
Nonparametric Curve Estimation

Jaime Frade

Department of Statistics
Florida State Univeristy

Victor Patrangenaru
STA5334

December 16, 2008

Jaime Frade (Florida State Univeristy) Nonparametric Curve Estimation December 16, 2008 1 / 23



Outline

1 Introduction
Objective

2 Theory
Definitions
Adapative kernels

3 Financial Application
Setup of Problem
Setup of Problem: VaR
Financial Definitions
Purpose

4 Matlab Programs

5 Simulation Results

6 Conclusion

7 References

Jaime Frade (Florida State Univeristy) Nonparametric Curve Estimation December 16, 2008 2 / 23



Introduction

Nonparametric Density Estimation

Probabilty density estimation goes hand in hand with nonparametric
estimation of the cumulative distribution. The density function provides a
better visual summary of how the random variable is distributed across its
support. Skewness, kurtosis, disperseness are just a few properities can
ascertiantined from the density plot.
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Introduction Objective

Goal

Unlike using empirical density function, which places probabilty mass
1

n
on

each observation, the project focuses on the kernel density esimator that
more fairly spreads out the probabilty mass of each observation, not
arbitrarily in a fixed interval, but smoothly around the observation,
typically in a symmetric way.

From there, will illustrate four basic kernels, as well as an adaptive kernel
function, to estimate the distribution of returns on a certian asset.
Simulation will be completed.
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Theory Definitions

With a sample of X1,X2, . . . ,Xn, write the density estimator

f̂ (x) =
n∑

i=1

K

(
x − xi

hn

)
(1)

for Xi = xi , i = 1, . . . , n. The kernel function K represents how the
probabilty mass is assigned. For example, for the histogram, in any
particular interval, K is constant. The smoothing function hn is a positive
sequence of bandwidths analoguous to the bin width in a histogram.
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Theory Definitions

From lecture notes, to estimate f , one may use the density of the random
variable X̂ + hZ , where X̂ has the distribution (conditionally, given
X1, . . . ,Xn) and Z is independent of X̂ . From (1), the bandwidth satisfies

h ≡ hn −→ as n→∞ (2)

X̂ + hZ has the density.

f̂n(x) =
1

n

n∑
i=1

Kh(x − Xi ), (3)

where Kh is the density of hZ . From (3), using the following definition for
Kh below, will obtain (1).

Kh(y) =
1

h
K
(y

h

)
(4)
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Theory Definitions

The kernel function K has five important properities

K (x) ≥ 0 ∀ x

K (x) = K (−x) ∀ x > 0∫
K (u)du = 1∫
uK (u)du = 0∫
u2K (v)dv = σ2

k <∞
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Theory Definitions

Basic idea is that K controls the shape, hn controls the spread of the
kernel. The accuracy of a density estimator can be evaluated using he
mean intergrated squared error, defined as

MISE = E
(∫

(f (x)− f̂ (x))2dx

)
=

∫
Bias2(f̂ (x))dx +

∫
Var(f̂ (x))dx (5)
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Theory Definitions

To find a density estimator that minimizes tehe MISE under the five
constraints, also will assume that f (x) is continuous and twice
differentiable, hn → 0 and nhn →∞ as n→∞. Under these conditions,

Bias =
σ2

K

2
f ′′(x) + O(h4

n)

Var
(
f̂ (x)

)
=

f (x)R(K )

nhn
+ O(n−1) (6)

where R(g) =
∫

g(u)2du
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Theory Definitions

Determine the minimum MISE by the choice of hn. However, choosing hn

to reduce the bias will increase the variance and vice versa, there is a
tradeoff. The choice of the bandwidth is important to the construction of
f̂ (x).

