Example: Sufficient Statistics for Random Samples from Var-
ious Families of Normal Distributions

Let X = (X1,...,X,) Where Xi,...,X, are iid N(u,c?).

Consider different families of normal distributions.

©1 = {(u,0?) : 02 > 0} (all normal distns)
O = {(u,02) : 02 = 03} (known variance)
O3 = {(u,0%) : p = po, 0® > 0} (known mean)

(Draw ©1,05,03 in (u,o?) plane.)
For each space, the “obvious” sufficient statistic is different.

In all cases, the joint pdf of X is given by

fzlp,o0?) = 12[(27r<f2)‘1/2 exp {— M}

202

O3

Here u = po, (@ known value) so the “unknown” parameter
is § = o2,



The joint pdf may be factored as

[(27r02)”/2 exp {— % > (@i— Mo)z}] -1

= g(2(@i—po)?, o) h(z)
= g(T3(2), 0%) h(x)

where

Ta(@) = 3 (@i — o)

flz|o?)

so that 75 = T3(X) = > _.(X; — pno)? is a SS for Os.

Note: T3 is not even a statistic if p is unknown (i.e., not
fixed).

For the rest (©; and ©5), we modify (1) by substituting
Zcf:z 1?2 = Zm — )2+ n(@ - w)?

where 7 = n_lzxi.
i=1
(This is an identity valid for all z1,...,z, and u.)

Substituting in () and breaking up the exponential yields
f(x|p,0%)
A =2
= (2r02)"/? exp{— 2~ T) }exp{—n(ﬂj 1) } NGY
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Here 02 = 02, (a known value) so the “unknown” param-
eter is 0 = p.

Factoring the joint pdf (1) as

flz|p)
=2 - 2
— (27r08)”/2exp{—2i(xz_w) H [exp{—n(x_u) }]
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= h(=z)g(z,n) = h(x) g(T2(x), pu)
where To(z) = =

shows that 7o = T»(X) = X is a SS for O».

Here both p and o2 are unknown so 6 = (u,0?).

It is clear that (i) may be written as

f(x‘/i?O-Q) 9(57Zi(xi_£>27/~%0-2) -1
= g(T1(=),0) h(x)
where Ti(z) = (7, ;(zi — 7)?)

so that Ty = T1(X) = (X, ,(X; — X)?) is a SS for ©1.

Note: T3 is also a SS for ©, and ©3. Neither 1> or T3 is
a SS for ©;.



General Facts about S{

() If =T is aSS for 0€O), ,
and @BC@A)
then T is SS for 6€@)g -

M © If P(XIT) is constant for
SRS 5 then it is constanl for 6 e @B .

@ If 7T is & SS (for ©€ @) and
T= ¢(U) where U=0UX),

+hen U s also a SS (for S €@).
Proot ¢ (using FC)

I ————————

T is SS = fx|6) =g(T(8) hix)

= g( N 16) h

= 3*( VY [6) h(%)
where g*(w[9)
= U(X) | =g 4l9)
Is SS.



B If T=TX is a suffshal. (for6e @)
then U=(S,T) is also « suff staf; 7

for any S=S(X).
Proof i Immed iate conseguence, of @

b)/'fakfnj (S)‘f;) =t.
with thi's g/’lm'ce of p we. have.

T:P(U) ::; U IS SS.
IF T=T(X) and U= U(X) qre
related by T= (V) where. Q/ is [-1
-Func'f/'anJ Fhen T ;s SS ifFf U is SS,

A pplication o random samples from various
families of normal df stributions :

Recall .

T 5 T Qi
X5 z(xf’x) )

T,= X is SS for ®),= {(,u)o-z)_- 0'2:-052},

T -‘-‘Z(X,g%)z is SS for
= {V‘)d@ TS y TS 0]‘,



T, is S5 for @l
= T\ s SS for @2 and for @3
since @’ ), @2 and @"D @3 .

CHQVQ we use fFact 0).)

