


















Thus, the equations for a stationary point

∂`

∂ηj
= 0 for j = 1, . . . , k

are equivalent to

EηTj(X) = Tj(x) for j = 1, . . . , k (‡)

where Tj(X) =
N∑
i=1

tj(Xi) and Tj(x) =
N∑
i=1

tj(xi)

or in vector notation

EηT (X) = T (x) where
T (X) = (T1(X), . . . , Tk(X)) and T (x) = (T1(x), . . . , Tk(x)) .

The Hessian matrix H(η) =

(
∂2`

∂ηi∂ηj

)k
i,j=1

is given by

H(η) = −NΣ(η)

where Σ(η) is the k × k covariance matrix of
(T1(X1), T2(X1), . . . , Tk(X1)). A covariance matrix will be posi-
tive definite (except in degenerate cases), so that H(η) will be
negative definite for all η.

Conclusion: An interior stationary point (i.e., a solution of (‡))
must be the unique global maximum, and hence the MLE.

This result also holds in the original parameterization with (‡)
restated as EθTj(X) = Tj(x), j = 1, . . . , k.

Connection with MOM: For a 1pef with t(x) = x, MOM and
MLE agree. For a kpef with tj(x) = xj, MOM and MLE agree.
Why? Because then (‡) is equivalent to the equations for the
MOM estimator.



Revisiting Gamma Example:

The Gamma family is a 2pef (or a 1pef if α or β is held fixed).

Switching to the natural parameters η1 = α− 1 and η2 = −1/β
(or just making the substitution λ = 1/β) simplifies the second
derivatives w.r.t. η2 (or λ) and makes the sufficient condition
for a stationary point to be the global max hold.

The system of equations for the MLE of (α, β) may be easily
derived directly from (‡).



MLE’s for More General Exponential Families

Proposition: If X ∼ Pθ, θ ∈ Θ where Pθ has a joint pdf (pmf)
from an n-variate k parameter exponential family (nvkpef):

f(x | θ) = c(θ)h(x) exp


k∑

j=1

wj(θ)Tj(x)


for x ∈ Rn, θ ∈ Θ ⊂ Rk ,

then the MLE of θ based on the observed data x is the solution
of the system of equations

EθTj(X) = Tj(x) for j = 1, . . . , k (Solve for θ)

providing this solution (call it θ̂) satisfies

w(θ̂) ∈ interior of {w(θ) : θ ∈ Θ}.

Proof: Essentially the same as for the ordinary kpef.










