Estimation (Chapter 7)

General Problem:
Model: {Py:0 € O}
Observe X ~ Fy, 6 € ©, 6 unknown.
Estimate 0. (Pick a plausible distn from family.)
Or estimate 7 = 7(0).

Example: 6 = (u,0%), 7(0) = p—o.

Terminology

A point estimator is a statistic W(X) (a function of the
data). We usually (but not always) require that W(X) €
Q.

A parameter is a function 7(6). (“A" parameter 7(0) is a
function of “the” parameter 6.)

If the data X is a random sample (X1,...,X,), these def-
initions correspond to those in elementary statistics:

A statistic is a characteristic of the sample.

A parameter is a characteristic of the population.

Notation: Point estimators of parameters 6 or 7 = 7(0) are
often designated 6 = 6(X) or 7 = 7(X).



Examples of Parameters:

Notation:
X = (X1,...,X,) iid from the pdf (or pmf) f(x|6).
X is a single rv from f(x|0).

For concreteness, think of 8 = (u,0?) and X ~ N(u, o?).

Some parameters:
7(0) =16
r(0) = p or 7(6) = 41°
7(0) = o2 or 7(0) = o*
T(0) = Py(X € A) = [, f(=]0)
7(0) = EyX = [zf(xz|0)dz  (general case)
7(0) = Egh(X) = [ h(z)f(z|0) dx
7(0) = median of f(x|6)
7(0) = interquartile range of f(x|0)
7(0) = 95" percentile of f(z|0)

Empirical Estimators:

It is often possible to estimate a population quantity by a nat-
ural sample analog.



Examples:

Parameter 7(0) Estimate 7(X)
Pp(X € A) 17,_1 Yoo I(X; € A)
(populatiorrproportion) (sample Srroportion)
&% YRS
(population mean) (sample mean)

Ejy h(X) n~! 2?21 h(Xz)
population median sample median
population IQR sample IQR
population 95th percentile sample 95th percentile

V() W(Fy) (1)

t: F is the cdf of f(x|#) (the population cdf) and F}, is the
empirical cdf (defined later).



Trtuitive approaches to estimation

Empirical Estimates (summary)
Estimgle a popu( ol ion ZuanTHy b)/ “‘he
natural sawmple analoq .
For example, estimgte
po\oulod'{on mean by SamPfQ mean ,
pop. variance by sample variance,
POP’ Zuan“h/e b)/ SamPfé, Zuar\‘ﬁ'le )

| ete.

Substitudion Principla ( ij—in /\Ae‘l‘nod)

Su.PpoSe (= «(6) ard ,5’:5(6) are Tweo
parameters related by o= h(/B ).

If /é\ =/§(,)S) 1S & “reasonable” estimdtor OF/B)
then & = h(/s') 'S o “reasonable” estimitor of .
More 3ene,ml|y, hC X, ﬂ,Jﬂzj...)/gK are
parariderf relafeo(Aby o(:h(ﬁ,)ﬂl)...)ﬁk))
and B, Bay.ee, P are “reasonable”
estimators of Biyeey B, Then

A __},' A A A

X = (/51) ﬂz)"‘)ﬂk)

s @ ”r‘eaSonqb/Q" estimafor d7£ .



Example

X])Xa)...)Xn ‘.;d N(/(«()O'z)
\""_\/__—_—a v
X o

Estimate T(0) = P(-1<X<1)
where X~ N(/u)0'2) ,
(A) An_empirical estipate
A= L T(ex;<l)

=i
= the SamPIQ PFO,DO""““’“ Z = oSl
(B) A Plug-in estimate (7
o) = Pl I< X< 1) = P(HA <Z<EA4)

= Q) - Qigt) uhem B 5

J

Reasonable estimates of M, are

A A

=X g = = |/ L 4 -

so that o plug-in estimate is 331/6»4 b)/
F=h(isd) = (1E)-F (LX),




Which esfimalor is beffer 7 (A)or (B)?

IatuiTion suﬁges’rs (B) is better.

Estimator (A) oloes nel even usethe
assumpﬁ'on of norma/ff)/.

7“/0W€V€", it i+ turns out that the nonm/ﬂy
assum,o'ﬁ'on /s false L, Then (A) may end

up 31’1//}'5 Fhe botter estimate of P(-(<X< ).

Example : X ,,%X3,.c0, X, iid from o
Cauchy location-scale Fami/)/ with

df = _L._|
P f/%@) G

for —co<x<oco,
Estimale 6 = ().

Note : This distribufion does ndl have a

Ffinite mean., Thus x ard s% are
not useful here.