T, IS SS for @2
:::> T, s SS for @z .
( by ush:tj Fact Q))
| TB is SS for @3 andl
T = Z&ipo)F= S =X)"+ &)
= 50(7_,)
:> 7_‘ Is SS for @3 (by usin

Fact @)
T, is SS for @T,

= (X, ;‘_—_.2(&;—?)2) is SS for ®,
= (=ZX; 5 ZX;”) (s SS for @,
since both of these are |- | Punctions
of T, . (Hae we ue Fact &).)



A minimal sufficient statistic is a

function of any other sufficient statistic.

T=T(X) is minimal Su-Ff, hc for ever)/
suff. stal. S=S(X) there exists a
function W such that T =W(S), fnat is,

T(X) = V(S(X)).

[enmann — Scheffe Thesrem
X~ P o€ &)

T(X) Ts @ minimal sufficiedf statistic

i
for all %,‘5(

TX)=T(y) i+ ﬂ’f_‘_@. is constanT as a
J F4(®)
4 Function of S,



Remark on the definition of Minimal Sufficient Statistics:

It is difficult to show a statistic is MSS directly from the defi-
nition. For proving MSS, we usually use the Lehmann-Scheffe
T heorem.

However, it is often very easy to prove a statistic is not MSS
using the definition. If S and T are two different sufficient
statistics, and 17" cannot be written as a function of S, then T
IS not minimal.

Example: Consider the three families of normal distributions
used earlier.

Ty and 1> are both SS for ©»,, but 77 clearly cannot be written
as a function of 75. Thus 7Tj is not a MSS for ©-.

Similarly, T1 and T3 are both SS for ©3, but T7 clearly cannot
be written as a function of 7T3. Thus 717 is not a MSS for ©s.



Commerils

@ In situations where The Sup)oorT of
F(xl0) o(epend’s on © , a befter
statemeril ( which avoids awkward g-’s)
is I Forall %,y,

Toe) =Ty it £2,0) = ey fey,0)
for all ©

@ The “iff” can be broken down as
two results.

Q) Tf TX) is Su)c')cn'cfenf) Then
for all %Y

T(x) T-T(g) imp“es -F(?C‘e) cansfavxf in ©.
F(y(o)

(b) A sufficient statistic T(X) is Minimal if
for 254

‘f_(__?_(»_@ constant in 6 imlo“es T(x) :T(;() .
f(y.10)



ExaM{?l@S fof‘ L@hmaym —Sche)% WQOI?W)

EXQYW!O]/@: x:<><l)-°~:)><h) ;TCﬂ I\IQUJO’QD X
T(X) = (X, s2) is MSS for ,C“JJ).
e Text _ LS, oy

<§€ @x > S s — Z(X,L X)

—

Example . XZQXU...)XH) iid Uniporm(d)ﬁ).

O = {xpr meosx<feesf
T(X)= (X X(m) is MSS For(o(/jg).

(1)) :

( Xu) = min X,L) X(n): max ><"L )

We must ver(‘?yl for all %)Y

S #0
T() =T(y) iff 3c such Fhal

vale):c?(g(@)'ve'

( c does not” irwolve 6J bu‘f can

O(ZPQV\O{’ onN x/g)

Inthis cas< \
feley = 11 g L(e<xi<f)
1=1
) (p—J’Z)v\ I(%u)?/d) (% <4)



SIml\Cle

F(‘a('@ :, E/g‘—;d)n Il Lé(u)z()() I(g((”) §/6)) .

