
Maximum Likelihood Estimation

Assume X ∼ Pθ , θ ∈ Θ, with joint pdf (or pmf) f(x | θ).

Suppose we observe X = x.

The Likelihood function is

L(θ |x) = f(x | θ)

as a function of θ (with the data x held fixed).

The likelihood function L(θ |x) and joint pdf f(x | θ) are
the same except that f(x | θ) is generally viewed as a func-
tion of x with θ held fixed, and L(θ |x) as a function of θ
with x held fixed.

f(x | θ) is a density in x for each fixed θ.

But L(θ |x) is not a density (or mass function) in θ for
fixed x (except by coincidence).

The Maximum Likelihood Estimator (MLE)

A point estimator θ̂ = θ̂(x) is a MLE for θ if

L(θ̂ |x) = sup
θ
L(θ |x) ,

that is, θ̂ maximizes the likelihood.

In most cases, the maximum is achieved at a unique value, and
we can refer to “the” MLE, and write

θ̂(x) = argmax
θ

L(θ |x) .

(But there are cases where the likelihood has flat spots and
the MLE is not unique.)



Motivation for MLE’s

Note: We often write L(θ |x) = L(θ), suppressing x, which is
kept fixed at the observed data.

Suppose x ∈ Rn.

Discrete Case:

If f(· | θ) is a mass function (X is discrete), then

L(θ) = f(x | θ) = Pθ(X = x) .

L(θ) is the probability of getting the observed data x when
the parameter value is θ.

Continuous Case:

When f(· | θ) is a continuous density Pθ(X = x) = 0, but
if B ⊂ Rn is a very, very small ball (or cube) centered at
the observed data x, then

Pθ(X ∈ B) ≈ f(x | θ)×Volume(B) ∝ L(θ) .

L(θ) is proportional to the probability the random data X
will be close to the observed data x when the parameter
value is θ.

Thus, the MLE θ̂ is the value of θ which makes the observed
data x “most probable”.



To find θ̂, we maximize L(θ). This is usually done by calculus
(finding a stationary point), but not always.

If the parameter space Θ contains endpoints or boundary points,
the maximum can be achieved at a boundary point without be-
ing a stationary point.

If L(θ) is not “smooth” (continuous and everywhere differ-
entiable), the maximum does not have to be achieved at a
stationary point.

Cautionary Example:

Suppose X1, . . . , Xn are iid Uniform(0, θ) and Θ = (0,∞).

Given data x = (x1, . . . , xn), find the MLE for θ.

L(θ) =
n∏
i=1

θ−1I(0 ≤ xi ≤ θ) = θ−nI(0 ≤ minxi)I(maxxi ≤ θ)

=

{
θ−n for θ ≥ maxxi
0 for 0 < θ < maxxi

(Draw this!)

which is maximized at θ = maxxi, which is a point of discon-
tinuity (and certainly not a stationary point).

Thus, the MLE is θ̂ = maxxi = x(n).

Notes:

L(θ) = 0 for θ < maxxi is just saying that these values of θ are
absolutely ruled out by the data (which is obvious).

A strange property of the MLE in this example (not typical):

Pθ(θ̂ < θ) = 1

The MLE is biased; it is always less than the true value.



A Similar Example:

Let X1, . . . , Xn be iid Uniform(α, β) and Θ = {(α, β) : α < β}.

Given data x = (x1, . . . , xn), find the MLE for θ = (α, β).

L(α, β) =
n∏
i=1

(β − α)−1I(α ≤ xi ≤ β)

= (β − α)−nI(α ≤ minxi)I(maxxi ≤ β)

=

{
(β − α)−n for α ≤ minxi , maxxi ≤ β
0 otherwise

which is maximized by making β−α as small as possible without
entering “0 otherwise” region.

Clearly, the maximum is achieved at (α, β) = (minxi,maxxi).
Thus the MLE is θ̂ = (α̂, β̂) = (minxi,maxxi).

Again, Pα,β(α < α̂ , β̂ < β) = 1.



Maximizing the Likelihood (one parameter)

Basic Result: A continuous function g(θ) defined on
a closed, bounded interval J attains its supremum (but
might do so at one of the endpoints).

(That is, there exists a point θ0 ∈ J such that g(θ0) =
supθ∈J g(θ). )

Consequence: Suppose g(θ) is a continuous, non-negative
function defined on an open interval J = (c, d) (where per-
haps c = −∞ or d = +∞). If

lim
θ→c

g(θ) = lim
θ→d

g(θ) = 0 ,

then g attains its supremum.

• Thus, MLE’s usually exist when the likelihood function
is continuous.

Suppose the function g(θ) is defined on an interval Θ (which
may be open or closed, infinite or finite).

If g is differentiable and attains its supremum at a point θ0

in the interior of Θ, that point must be a stationary point
(that is, g′(θ0) = 0).

(1) If g′(θ0) = 0 and g′′(θ0) < 0, then θ0 is a local maximum
(but might not be the global maximum).

(2) If g′(θ0) = 0 and g′′(θ) < 0 for all θ ∈ Θ, then θ0 is a
global maximum (that is, it attains the supremum).

(1) is necessary (but not sufficient) for θ0 to be a global
maximum. (2) is sufficient (but not necessary).

A function satisfying g′′(θ) < 0 for all θ ∈ Θ is called
strictly concave. It lies below any tangent line.



Maximizing the Likelihood (multi-parameter)

Basic Result: A continuous function g(θ) defined on a
closed, bounded set J ⊂ Rk attains its supremum (but
might do so on the boundary).