Usﬂ,-)cul FaCfS: |
P(X< M) =.5 (whera X 7’3(-//4)&))
P(x<pu-0)=.25
P(X</A*‘0') =.75



Nofation  For O<p<l,
Let le populcﬂ"on //O Zuar\ﬁ
Q‘P = sample /p ?uan‘hl&
/[’ormal JQF:N‘/’IO”S
et F = pop cdf : F(t) = P(X<Jc)
E = sanple cdf : Fit)= l—ZI(x st)
(enpirical
cdf )
Then —
/g = inf4x: ;;(x)afo}
QP—; ;mf.{%' ,:x)>{g}

A ‘reasonable” esfimate of B, is ﬂf p
The “wseful Fad's say that For ‘he
Cauc)\y -5 -Famdy

Bs /M L M Es
Bas =47 1 o= L(8 f.s)

o = (p,0) = 1'\(,35 »Bas 7[575
=(Bs5,%(Bss A5))

so‘ﬁ\o?f a P'%j—"\ estipate s given by
B =h(Bs,BasrBrs) = (Qss% (Qr5-Qys).



Estimation by the Method of Momedts ( MOM)
(Fitting dlisTns by matching moments )

MOoM s a .Specfa/ case of the. P/uj—i'n methad,

Notetion ¢ (delete primes used in fext)

.= EX"= r™ population moment

(/4,- =My (8) /s a paramefer.)
N
My = 4 > X{ = rt sample moment
_ 1=I
A “reasonable " estimate o‘lc/L(r /s /&\,. =m,. .

Thus oo
MoM & If paramé‘/‘er‘ ™= T(6) can be

s a function of op- moments

er’ﬂ’e»’\ a
T = /‘)(/u.,)/«(;y-—)/“k))
+thenh a “reasonable” estimate of > s

A
’7‘3/7(m,3m1,...,m,<) ]



Parameter estimation by the Method of Moments
Situation:
Suppose we have a model
Xl, XQ, e ey X lid f(:l)'@)

where f(z|6) is the pdf (or pmf) of a family of
distributions depending on a single parameter 6.

The value of 8 is unknown.
We observe data xi1,x2,...,Tn.

How do we estimate 67

Notation: |
Let X denote a single observation from f(x|6).
Define
@ = population mean = EX

1 n
= x = sample mean = _Zmi
n
=1
Note that p is a function of 6, say u = g(0).

Method of Moments (MOM):

Estimate 6 by that value § which makes the population
mean u equal to the sample mean z.



Formal Procedure:

Step 1: Find u as a function of 6:
p=EX =h(0).

This is done either by looking up the family of distri-
butions in the appendix or by doing the calculation

EX = /_OO zf(z|0) dz or Y xf(x|f).

all =

Step 2: Solve for § as a function of u:

0=g(n). ()

Step 3: Now plug in @ = z to obtain the MOM estimate:
0=g(z).

Note: If  does not depend on 6 (for instance, if u =20
for all ), then MOM s carried out using the second
moment.

Rationale: MOM works because the LLN guarantees that
the sample mean z will be close to the population
mean p (with high probability) when the sample size
n is large.

Since g (in t) is a continuous function, z ~ u implies
g(z) ~ g(p) which says that 6 = 6.



Examlple ¢ MOM for Poisson(N) distribution

oo

@#3 EX = > x-?\xé,—x = 2
X=0 x|
e A
hot need from )
nthis case appenof \X

=\ (e as function of A)
@ A= (Solve for A)
@ 3&_:—__/&,:92 (Pluj'm/a:;(«for/u)

Conclusion | The MoM esfimafe of A is x .
(B=%)



ExamplQ Suppose you observe
xl)X?_3 ivd Geometric (P).

Find the MoM es‘hmafe of p-

O Find u as a Lunction of ,P
= EX = Z X+ p(l-—p) -

L
s

ﬂ?" 2
—this case at:ppeyd’ix
M= 5
@ Solve for P as a function a?c/u,
- L
P=x
@ Phﬁ in/a =X for s
A _ - L
P=k=z | |
Cenclusion & The MoM esﬁmcnfa 07[10 IS ——



Parameter estimation by the Method of Moments
Situation: (multi-parameter case)
Suppose we have a model
Xl, XQ, ceey Xn iid f(a:|9)

where f(z|0) is the pdf (or pmf) of a family of distribu-
tions depending on a vector of parameters

0 = (91,92,...,9p).

The vector of values 6 is unknown.
We observe data zi,z2,...,Tn.

How do we estimate 67

Notation:
Let X denote a single observation from f(x|6).
Define
ur = (population k-th moment) = EX*

1 n
fir, = (sample k-th moment) = _fo
n =1

(Special case: u=p1 and z=[f = fi1.)

Note that u; is a function of 6, say ur = hi(61,...,6p).

Method of Moments (MOM):

Estimate 0 = (01,62,...,6,)

by those values § = (01,02,...,0,)

which make the population moments (u1, u2, ..., tp)
equal to the sample moments (@1, fi2,-- -, Ap) -



MOM  far @3(@;)9g).--,@f>)

@ Find expre,SS‘iohf For/u,)/ul).--)/«(f:
/q'—-:h‘(@,)...) ef)
My = ha(e'a"‘ JG'P)

/(:(fz hP<6;)...) @10)

[LooK them up in q{;penapix or evaluate
using gy = Ex"= 59¢K7C(xl6)o/x (contimans)
- oo

ar %x“#(xlé) (discrete)

@ Sclve +his syﬁem of P egucth‘oms
‘For 6\ )6;),.,) @/P :

o= S\W’J“')ﬂf)
{?1:32.(/”1)00')/“49)

ép = 9p (/’")"‘)/“f)



@ P\US m/ul)/ul) }/"f’ as
estimates QF/,(U G Mp

@ Sole for 6, ,G, +
8, = 9, (M1, M)
92 ‘31/«/)/2)

@ Dluj in /41)/‘42, For/,(,)/q
9 -39 (/"‘u/ﬁ5
1 32(/“///“2)



Consistent Estimalors
A sepuence of estimators

Wy = Wh(Xiy Xg,yeae, Xn)
1'5' a COhSI‘.S‘?Le)'ﬂL Seguence cfeS7"/'ma7L0r‘s
for e parameter T-=T(6) if,
for every &>0 and clery © € @)

nlj;noo Pe( [Wh-r(<€)=1 .

