MATH 4100-6100 (Azoff) Notes to Third Hour Exam Fall 2005

1 (16 points). Compute:

a) Fl(x)if F(x /ggc\/l—i-—t‘*

1 3 x27 & S
b) [, «*da(x) where a(x) =
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3+ 22, T >

Solutzon For (a), let G be an antiderviative of the integrand function, i.e., G'(z) =
\/W By the Fundamental Theorem of Calculus, we have F'(z) = G(x ) G(2x).
Applying the chain rule, we then get

2x 2

F'(z) = 22G" (2*) — 2G" (2z) = itz 111628

0, xz <
1, T >
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/0 2 da(z) :/0 ?das (z )+3/0 i das(z) = 5 + 3= 10

For (b), take i (z) = 22 and az(z) = { . Then
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2 (24 points). Give examples of the following. No proofs are required.

a) afunction f:[0,1] = R which is not Riemann integrable,

b) monotone functions f,« : [0,1] = R such that f ¢ R(«) on [0,1],

¢) a sequence of functions (f, : R — R) which converges pointwise, but not
uniformly,

d) afamily of continuous functions from [0, 1] to R which is not equicontinuous.

Solution.

a) Take f(z) =1 for z rational and 0 otherwise.

b) The easiest course is to take f = @, with « discontinuous, e.g., f(0) =
a(0) =0, while f(z) = a(z )—1f0r0<w<1

c) The simplest example is f,(2) = = for n € J and z € R.

d) The usual example is f,(x) =" for n € J and z € [0, 1].

3 (20 points). Suppose f:10,1] = [0,00) is continuous at 1. Prove that if the

lower 1ntog)ral/ f =0, then f(%)

Proof. Assume for purposes of contradiction that f (%) > 0. Apply continuity to

find 6 > 0 so that |z — §| < 0 implies |f(z) — f(3) . Consider the partition

P:0<i<i+ % < 1. Since f(z) > j (2 for all £ in the second subinterval of this
3f(3)

partition, we reach the contrdiction / f>L(f,P)> 1 > 0.
JO_




4 (20 points). For each n € N, let f,, : [0,1] = R by fu(z) = 2™(1 — z). Prove
that the sequence (f,) is uniformly convergent.
Proofs. Clearly the sequence (f,) converges to 0 pointwise.

First) Since fo11(x) < fo(z) for each n € J and z € [0, 1], Dini’s Theorem (7.13)
tells us that the convergence is uniform.
Second) f, attains its absolute maximum at its critical point . Hence

n+1°
n 1 n \" 1
1ull = fa <n+1> T+l <n+1> SuIU
whence lim,_,« || f|| = 0 as desired.
Third) Let € > 0. Then lim, . (1 —¢)® = 0, so we can choose N € J so that
1-e¥ <e

Now suppose n > N and « € [0,1]. If z < 1 —¢, we have |f,(z)| <
(1 —e)V < e. Otherwise, |f,(z)] <1 —z < € anyway, and we are done.

5 (20 points). Suppose (f,) is a uniformly convergent sequence of continuous
functions mapping a compact metric space into R. Prove that F := {f, :n € J} is
an equicontinuous family of functions.

Proof. By compactness of the underlying metric space K, we know each f, is
uniformly continuous. Thus for each n € J, there is a number §,, > 0 such that
|fn(z) — fuly)] < § whenever di(x,y) < 6,. Apply uniform convergence to get
N € J so that || fn — fn|| < § for all n > N. Finally set 6 := min{dy,...dn}.

It remains to show that this § works. So suppose n € J, while z,y € K with
dg(z,y) < 6. If n < N, we have the desired inequality |fn(z) — fu(y)| < € since
é < 4, by construction. On the other hand, when n > N, the triangle inequality
yields

Fa@) = a)] < 1fal@) = v @) + (@) = Ix @)+ |fx () = )] < 35 =€,

and all cases are covered.

Bonus (10 points). For each n € N, let g, : [0,1] = R by gn(z) = na"(1 — z).
Prove (in contrast to Problem 4) that the sequence (g,,) is not uniformly convergent.

Proof. The ratio test shows that the series Y g, () converges for each z € (0,1), so
the (gn) converge to 0 pointwise on [0, 1]. Since g, is a scalar multiple of the function
fn of Problem 4, it attains its maximum at the same point —%5. In particular, for

n n \"t
each n € J, we have ||g,|| = gn <n+ 1) = (n + 1) , whence

n+1
n 1
) _ ==>0,
tim ool = i () =2

80 (gn) cannot converge to 0 uniformly.



