The Real and Complex Number Systems

Written by Men-Gen Tsai email: b89902089@ntu.edu.tw

1. 2. 3. 4.

- 5.
- 6. Fix b > 1.

(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

(b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

(c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r)$$

where r is rational. Hence it makes sense to define

$$b^x = \sup B(x)$$

for every real x.

(d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Proof: For (a): mq = np since m/n = p/q. Thus $b^{mq} = b^{np}$. By Theorem 1.21 we know that $(b^{mq})^{1/(mn)} = (b^{np})^{1/(mn)}$, that is, $(b^m)^{1/n} = (b^p)^{1/q}$, that is, b^r is well-defined.

For (b): Let r = m/n and s = p/q where m, n, p, q are integers, and n > 0, q > 0. Hence $(b^{r+s})^{nq} = (b^{m/n+p/q})^{nq} = (b^{(mq+np)/(nq)})^{nq} = b^{mq+np} = b^{mq}b^{np} = (b^{m/n})^{nq}(b^{p/q})^{nq} = (b^{m/n}b^{p/q})^{nq}$. By Theorem 1.21 we know that $((b^{r+s})^{nq})^{1/(nq)} = ((b^{m/n}b^{p/q})^{nq})^{1/(nq)}$, that is $b^{r+s} = b^{m/n}b^{p/q} = b^rb^s$.

For (c): Note that $b^r \in B(r)$. For all $b^t \in B(r)$ where t is rational and $t \leq r$. Hence, $b^r = b^t b^{r-t} \geq b^t 1^{r-t}$ since b > 1 and $r - t \geq 0$. Hence b^r is an upper bound of B(r). Hence $b^r = \sup B(r)$.

For (d): $b^x b^y = \sup B(x) \sup B(y) \ge b^{t_x} b^{t_y} = b^{t_x+t_y}$ for all rational $t_x \le x$ and $t_y \le y$. Note that $t_x + t_y \le x + y$ and $t_x + t_y$ is rational. Therefore, $\sup B(x) \sup B(y)$ is a upper bound of B(x + y), that is, $b^x b^y \ge \sup B(x + y) = b^{(x+y)}$.

Conversely, we claim that $b^x b^r = b^{x+r}$ if $x \in \mathbb{R}^1$ and $r \in Q$. The following is my proof.

$$b^{x+r} = \sup B(x+r) = \sup \{b^s : s \le x+r, s \in Q\}$$

=
$$\sup \{b^{s-r}b^r : s-r \le x, s-r \in Q\}$$

=
$$b^r \sup \{b^{s-r} : s-r \le x, s-r \in Q\}$$

=
$$b^r \sup B(x)$$

=
$$b^r b^x.$$

And we also claim that $b^{x+y} \ge b^x$ if $y \ge 0$. The following is my proof:

 $(r\in Q)$

$$B(x) = \{b^r : r \le x\} \subset \{b^r : r \le x + y\} = B(x + y),$$

Therefore, $\sup B(x+y) \ge \sup B(x)$, that is, $b^{x+y} \ge b^x$.

Hence,

$$b^{x+y} = \sup B(x+y)$$

$$= \sup \{b^r : r \le x+y, r \in Q\}$$

$$= \sup \{b^s b^{r-s} : r \le x+y, s \le x, r \in Q, s \in Q\}$$

$$\geq \sup \{\sup B(x) b^{r-s} : r \le x+y, s \le x, r \in Q, s \in Q\}$$

$$= \sup B(x) \sup \{b^{r-s} : r \le x+y, s \le x, r \in Q, s \in Q\}$$

$$= \sup B(x) \sup \{b^{r-s} : r - s \le x+y - s, s \le x, r - s \in Q\}$$

$$= \sup B(x) \sup B(x+y-s)$$

$$\geq \sup B(x) \sup B(y)$$

$$= b^x b^y$$

Therefore, $b^{x+y} = b^x b^y$.

7.
 8.
 9.
 10.
 11.
 12.
 13.
 14.

- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.