Consequence: Suppose g(θ) is a continuous, non-negative
function defined for all θ ∈ Rk. If g(θ)→ 0 as θ →∞, then
g attains its supremum.

• Thus, MLE’s usually exist when the likelihood function
is continuous.

Suppose the function g(θ) is defined on a convex set Θ ⊂ Rk

(that is, the line segment joining any two points in Θ lies
entirely inside Θ).

If g is differentiable and attains its supremum at a point θ0

in the interior of Θ, that point must be a stationary point:

∂g(θ0)

∂θi
= 0 for i = 1,2, . . . , k.

Define the gradient vector D and Hessian matrix H:

D(θ) =

(
∂g(θ)

∂θi

)k
i=1

(a k × 1 vector) .

H(θ) =

(
∂2g(θ)

∂θi∂θj

)k
i,j=1

(a k × k matrix) .

where θ = (θ1, θ2, . . . , θk)′.



(1) If D(θ0) = 0 and H(θ0) is negative definite, then θ0 is a
local maximum (but might not be the global maximum).

(2) If D(θ0) = 0 and H(θ) is negative definite for all θ ∈ Θ,
then θ0 is a global maximum (that is, it attains the supremum).

(1) is necessary (but not sufficient) for θ0 to be a global max-
imum. (2) is sufficient (but not necessary).

A function for which H(θ) is negative definite for all θ ∈ Θ is
called strictly concave. It lies below any tangent plane.



Example:

Observe X1, . . . , Xn be iid Gamma(α, β).

Preliminaries:

(likelihood) L(α, β) =
n∏
i=1

xα−1
i e−xi/β

βαΓ(α)
.

Maximizing L is same as maximizing ` = logL given by

`(α, β) = (α− 1)T1 − T2/β − nα logβ − n log Γ(α)

where T1 =
∑

i logxi , T2 =
∑

i xi .

Note that T = (T1, T2) is the natural sufficient statistic of this
2pef.

∂`

∂α
= T1 − n logβ − nψ(α)

where ψ(α) ≡
d

dα
log Γ(α) =

Γ′(α)

Γ(α)
∂`

∂β
=

T2

β2
−
nα

β
=

1

β2
(T2 − nαβ)

∂2`

∂α2
= −nψ′(α)

∂2`

∂β2
=
−2T2

β3
+
nα

β2
=
−1

β3
(2T2 − nαβ)

∂2`

∂α∂β
=
−n
β



Situation #1: Suppose α = α0 is known. Find MLE for β.

(Drop α from arguments: `(β) = `(α0, β) etc.)

`(β) is continuous and differentiable.

`(β) has a unique stationary point:

`′(β) =
∂`

∂β
=

1

β2
(T2 − nα0β) = 0

iff T2 = nα0β iff β =
T2

nα0
(≡ β∗) .

Now we check the second derivative.

`′′(β) =
∂2`

∂β2
=
−1

β3
(2T2 − nαβ) =

−1

β3
(T2 + (T2 − nαβ)) .

Note `′′(β∗) < 0 since T2 − nα0β∗ = 0, but `′′(β) > 0 for β >
2T2/(nα0).

Thus, the stationary point satisfies the necessary condition for
a global maximum, but not the sufficient condition (i.e., `(β)
is not a strictly concave function).

How can we be sure that we have found the global maximum,
and not just a local maximum?

In this case, there is a simple argument: The stationary point
β∗ is unique, and `′(β) > 0 for β < β∗, and `′(β) < 0 for β > β∗.
This ensures β∗ is the unique global maximizer.

Conclusion: β̂ =
T2

nα0
is the MLE.

(This is a function of T2, which is a sufficient statistic for β
when α is known.)



Situation #2: Suppose β = β0 is known. Find MLE for α.

(Drop β from arguments: `(α) = `(α, β0) etc.)

Note: `′(α) and `′′(α) involve ψ(α) The function ψ is infinitely
differentiable on the interval (0,∞), and satisfies ψ′(α) > 0 and
ψ′′(α) < 0 for all α > 0. (The function is strictly increasing and
strictly concave.) Also

lim
α→0+

ψ(α) = −∞ and lim
α→∞

ψ(α) =∞. (Draw a Picture.)

Thus ψ−1 : R→ (0,∞) exists.

`(α) is continuous and differentiable.

`(α) has a unique stationary point:

`′(α) = T1 − n logβ0 − nψ(α) = 0

iff ψ(α) = T1/n− logβ0

iff α = ψ−1(T1/n− logβ0)

This is the unique global maximizer since

`′′(α) = −nψ′(α) < 0 for all α > 0.

Thus α̂ = ψ−1(T1/n− logβ0) is the MLE.

(This is a function of T1, which is a sufficient statistic for α
when β is known.)



Situation #3: Find MLE for θ = (α, β)

`(α, β) is continuous and differentiable.

A stationary point must satisfy the system of two equations:

∂`

∂α
= T1 − n logβ − nψ(α) = 0

∂`

∂β
=

1

β2
(T2 − nαβ) = 0

Solving the second equation for β gives

β =
T2

nα
.

Plugging this into the first equation, and rearranging a bit leads
to

T1

n
− log

(
T2

n

)
= ψ(α)− logα ≡ H(α)

The function H(α) is continuous and strictly increasing from
(0,∞) to (−∞,0), so that it has an inverse mapping (−∞,0)
to (0,∞).

Thus, the solution to the above equation can be written:

α = H−1

(
T1

n
− log

(
T2

n

))
.



Thus, the unique stationary point is:

α̂ = H−1

(
T1

n
− log

(
T2

n

))
β̂ =

T2

nα̂
.

Is this the MLE?

Let us examine the Hessian.


