MATH 4100/6100 (Azoff) Final Exam Notes Fall 2005
Throughout this exam (X, d) is a metric space; R is equipped with the usual metric.

1 (22 points). Statements

a) Define what it means for an ordered set (S, <) to have the least upper bound property.

b) Define what it means for a function f: X — X to be continuous at a point p € X.

c) Present a statement involving sequences which is equivalent to discontinuity of f : X — X
at the point p € X.

Answer.

a) Every non-empty subset of S which has an upper bound also has a least upper bound.

b) For every € > 0, there is a 6 > 0 such that d(f(x), f(p)) < € whenever d(x,p) < 4.

c) There is a sequence (x,) in X and a number € > 0 such that the sequence (x,) converges
to p, but d(f(x,), f(p)) > € for each n € J. [I also accepted “there is a sequence (z,,)
converging to p, so that the image sequence (f(xz,)) does not converge to f(p)”.]

2 (24 points). Compute:
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One can also take logarithms and apply I'hopital’s rule.



3 (42 points). Give examples of the following:

a) a countable set of irrational numbers,

b) an open cover of R which does not admit a finite subcover,

¢) a countable compact subset of R,

d) a disconnected subset of R? whose closure is connected,

e) a bounded continuous function f: R — R which does not attain a maximum value,
f) a continuous function f: (0,1) — R which is not uniformly continuous,

g) a non-Riemann-integrable function f : [0,1] — R such that f2 is integrable,

Ezxamples.

a) V2T

b) {(-n,n):n e J}

c) {i:neJ}tu{o}

d)  N.(0,0)UNy(2,0)
e) f=arctan

f) Jlz)=3

N 1, x € QnNJo,1]
g) [lx)= { —1, z €[0,1\Q .

4 (16 points). Let E be an uncountable set of real numbers.

a) Prove that for some n € J, the closed interval [—n, n] contains uncountably many points of
E.
b) Prove that £ must have a limit point in R.

Proof. For each n € J, write E,, := EN[—n,n].

For Part a), note that if each E, were at most countable, then their union £ would also be
countable, contrary to assumption.

For Part b), fix n as in Part a). Since the interval [—n,n] is compact, its infinite subset E,, must
have a limit point p; a fortiori, p is also a limit point of F.

5 (16 points). Suppose E and F' are compact subsets of a metric space X. Prove that their union
FE U F is also compact.

Proof. Let V be an open cover of £ U F. In particular, V covers E, whence by compactness, there
is a finite subcollection £ of ¥V which also covers E. Similarly, there is a finite subcollection F of V
which covers F. Then £ U F is a finite subcollection of V which covers E U F.

6 (16 points). Suppose f : R — R is non-decreasing and bounded. Prove that lim,_, f(z) exists.

Proof. The set S :={f(z) : € R} is non-empty and bounded so it has a least upper bound L.
Let € > 0. Since L — € is not an upper bound of S, we can find a real number M such that
f(M)>L-—e
Now suppose 2z > M. By monotonicity, L —e < f(M) < f(z) < L < L+e¢, whence |f(z)—L| <€
as desired.



7 (16 points). Suppose f : R — R is differentiable everywhere and f’ is bounded. Prove that f is
uniformly continuous.

Proof. Choose M > 0 so that [f(z)| < M for all z € R. Let ¢ > 0. Take 6 = 3;. Now suppose
|z — y| < 6. Applying the Mean Value Theorem, we find a number ¢ so that

[f (@) = fW)l = (@ =) f'(e)| < M|z —y| <M =e,

as desired.

8 (16 points). Suppose f : [0,1] — R is Riemann integrable and g : [0, 1] — R satisfies |g(z)—g(y)| <

|f(x) — f(y)| for all z,y € [0,1]. Prove that g is also Riemann integrable.
Lemma. Let I be a subset of [0,1]. Then sup; g — inf; g < sup; f — infy f.

Proof of the Lemma. Let z,y € I. By definition of upper and lower bounds, we have f(x) — f(y) <
sup; f —inf; f. Reversing the roles of x, y, we in fact have |f(z) — f(y)| < sup; f — inf; f. Putting
this together with the hypothesis, we get g(2) — g(y) < sup; f —inf; f. Holding y fixed. we see that
g(y) +sup; f — inf; f is an upper bound for the set {g(z) : © € I}. By definition of least upper
bound, this yields sup; g < g(y)+sup; f —inf; f. Transposing, freeing y, and applying the definition
of greatest lower bound then completes the proof of the lemma.

Proof of the Problem. Let ¢ > 0. Apply integrability of f to get a partition P of [0, 1] satisfying
U(f,P)—L(f,P) < e. But then the Lemma tells us that U(g, P)— L(g, P) < U(f, P)— L(f, P) < e,
and g meets the “convenient criterion” for integrability.

9 (16 points). For each n € J, let f,, g, : R = R with 0 < f,,(z) < gn(x) for all z € R. Prove that
if the series > g, converges uniformly, then so does the series »_ f,,.

Proof. (This is a generalization of the Weierstrass-M test, but that result cannot be used to prove
this one because the converse of the WM test is not valid.)

Write (sy,) and (¢,) for the sequences of partial sums of given series. Uniform convergence of
> gn tells us that the sequence (¢,,) is uniformly Cauchy. But for all z € R and m,n € J, we have
|$m () — sp ()] < |tm(x) —t,(2)], so the sequence (s,,) is also uniformly Cauchy. It follows that (s,,)
is also uniformly convergent, which is what it means for the series > f,, to converge uniformly.

10 (16 points). Suppose F is a uniformly bounded, equicontinuous family of functions in C[0, 1],
and g : R — R is continuous. Prove that the family of composites H := {go f: f € F} is also
equicontinuous.

Proof. Choose a positive real number M so that |f(z)| < M for all f € F and all z € R.

Let € > 0. Since g is uniformly continuous on the compact interval [—M, M|, we can find an 5 > 0
so that |g(z) — g(w)| < € whenever z,w € [-M, M] with |z — w| < 5. Apply equicontinuity of F to
find 6 > 0 so that |f(z) — f(y)| < n whenever f € F and |z — y| < 4.

Now supposc h € H and |[z—y| < §. Then h = gof for some f € F. We then have |f(z)—f(y)| < n,
whence [h(z) — h(y)| = [9(F(2)) — 9(F(y))] <e, as desired.

Bonus (10 points). Give an example of a function f : R — R which is differentiable at 0 but
discontinuous at each a # 0 € R.
z2, x€eQ

Solution. Take f(x) = { .
' 0, z € R\Q



