Maximum Likelihood Estimation
Assume X ~ PFy,0 € ©, with joint pdf (or pmf) f(x|9).
Suppose we observe X = x.

The Likelihood function is
L(O|x) = f(x]06)
as a function of § (with the data x held fixed).

The likelihood function L(6|x) and joint pdf f(x|6) are
the same except that f(x|0) is generally viewed as a func-
tion of & with 0 held fixed, and L(6|x) as a function of 6
with & held fixed.

f(x]60) is a density in x for each fixed 6.

But L(6|x) is not a density (or mass function) in 6 for
fixed x (except by coincidence).

The Maximum Likelihood Estimator (MLE)
A point estimator § = 0(x) is a MLE for 6 if
LO|x) =supL(f|z),
0
that is, & maximizes the likelihood.

In most cases, the maximum is achieved at a unique value, and
we can refer to “the” MLE, and write

O(x) = argmax L(0 | x) .
0

(But there are cases where the likelihood has flat spots and
the MLE is not unique.)



Motivation for MLE’s

Note: We often write L(0|x) = L(0), suppressing x, which is
kept fixed at the observed data.

Suppose x € R".
Discrete Case:
If f(-]0) is a mass function (X is discrete), then
L(0) = f(z|0) = Py(X = z).

L(0) is the probability of getting the observed data x when
the parameter value is 0.

Continuous Case:

When f(-]6) is a continuous density Py(X = «) = 0, but
if B C R™ is a very, very small ball (or cube) centered at
the observed data x, then

Py(X € B) = f(x|60) x Volume(B) x L(6) .
L(0) is proportional to the probability the random data X

will be close to the observed data x when the parameter
value is 0.

Thus, the MLE 6 is the value of 8 which makes the observed
data ¢ “most probable”.



To find 8, we maximize L(#). This is usually done by calculus
(finding a stationary point), but not always.

If the parameter space © contains endpoints or boundary points,
the maximum can be achieved at a boundary point without be-
ing a stationary point.

If L(#) is not “smooth” (continuous and everywhere differ-
entiable), the maximum does not have to be achieved at a
stationary point.

Cautionary Example:
Suppose Xi,...,X, are iid Uniform(0,0) and © = (0, ).
Given data « = (z1,...,z,), find the MLE for 6.

[[07'1(0 <z <6) =6"1(0 < minz)I(maxz; < 6)
1=1
B {9“ for 8 > max x;

L(6)

(Draw this!)
0 for 0 < 60 < maxux;

which is maximized at 6 = maxx;, which is a point of discon-
tinuity (and certainly not a stationary point).

Thus, the MLE is § = maxz; = z(,).
Notes:

L(0) = 0 for & < maxx; is just saying that these values of 6 are
absolutely ruled out by the data (which is obvious).

A strange property of the MLE in this example (not typical):
Py <0)=1
The MLE is biased; it is always less than the true value.



A Similar Example:
Let X4,...,X, beiid Uniform(a,3) and © = {(o,B8) : a < B}.

Given data « = (x1,...,xn), find the MLE for 0 = (o, 3).

Lla,8) = |[B-a) 'T(a<z<p)

i=1
= (B—a) ™ I(a<minz)I(maxz; < 3)

_ [(B=a)™ for a <minz;, maxx; <
— \o otherwise

which is maximized by making 8—a as small as possible without
entering "0 otherwise” region.

Clearly, the maximum is achieved at (a,8) = (Minxz;, maxx;).
Thus the MLE is § = (a,) = (minx;, maxx;).

Again, P,s(a < a, B < B) =1.



Maximizing the Likelihood (one parameter)

Basic Result: A continuous function ¢(6) defined on
a closed, bounded interval J attains its supremum (but
might do so at one of the endpoints).

(That is, there exists a point 6y € J such that g(6p) =
SUPges 9(0). )

Consequence: Suppose g(0) is a continuous, non-negative
function defined on an open interval J = (¢,d) (where per-
haps ¢ = —oco0 or d = 4+o0). If

im g(9) = 1im g(0) =0,

0—c

then g attains its supremum.

e Thus, MLE's usually exist when the likelihood function
is continuous.

Suppose the function ¢(#) is defined on an interval © (which
may be open or closed, infinite or finite).

If g is differentiable and attains its supremum at a point 6g
in the interior of ©, that point must be a stationary point
(that is, ¢’(6p) = 0).

(1) If g’(6p) = 0 and ¢"(0p) < O, then 6y is a local maximum
(but might not be the global maximum).

(2) If ¢'(6p) = 0 and ¢"(0) < O for all § € ©, then Oy is a
global maximum (that is, it attains the supremum).

(1) is necessary (but not sufficient) for 6y to be a global
maximum. (2) is sufficient (but not necessary).

A function satisfying ¢’(8) < 0 for all 8 € © is called
strictly concave. It lies below any tangent line.



Maximizing the Likelihood (multi-parameter)

Basic Result: A continuous function ¢g(8) defined on a
closed, bounded set J C RF attains its supremum (but
might do so on the boundary).