The seguence is sitongly consistent” if
we may replace (%) by

W,—> T with ,orababilﬂ)/ 1.
(as h—>eo)

The Seguence, S comsis‘f’erﬁ' in Z"a/ mear)
(or in L2) if we may Fep/aCe, (%) by

fim Ee(Wn’T)L = O,

h-— @




L-Qj_ )(,)X:)_) 7<5)... be i'\'d.

S‘rrong Law of I——Cl%l Numbpers
It E[h(X)] < o, then
. wPI
?{Zh(x'i) 5 E h(X)

1=\
as h— O ,

Spqcia\ Case
If u, exists ( EIX|"<o0),

‘+hen m.. if}i/bcr .

_/imﬁ‘l‘her Fact :
SQPPO?Q Yhe fDPM’Q-h'OY\ ,fD—H\ 2(,(@“"'”@ /B,'o

s umﬁue (that is, there exists e
unigue Value x (=B, such hat

F(%):P where, I: s ‘Hﬂe Pop. Coelc))
wp |
Then Qp —%)B,p .




(Sections 5.5 and 10.1 discuss modes of convergence and con-
sistency of estimates in greater detail.)

The three types of consistency are (special cases of) ‘conver-
gence in probability’, ‘convergence almost surely’, and ‘conver-
gence in L?' (or in mean square), respectively.

Preservation of convergence by continuous functions:

If W, — 7 in probability, and g is a continuous function,
then g(W,) — ¢g(7) in probability.

Also true for functions of many variables:

If U, — £ and W,, — 7 in probability, and g : R? — R is a
continuous function, then g(U,, W,) — g(&,7) in probabil-
ity.

The previous facts remain true if “in probability” is every-
where replaced by “almost surely”.

Thus
Continuous functions of consistent estimates are consistent.

AS a consequence, it is typically true that:

Estimators obtained by plug-in (substitution) are consis-
tent.

Method of Moments (MOM) estimators are consistent.

Method of moments (MOM) estimators are (typically)
continuous functions of sample moments, which are
consistent estimates of populations moments.



Example:

If X1, X5, X3,... are iid Geometric(p), the MOM estimator of p
based on Xi,...,X, is 1/z, where z, =n"1> " | X;.

WLLN implies z, — EX1 = 1/p in probability (as n — o).
Thus 1/z, — 1/(1/p) = p in probability.
This holds for all p. Thus 1/, is a consistent estimator of p.

Using the SLLN, the earlier statements remain true with ‘in
probability’ replaced by ‘almost surely’ so that 1/z, is also a
strongly consistent estimator of p.

What about consistency in 2" mean (or in L?)?

Example Let X, X5, X3,... are iid N(u,0?). The most com-
monly used estimate of o2 based on Xi,...,X, is

sp=(n—1)" zn:(Xz‘ — Tn)?
i—1

s2 — o2 in probability (for all u and o2). (1)

Thus, applying the continuous function g(xz) = y/z to both
sides: s, — o in probability (for all  and ¢2).

(These results don't require normality, but hold for any popu-
lation with a finite second moment.)

Proof of (7):
Show that E(s2 — 02)? = Var(s2) — 0.
Alternatively, apply LLN to the identity:

_(n—l) 1<ZX2—nx>

(g



Example. : MOM for Beta (w, 8) dlistn
with pdf fix) = X208 penay

B(et,8) (2,8 >0)
where g(o()(g)-.—_ e '(B)

T(et+B)
2 params d,ﬁ ':‘-9 Use Two Moments .
X = = X Solve. for
EX =AM o+8 )@ .
EXZ-:/QZ: o (¢+1) “2ems of
(octB) (+B+1) M Mo
= | = = 4 L
R= __/[_fZ‘_ = Xt = SR s
M o<+/8+\ | ——— 3
-+
= /q'-'—J \A/here, J:\'_s_
[+ J <+ 3




oc—f—/&
= o= /9
_ —o = o,
ﬁ-(e(+ﬁ) & gd« /g‘\
= (! 7 _ _
Lcr('/“’) =p
L= =R =)
Cf R.../,(' /(42 B .
AL '
- My S
A= M=

Tn summavry . .

X = /u\ /8 O ‘)g

wher@ Sl alra

A~ U b ?

<0 ‘ﬁwa MoM estimates cma
=m §’ /B (1— m|)§> §——

~M2_

—
whem, M= M