If h is chosen to be small, the minor difference in main part of the density
will be apparent. If h is choose to be large, the tails of the distribution are
better modeled, but fail to see important charateristics of the middle
quartiles of the data.
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Theory Definitions

By subsituting the bias and variance into the formula for (5), minimize
MISE with

h∗n =

(
R(K )

σ4
KR(f ′)

) 1
5

n−
1
5

From here, still can choose K (x) and insert a representative density for
f (x) to solve for the bandwidth.
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Theory Definitions

Epanechnickov (1969) showed that, upon subsituting f (x) = φ(x), the
kernel that minimizes MISE is

KE (x) =

{
−3

4 (1− x2) |x | ≤ 1
0 if |x | > 1

The resulting bandwidth becomes h∗ ≈ 1.06σ̂n−
1
5 , where σ̂ is the sample

standard deviation. The choice relies on the approximation for σ for f (x),
can obtain different answers.
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Theory Adapative kernels

Adapative kernels were derived to alleviate this problem. If use mroe
general smoothing function tied to the density at xj , could generalize the
denisty estimator as

f̂ (x) =
1

n

n∑
i=1

1

hn,i
K

(
x − xi

hn,i

)
(7)

where hn is a decreasing function of n, under |f̂ (x)− f (x)| P→ 0
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Theory Adapative kernels

In a majority of practical applications the parameter of smoothness is
unknown. After all, nonparametric estimation is typically a first glance at
the data at hand. Thus the aim of one paper I researched is to discuss
estimates that are adaptive to an unknown smoothness, i.e., data-driven.
While the MISE of adaptive estimators can attain the minimax rate, that
is, it is not necessary to know the parameter, (can visualize in data). See
Efromovich (1999) pg 281.
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Financial Application Setup of Problem

In finance, there exists a need to analyze the distribution of returns of
various indexes. From these calculations, can obtain measurements of risk.
The value-at-risk (VaR) is a measurement which accounts for a confidence
interval for the amount of loss one may expect. There exists a percentage
of certainity that the portfolio manager will not lose more than the value
of the Var of the portfolio in the next N days.
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Financial Application Setup of Problem: VaR

if a portfolio of stocks has a one-day 5% VaR of $1 million, there is a 5%
probability that the portfolio will decline in value by more than $1 million
over the next day, assuming markets are normal and there is no trading.

The reason for assuming normal markets and no trading, and to restricting
loss to things measured in daily accounts, is to make the loss observable.
In some extreme financial events it can be impossible to determine losses,
either because market prices are unavailable or because the loss-bearing
institution breaks up.

Figure: Illustration of the 10% Value at Risk with normally distibuted portfolio
value
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Financial Application Financial Definitions

Collected historical daily last price for 10 year Treasury notes, 3 month
Treasury Bills, and 1 month Treasury bills.

Treasury bills: (T-bill) A short-term debt obligation backed by the
U.S. government with a maturity of less than one year. (maturity is
one year or less)

Treasury notes: (T-notes) similary as above, just mature in two to ten
years
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Financial Application Purpose

Goal:

Stochastic dynamics of stock prices is commonly described by a geometric
(multiplicative) Brownian motion, which gives a log-normal pdf for
returns. However, numerous observations show that the tails of the PDF
decays lower than the lognormal distribution predicts (the so-called
fat-tails effect). Which does not provide a substantial estimate for for
calcaulting VaR, area under the curve, when returns are high spreads.
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Matlab Programs

ksdensity

I specified a kernel function of four pre-selected built-in functions in matlab
statistical toolbox, ’normal’, ’epanechinikov’, ’box’, and ’triangle’, which
are all scaled to have standard deviation equal to one, so the bandwidth
parameter means roughly the same thing regardless of kernel function.
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Matlab Programs

The default estimator is based on a Normal kernel, Box, Triangle, and
Epanechnikov. The next figure shows how the normal kernel compares to
the each other kernel. The optimal bandwidth for 1 month T-bills
(0.0036), 3 month T-bills (0.0027), and 10 year T-notes (0.0028) was
determined.
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Simulation Results

The density estimates are roughly comparable, but the box kernel produces
a density that is rougher than the others.
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Conclusion

Futher computational research needs to be completed with the above
obtained density curve estimations. Now that a density curve has been
approximated, a computational calculation of the area under the curve can
done by using a Monte Carlo approach.
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