Ancillary Statistics

Suppose $X \sim P_{\Theta}, \Theta \in \Theta$. A statistic is <u>ancillary</u> if its distr. does not depend on Θ . More precisely, A statistic S(X) is ancillary for Θ if its distr. is the same for all $\theta \in \Theta$.

That is, $P_{\Theta}(S(X) \in A)$ is constant for $\Theta \in \Theta$ for any set A.

Example: $X = (X_{1}, \dots, X_{n})$ iid $N(\mu, \sigma^{2})$. Let $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$. We know (n-1)s2~~ Xn-1 or equivalently $S^2 \sim \frac{\sigma^2}{n-1} \chi^2_{n-1}$ so that the distn. of s2 depends upon or but not on u. Thus s^2 is ancillary for $\Theta_1 = \{(\mu_3 \sigma^2): \sigma^2 = \sigma^2 z_3, \sigma^2\}$ but is not ancillary for $H_z = \{ (\mu, \sigma^2) : \sigma^2 > 0 \}.$

Examples of Location families:

- Uniform $(\theta, \theta + 1)$ distributions $(\theta \in \Theta = \mathbb{R})$ with pdf $f(x \mid \theta) = I(\theta \le x \le \theta + 1)$.
- Cauchy location family with pdf

$$f(x \mid \theta) = \frac{1}{\pi (1 + (x - \theta)^2)}$$

• $N(\mu, \sigma_0^2)$ distributions ($\mu \in \mathbb{R}$ unknown, $\sigma^2 = \sigma_0^2$ known)

Examples of Scale families:

- Uniform(0, θ) distributions ($\theta > 0$ unknown) with pdf $f(x \mid \theta) = \theta^{-1}I(0 \le x \le \theta)$
- Cauchy scale family with pdf

$$f(x \mid \theta) = \frac{1}{\theta \pi \left[1 + (x/\theta)^2\right]}.$$

- $N(0, \sigma^2)$ distributions with $\sigma^2 > 0$ unknown.
- Exponential(β) distributions ($\beta > 0$ unknown) with pdf $f(x \mid \beta) = \beta^{-1} e^{-x/\beta} I(x \ge 0)$.

Examples of Location-Scale families:

- Uniform (α, β) , $-\infty < \alpha < \beta < \infty$ (all uniform distns).
- $N(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$ (all normal distns).

Facts .

(2) If $\chi = (\chi_1, ..., \chi_n)$ is ind from a SF and $S(\chi)$ is a <u>scale invariant</u> function, $\begin{bmatrix} S(c\chi) = S(\chi) \text{ for all } \chi \in \mathbb{R}^n \\ and c > 0 \end{bmatrix}$

then S(X) is <u>ancillary</u>.

 $\exists \text{ If } X = (X_{1}, \dots, X_{n}) \text{ is iid from a LSF} \\ \text{ and } S(X) \text{ is } \underline{\text{location-scale invariant}}, \\ \left[S(a X + b 1) = S(X) \text{ for all} \\ \chi \in \mathbb{R}^{n}, a > 0, b \in \mathbb{R}. \right] \\ \text{ then } S(X) \text{ is } \underline{\text{ancillary}}. \end{cases}$

Proofs: Let $X = (X_1, \dots, X_n)$ be iid $\sim f(\cdot | \theta)$ and $Z = (Z_1, \dots, Z_n)$ be iid $\sim \Psi(\cdot)$. () Since $\chi \stackrel{d}{=} Z + \Theta 1$ we have $P(S(X) \in A) = P(S(Z + \Theta 1) \in A)$ (does not) $\rightarrow = P(S(Z) \in A)$ $(involve \Theta)$ by location invariance of S. 2) Since $\chi \stackrel{d}{=} \Theta Z$ we have $P(S(X) \in A) = P(S(\Theta Z) \in A)$ $= P(S(z) \in A)$ by scale invariance of S.

③ Since × d σZ+µ1 we have
P(S(X)∈A) = P(S(σZ+µ1)∈A)
= P(S(Z)∈A)
by location-scale invariance of S.

Alternate Proof for (3): $P(S(X) \in A) = P(S(\frac{X - \mu}{2}) \in A)$ since $S(X) = S(\frac{X-\mu}{2})$ by location-scale invariance of S $= P(S(Z) \in A)$ since $\frac{\chi - \mu}{\chi} \stackrel{d}{=} \frac{\chi}{\chi}$. But this does not depend on $\theta = (u, \sigma)$. Since A is arbitrary, this shows that

 $\mathcal{L}(S(X))$ does not depend on Θ .

$$\frac{\text{Location Invariant Statistics}}{S(X) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ is location invariant:}}$$

$$S(X+c) = \frac{1}{n-1} \sum_{i=1}^{n} (X_i + c - (\overline{X}+c))^2 = S(X)$$

$$\text{since the } c^2 s \text{ cancel.}$$

$$\text{Here we are using the fact that}$$

$$\overline{X}(X+c) = \frac{1}{n} \sum_{i=1}^{n} (X_i + c)$$

$$= (\frac{1}{n} \sum_{i=1}^{n} X_i) + c = \overline{X}(X) + c$$

$$\rightarrow S(X) = \sum_{i=1}^{n} |X_i - Median(X)|$$
 is
location invariant:

$$S(x+c) = \sum_{i=1}^{n} |x_i + c - Median(x+c)|$$

= Median(x)+c
= S(x) since the c's cancel.

 $\rightarrow S(X) = \max X_{i} - \min X_{i} = X_{(n)} - X_{(1)}$ is location invariant: $S(X+c) = \max(X_{i} + c) - \min(X_{i} + c)$ $= (\max X_{i}) + c - ((\min X_{i}) + c)$

= S(X) since the c's cancel \rightarrow The vector S(X) = $(X_2 - X_{1_9} X_3 - X_{1_9} \cdots X_n - X_1)$ is location invariant by a similar argument. Scale Invariant Statistics $\rightarrow t = \frac{X-0}{SAIR}$ is scale invariant: $t(cx) = \frac{c\overline{x}}{cS/Nn} = t(x) \text{ since the } c^{3}s \text{ cancel.}$ Here we have used: $\overline{X}(c\chi) = \frac{1}{n} \sum_{j=1}^{n} c\chi_{j} = c(\frac{1}{n} \ge \chi_{j})$ $= c \overline{X}(x)$, $S(c\chi) = \sqrt{\frac{1}{n-1}\sum(c\chi_{i}-c\overline{\chi})^{2}}$ $= c \sqrt{\frac{1}{h-1} \sum (\chi_{1} - \overline{\chi})^{2}}$ $= c S(\alpha)$.

They are both location-scale invariant. It suffices to show : (1) S(ax) = S(x) for a > 0, and (2) S(X+b) = S(X) for all b. Part (2) follows from $(X_{2}+b) - (\overline{X}+b) = X_{2} - \overline{X}$. Part (1) follows from $\sum (cx_1 - c\overline{x})^m = c^m \sum (x_1 - \overline{x})^m$ -> The standardized residuals $Z = (Z_1, Z_2, \dots, Z_n) \text{ with } Z_2 = \frac{\chi_2 - \chi}{2}$ are location-scale invariant.