“ )
Xo€
C!ear\y | @
( %(t)) %(ﬂ)) = <g\(() Qg(m) me(lQS/’] C

fixle)=Tyle) v oc®.
This gives one direction. What bt the other?
Define A(X)=fe:f(x(6)>0} |

J
(O()(B) w < B

Assume T cZ O such F(XIG) =C7C( [8)
Foroll &,

Then we must have Ax) = A(g) ) .
But Alx) = %(09,3) DS Xy, fEE0 ¥

for any .
Thus A = A((%() 777’7/011@5 (76(,))7(“,,)) :(;fu))g(m)-
QRED
N ote ! This g‘ly)e of a;jumenf can 0}’72/ work for

exqmples similar 1o “e unitorm distn.
M/}’)Qr’a ‘f’]’)@ Suﬁwf T O(Qloano/ S u/oon 7”}46

par’améf’ er value-



Example o X= (X, %) iid Uniform @,0+1),
O T(X) = (X, Xy ) 15 MSS for &,
(See text.)

Comments . The dimension ot the MSS does
0ot have to be He same as the
dimension of the pqramg"éh

—> "Shrinking" +he Parqmg‘i@r SFQCQ
does \Q_ojj alv\/ays chamjaa +he MSS.

When ><=(><\),,.J><y,) id Unifom(d)/g))
(=), = {egp): «<pl and
@), =4 P p=oct

have ‘the same MSS.



CXQmplQ ( Random Saw\plé Modle!)
SuPdgose X=(Kiyeee) Xn) 1id Yxe) (Fdforfmfj
where \V(xl@) 'S an arbrfrary 7%;44:)/ of
zpdfs (//Omwff) :
Then T(X) =( X, Ki2) s oy Xy )
W

the order statistics

( data arrgnged in
ihcreasin ordor)

iS5 a Sm@ stat. for @) but may not be

manimal.

e

Proof : U'se, FC.
ﬂ%&@)»ﬂ W(x,|6) = TW Xy [6) - |

Notes (assume X <X, <--- < X))

P(&;%(T(Zé):t> ——-,.F")L (s any

nl

remrrcnf)é[ememJr of
7C(\)} )C(Y\)
(=0 othe rwise )

Al) possible orcf’eers are eguaﬁé}/ [iKely



Jo 8ﬂheraﬁe from &f( X | T,

place the VQI‘M'S Kiyyeo) Xeny 1 a hat
\_____—w\/
T(%)
and drawthem ouT one b}/ ond.

‘COYY\YY\-QY\*: For I’CQY\GQOW\ SQMP'Q/ mod@/s)
—the ordler statistice are offen —the MSS.

'Xam@g:’ >,\<,:<X‘J°“)><n) I’I‘CV V/(?C 6)

with W(x{@):: e [ Cauchy
T |+ @=&-9)= Lom‘hom)

Famil ’%

Look at
G I— n A
£(%16) T‘- T (+X:-9" _ T((M%(m-@))
_______——————~/ - 1=

——
—

(

—
—

£( N =
e Tf‘v?w@.—@) i @~

No further (obvieus ) simplifications occur,
The ratio S COY)S?‘Z?NL(M ©) :ﬁf X5y = ‘;j(l) V.

But +his is hard +o show r@omus/y.



Example: Suppose X ~ Py, 6 € © and P, has a joint pdf (or
pmf) f(z]0).
Fact: X is a SS for 6.
Define T =T(X) = X. (T is the identity function.)
Proof from FC:
f(z]0) = f(z|0) 1 =g(T(z)]0) - h(x)
where g = f and h(x) =1. Thus T is SS.

Proof from definition of SS:
LIX|T(X)=t)=L(X|X=1t)=/6
where §; is the probability measure (distn) which places all
its mass at the point (data set) ¢.

(This fact is not useful, but only intended to illustrate the

definitions.)

Example continued: Further suppose X = (X1,...,X,) where
X1,...,X, are iid from the pdf (pmf) ¥ (x|0).

Fact: T(X) =X = (X1,...,X,) is not a MSS.

Proof from definition of MSS:
Let S = S(X) = (X)), X(2),--.,X(n)) (the order statistics).
Since we have a random sample model, S is a SS.

But clearly T is not a function of S. (You cannot recover
the original ordering of the data given only the order statis-
tics.)

Thus T is not a MSS.



