Suppose $X \sim P_{\theta}$, $\theta \in \Theta$.

Basu's Lemma: If T(X) is complete and sufficient (for $\theta \in \Theta$), and S(X) is ancillary, then S(X) and T(X) are independent for all $\theta \in \Theta$.

In other words, a complete sufficient statistic is independent of any ancillary statistic.

Preliminary remarks (prior to proof):

Let S = S(X), T = T(X).

Let E_{θ} denote expectation w.r.t. P_{θ} .

- 1. The joint distribution of (S,T) depends on θ , so in general it is possible for S and T to be independent for **some** values of θ , but **not** for others. (Basu's Lemma says this does **not** happen in this case.)
- For any rv's Y and Z, we know that E(Y | Z) = g(Z), i.e., the conditional expectation is a function of Z.
 If the joint distribution of (Y, Z) depends on a parameter θ,

then $E_{\theta}(Y|Z) = g(Z,\theta)$, i.e., the conditional expectoration is a function of both Z and θ . (However, this function may turn out to be constant in one or both variables.)

3. In general, E(Y) = EE(Y | Z) and $E_{\theta}(Y) = E_{\theta}E_{\theta}(Y | Z)$.

4. To show that Y and Z are independent, it suffices to show that $\mathcal{L}(Y|Z) = \mathcal{L}(Y)$ which means that $P(Y \in A | Z) = P(Y \in A)$ for all (Borel) sets A.

Let $w(Y) = I(Y \in A)$. Then $P(Y \in A) = Ew(Y)$ and $P(Y \in A | Z) = E(w(Y) | Z)$. The indicator function w(Y) is a bounded (Borel measurable) function. Therefore we have:

To show that Y and Z are independent, it suffices to show E(w(Y) | Z) = Ew(Y) for all bounded (Borel measurable) functions.

5. Thus, to show that S and T are independent for all θ , it suffices to show that $E_{\theta}(w(S)|T) = E_{\theta}w(S)$ for all θ and all bounded (B.m.) functions w(S).

Proof: Let w(S) be a given bounded function of S. Consider both sides of the identity:

$$E_{\theta}w(S) = E_{\theta}\left[E_{\theta}(w(S) \mid T)\right]$$
 for all θ

Consider the LHS. Since S is ancillary, the distribution of w(S) is the same for all θ so that the LHS is constant in θ . Call this constant c.

Now consider the RHS. We know that $E_{\theta}(w(S) | T)$ will be some function of θ and T. However, since T is a sufficient statistic, $\mathcal{L}(X | T)$ does not depend on θ . Since S = S(X), this implies $\mathcal{L}(S | T)$ does not depend on θ so that in turn $\mathcal{L}(w(S) | T)$ does not depend on θ . Thus, by sufficiency, $E_{\theta}(w(S) | T)$ is constant in θ and must be a function of T only. Call this function $\psi(T)$. That is,

$$\psi(T) = E_{\theta}(w(S) \mid T) \,.$$

The original identity can now be written as

$$c = E_{\theta} \psi(T) \text{ for all } \theta$$

or equivalently
$$0 = E_{\theta} (\psi(T) - c) \text{ for all } \theta .$$

Since T is complete, this implies

$$P(\psi(T) - c = 0) = 1 \text{ for all } \theta$$

or equivalently
$$\psi(T) = c \text{ with probability 1 for all } \theta.$$

This means

$$E_{\theta}(w(S) | T) = E_{\theta} w(S)$$
 with probability 1 for all θ .

Since w(S) is an arbitrary bounded function, by the earlier discussion this implies S and T are independent for all θ .

QED

Applications of Basu's Lemma

Example:

Let $X = (X_1, \ldots, X_n)$ iid Uniform $(0, \theta)$.

Recall:

 $T(X) = X_{(n)} = \max X_i$ is a CSS.

Uniform $(0, \theta)$ is a scale family, so any scale invariant statistic S(X) is ancillary.

Thus, by Basu's lemma, all of the following are independent of $X_{(n)}$ for all θ :

$$rac{ar{x}}{s}, \quad rac{X_{(1)}}{X_{(n)}}, \quad ext{the vector} \left(rac{X_{(1)}}{X_{(n)}}, \dots, rac{X_{(n-1)}}{X_{(n)}}
ight)$$

Example: (Using Basu's Lemma to obtain an indirect proof of completeness.)

Let $X = (X_1, \ldots, X_n)$ iid Uniform $(\theta, \theta + 1)$.

Recall:

$$T(X) = (X_{(1)}, X_{(n)})$$
 is a MSS.
 $S(X) = X_{(n)} - X_{(1)}$ is ancillary.

Since S is a function of T, the rv's S and T can**not** be independent. Thus T cannot be complete (for then we would get a contradiction with Basu's Lemma).

Example:

Let $X = (X_1, \ldots, X_n)$ be iid $N(\mu, \sigma^2)$.

Let \bar{x}, s^2, Z be the sample mean, sample variance, and standardized residuals (z-scores) of the data X.

Reminder: $Z = (Z_1, \ldots, Z_n)$ with $Z_i = (X_i - \bar{x})/s$.

Fact: \bar{x} , s^2 , Z are mutually independent.

Proof: We first show that the pair (\bar{x}, s^2) is independent of Z, and then show that \bar{x} and s^2 are independent. Each stage uses Basu's Lemma.

Stage 1: (\bar{x}, s^2) is independent of Z.

Consider the family of all $N(\mu, \sigma^2)$ distributions (with both parameters allowed to vary).

Recall:

 (\bar{x}, s^2) is a CSS.

This is a location-scale family so that any location-scale invariant statistic is ancillary.

Z is location-scale invariant.

Thus, Z is ancillary so that (by Basu's Lemma) it must be independent of (\bar{x}, s^2) for all (μ, σ^2) .

Stage 2: \bar{x} and s^2 are independent.

Fix σ^2 at an arbitrary value σ_0^2 and consider the family of $N(\mu, \sigma_0^2)$ distributions, μ unknown.

Recall:

This is a 1pef and the natural SS $\sum_i X_i$ is a CSS. \bar{x} is a 1-1 function of this and so also a CSS.

This is a location family so that any location invariant statistic is ancillary.

 s^2 is location invariant.

Thus, s^2 is ancillary so (by Basu's Lemma) it must be independent of \bar{x} for all μ (and also for all σ^2 since σ_0^2 is arbitrary).

QED

Example: (an amusing calculation via Basu)

Let $X = (X_1, ..., X_n)$ iid $N(0, \sigma^2), \sigma^2 > 0$.

Goal: Compute *ES* where $S = \frac{\left(\sum_{i} X_{i}\right)^{2}}{\sum_{i} X_{i}^{2}}$.

This is a 1pef with $\theta = \sigma^2$, $t(x) = x^2$ and $w(\theta) = \frac{-1}{2\sigma^2}$. (Check this.)

Therefore $T(X) = \sum_{i} X_i^2$ is CSS.

This is also a scale family so that scale invariant statistics are ancillary.

S is scale invariant \Rightarrow S ancillary \Rightarrow (by Basu) S independent of T.

Thus $E(ST) = (ES)(ET) \implies ES = \frac{E(ST)}{ET}$ which becomes

$$ES = \frac{E\left[\left(\sum X_i\right)^2\right]}{E\left(\sum X_i^2\right)} = \frac{n\sigma^2}{n\sigma^2} = 1 \quad \text{for all } n \text{ and } \sigma^2.$$