
Estimation (Chapter 7)

General Problem:

Model: {Pθ : θ ∈ Θ}

Observe X ∼ Pθ , θ ∈ Θ, θ unknown.

Estimate θ. (Pick a plausible distn from family.)

Or estimate τ = τ(θ).

Example: θ = (µ, σ2) , τ(θ) = µ− σ.

Terminology

A point estimator is a statistic W (X) (a function of the
data). We usually (but not always) require that W (X) ∈
Θ.

A parameter is a function τ(θ). (“A” parameter τ(θ) is a
function of “the” parameter θ.)

If the data X is a random sample (X1, . . . , Xn), these def-
initions correspond to those in elementary statistics:

A statistic is a characteristic of the sample.

A parameter is a characteristic of the population.

Notation: Point estimators of parameters θ or τ = τ(θ) are
often designated θ̂ = θ̂(X) or τ̂ = τ̂(X).



Examples of Parameters:

Notation:

X = (X1, . . . , Xn) iid from the pdf (or pmf) f(x | θ).

X is a single rv from f(x | θ).

For concreteness, think of θ = (µ, σ2) and X ∼ N(µ, σ2).

Some parameters:

τ(θ) = θ

τ(θ) = µ or τ(θ) = µ2

τ(θ) = σ2 or τ(θ) = σ4

τ(θ) = Pθ(X ∈ A) =
∫
A
f(x | θ)

τ(θ) = EθX =
∫
xf(x | θ) dx (general case)

τ(θ) = Eθh(X) =
∫
h(x)f(x | θ) dx

τ(θ) = median of f(x | θ)

τ(θ) = interquartile range of f(x | θ)

τ(θ) = 95th percentile of f(x | θ)

Empirical Estimators:

It is often possible to estimate a population quantity by a nat-
ural sample analog.



Examples:

Parameter τ(θ) Estimate τ̂(X)

Pθ(X ∈ A)︸ ︷︷ ︸
(population proportion)

n−1
∑n

i=1 I(Xi ∈ A)︸ ︷︷ ︸
(sample proportion)

EθX︸︷︷︸
(population mean)

n−1
∑n

i=1Xi︸ ︷︷ ︸
(sample mean)

Eθ h(X) n−1
∑n

i=1 h(Xi)

population median sample median

population IQR sample IQR

population 95th percentile sample 95th percentile

ψ(F ) ψ(F̂n) (†)

†: F is the cdf of f(x | θ) (the population cdf) and F̂n is the
empirical cdf (defined later).































(Sections 5.5 and 10.1 discuss modes of convergence and con-
sistency of estimates in greater detail.)

The three types of consistency are (special cases of) ‘conver-
gence in probability’, ‘convergence almost surely’, and ‘conver-
gence in L2’ (or in mean square), respectively.

Preservation of convergence by continuous functions:

If Wn → τ in probability, and g is a continuous function,
then g(Wn)→ g(τ) in probability.

Also true for functions of many variables:

If Un → ξ and Wn → τ in probability, and g : R2 → R is a
continuous function, then g(Un,Wn) → g(ξ, τ) in probabil-
ity.

The previous facts remain true if “in probability” is every-
where replaced by “almost surely”.

Thus

Continuous functions of consistent estimates are consistent.

As a consequence, it is typically true that:

Estimators obtained by plug-in (substitution) are consis-
tent.

Method of Moments (MOM) estimators are consistent.

Method of moments (MOM) estimators are (typically)
continuous functions of sample moments, which are
consistent estimates of populations moments.



Example:

If X1, X2, X3, . . . are iid Geometric(p), the MOM estimator of p
based on X1, . . . , Xn is 1/x̄n where x̄n = n−1

∑n
i=1Xi.

WLLN implies x̄n → EX1 = 1/p in probability (as n→∞).

Thus 1/x̄n → 1/(1/p) = p in probability.

This holds for all p. Thus 1/x̄n is a consistent estimator of p.

Using the SLLN, the earlier statements remain true with ‘in
probability’ replaced by ‘almost surely’ so that 1/x̄n is also a
strongly consistent estimator of p.

What about consistency in 2nd mean (or in L2)?

Example Let X1, X2, X3, . . . are iid N(µ, σ2). The most com-
monly used estimate of σ2 based on X1, . . . , Xn is

s2
n = (n− 1)−1

n∑
i=1

(Xi − x̄n)2

.

s2
n → σ2 in probability (for all µ and σ2). (†)

Thus, applying the continuous function g(x) =
√
x to both

sides: sn → σ in probability (for all µ and σ2).

(These results don’t require normality, but hold for any popu-
lation with a finite second moment.)

Proof of (†):

Show that E(s2
n − σ2)2 = Var(s2

n)→ 0.

Alternatively, apply LLN to the identity:

s2
n = (n− 1)−1

(
n∑
i=1

X2
i − nx̄2

n

)
=

n

n− 1

(
1

n

n∑
i=1

X2
i − x̄2

n

)
.