Consequence: Suppose g(0) is a continuous, non-negative
function defined for all 8 € RF. If g(6) — 0 as § — oo, then
g attains its supremum.

e Thus, MLE's usually exist when the likelihood function
is continuous.

Suppose the function ¢(8) is defined on a convex set © C RF
(that is, the line segment joining any two points in © lies
entirely inside ©).

If g is differentiable and attains its supremum at a point 6g
in the interior of ©, that point must be a stationary point:

0g(6o)
00;

=0 for:=1,2,...,k.

Define the gradient vector D and Hessian matrix H:

39(9))k
D(0) = k x 1 vector) .
@ (892- _ (a k x 1 vector)
k
H(0) = (gzgég)) (a k x k matrix) .
WY/ =1

where 6 = (01,05,...,60;).



(1) If D(6pg) = 0 and H(6p) is negative definite, then 6y is a
local maximum (but might not be the global maximum).

(2) If D(6g) = 0 and H(#) is negative definite for all § € ©,
then 6p is a global maximum (that is, it attains the supremum).

(1) is necessary (but not sufficient) for 6y to be a global max-
imum. (2) is sufficient (but not necessary).

A function for which H(6) is negative definite for all § € © is
called strictly concave. It lies below any tangent plane.



Example:

Observe X1,...,X, be iid Gamma(qa, 3).

Preliminaries:

no_a—1 e—Ti/B
(likelihood) L(a,B8) = [ =
H BT (o)

Maximizing L is same as maximizing ¢ = log L given by
(o, ) = (a—1)T1 —To/8—nalogf —nlogl(a)
where 1T7 = ZZ Iog Z; , T> = Zz Z;.

Note that T'= (71,7%) is the natural sufficient statistic of this
2pef.

ot _ Ty —nlog B8 — ny(a)
O
(o)
where w(a)——logl‘(a)—
o ()
_ 12 no _
o5 = = e
024
902 = —ny'(a)
024 —2T
o7 = it = g hed
024 —n

o0a0l 5}



Situation #1: Suppose a = «ag is known. Find MLE for 3.
(Drop o from arguments: 4(8) = ¢(ao, B) etc.)
¢(B3) is continuous and differentiable.

¢(B) has a unique stationary point:

o _ 1

o B2

. . 1> .

iff  Tb = naoB Iiff B=—21(= 5.
nog

0B = (T2 — naoB) =0

Now we check the second derivative.
020 -1
B ==
op? B3
Note ¢/(5*) < 0 since 1o — naoB3* = 0, but ¢/(8) > 0 for 3 >
275/ (nao).

Thus, the stationary point satisfies the necessary condition for
a global maximum, but not the sufficient condition (i.e., £(3)
is not a strictly concave function).

(215 — napB) = g—; (1o 4+ (To — nap)) .

How can we be sure that we have found the global maximum,
and not just a local maximum?

In this case, there is a simple argument: The stationary point
B* is unique, and ¢(B) > 0 for 8 < B3*, and ¢ (B3) < 0 for B > B*.
This ensures @* is the unique global maximizer.

~ T
Conclusion: g = "2 is the MLE.
naoQ

(This is a function of 75, which is a sufficient statistic for
when « is known.)



Situation #2: Suppose 3 = (g is known. Find MLE for «.
(Drop B from arguments: (o) = (o, Bo) etc.)

Note: ¢ («a) and ¢’(«) involve ¥(a) The function 4 is infinitely
differentiable on the interval (0, 00), and satisfies ¥/'(«) > 0 and
V" (o) < 0 for all > 0. (The function is strictly increasing and
strictly concave.) Also

lim ¢¥(a) = —oc0 and lim ¢¥(a) =oco. (Draw a Picture.)

Thus ¥~ ! : R — (0,00) exists.
/() is continuous and differentiable.

(o) has a unique stationary point:
U(a) = Ti—nlogfo—ny(a) =0
iff ¢ (a) =T1/n — 109 Bo
iff o= (T1/n — 109 Bo)
This is the unique global maximizer since

(o) = —ny'(a) < 0 for all a > 0.

Thus a = ¢~ 1(T1/n — log Bo) is the MLE.

(This is a function of T1, which is a sufficient statistic for «
when (§ is known.)



Situation #3: Find MLE for 0 = (o, 8)
¢(«, 3) is continuous and differentiable.

A stationary point must satisfy the system of two equations:

ol
— = Ti—nlogf—ny(a) =0
O
19)4 1
— = —(T5—naB) =0
o 52
Solving the second equation for 3 gives
1>
B=—.
no

Plugging this into the first equation, and rearranging a bit leads

to

T T

-1 log (_2) = Y(a) —loga = H(a)
n

n

The function H(«) is continuous and strictly increasing from
(0,00) to (—00,0), so that it has an inverse mapping (—oo,0)
to (0, 00).

Thus, the solution to the above equation can be written:

o (2w (2)



Thus, the unique stationary point is:

(2o (2)

. T>
g = —.

no

a

Is this the MLE?

Let us examine the Hessian.



