) ≡ 1. Thus T is SS.

Proof from definition of SS:

L(X |T (X) = t) = L(X |X = t) = δt

where δt is the probability measure (distn) which places all
its mass at the point (data set) t.

(This fact is not useful, but only intended to illustrate the
definitions.)

Example continued: Further suppose X = (X1, . . . , Xn) where
X1, . . . , Xn are iid from the pdf (pmf) ψ(x | θ).

Fact: T (X) = X = (X1, . . . , Xn) is not a MSS.

Proof from definition of MSS:

Let S = S(X) = (X(1), X(2), . . . , X(n)) (the order statistics).

Since we have a random sample model, S is a SS.

But clearly T is not a function of S. (You cannot recover
the original ordering of the data given only the order statis-
tics.)

Thus T is not a MSS.


