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1. Prove that the empty set is a subset of every set.

Proof: For any element x of the empty set, x is also an element of

every set since x does not exist. Hence, the empty set is a subset of

every set.

2. A complex number z is said to be algebraic if there are integers a0, ..., an,

not all zero, such that

a0z
n + a1z

n−1 + ... + an−1z + an = 0.

Prove that the set of all algebraic numbers is countable. Hint: For

every positive integer N there are only finitely many equations with

n + |a0|+ |a1|+ ... + |an| = N.

Proof: For every positive integer N there are only finitely many equa-

tions with

n + |a0|+ |a1|+ ... + |an| = N.

(since 1 ≤ n ≤ N and 0 ≤ |a0| ≤ N). We collect those equations as

CN . Hence
⋃

CN is countable. For each algebraic number, we can form

an equation and this equation lies in CM for some M and thus the set

of all algebraic numbers is countable.

3. Prove that there exist real numbers which are not algebraic.

Proof: If not, R1 = { all algebraic numbers } is countable, a contra-

diction.
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4. Is the set of all irrational real numbers countable?

Solution: If R−Q is countable, then R1 = (R−Q)
⋃

Q is countable,

a contradiction. Thus R−Q is uncountable.

5. Construct a bounded set of real numbers with exactly three limit points.

Solution: Put

A = {1/n : n ∈ N}
⋃
{1 + 1/n : n ∈ N}

⋃
{2 + 1/n : n ∈ N}.

A is bounded by 3, and A contains three limit points - 0, 1, 2.

6. Let E ′ be the set of all limit points of a set E. Prove that S ′ is

closed. Prove that E and E have the same limit points. (Recall that

E = E
⋃

E ′.) Do E and E ′ always have the same limit points?

Proof: For any point p of X − E ′, that is, p is not a limit point E,

there exists a neighborhood of p such that q is not in E with q 6= p for

every q in that neighborhood.

Hence, p is an interior point of X − E ′, that is, X − E ′ is open, that

is, E ′ is closed.

Next, if p is a limit point of E, then p is also a limit point of E since

E = E
⋃

E ′. If p is a limit point of E, then every neighborhood Nr(p)

of p contains a point q 6= p such that q ∈ E. If q ∈ E, we completed

the proof. So we suppose that q ∈ E − E = E ′ − E. Then q is a limit

point of E. Hence,

Nr′(q)

where r′ = 1
2
min(r−d(p, q), d(p, q)) is a neighborhood of q and contains

a point x 6= q such that x ∈ E. Note that Nr′(q) contains in Nr(p)−{p}.
That is, x 6= p and x is in Nr(p). Hence, q also a limit point of E. Hence,

E and E have the same limit points.
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Last, the answer of the final sub-problem is no. Put

E = {1/n : n ∈ N},

and E ′ = {0} and (E ′)′ = φ.

7. Let A1, A2, A3, ... be subsets of a metric space. (a) If Bn =
⋃n

i=1 Ai,

prove that Bn =
⋃n

i=1 Ai, for n = 1, 2, 3, ... (b) If B =
⋃∞

i=1, prove that

B ⊃ ⋃∞
i=1 Ai. Show, by an example, that this inclusion can be proper.

Proof of (a): (Method 1) Bn is the smallest closed subset of X that

contains Bn. Note that
⋃

Ai is a closed subset of X that contains Bn,

thus

Bn ⊃
n⋃

i=1

Ai.

If p ∈ Bn − Bn, then every neighborhood of p contained a point q 6= p

such that q ∈ Bn. If p is not in Ai for all i, then there exists some

neighborhood Nri
(p) of p such that (Nri

(p)−p)
⋂

Ai = φ for all i. Take

r = min{r1, r2, ..., rn}, and we have Nr(p)
⋂

Bn = φ, a contradiction.

Thus p ∈ Ai for some i. Hence

Bn ⊂
n⋃

i=1

Ai.

that is,

Bn =
n⋃

i=1

Ai.

(Method 2) Since
⋃n

i=1 Ai is closed and Bn =
⋃n

i=1 Ai ⊂
⋃n

i=1 Ai,

Bn ⊂
⋃n

i=1 Ai.

Proof of (b): Since B is closed and B ⊃ B ⊃ Ai, B ⊃ Ai for all i.

Hence B ⊃ ⋃
Ai.

Note: My example is Ai = (1/i,∞) for all i. Thus, Ai = [1/i,∞), and

B = (0,∞), B = [0,∞). Note that 0 is not in Ai for all i. Thus this

inclusion can be proper.
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8. Is every point of every open set E ⊂ R2 a limit point of E? Answer

the same question for closed sets in R2.

Solution: For the first part of this problem, the answer is yes.

(Reason): For every point p of E, p is an interior point of E. That

is, there is a neighborhood Nr(p) of p such that Nr(p) is a subset of

E. Then for every real r′, we can choose a point q such that d(p, q) =

1/2 min(r, r′). Note that q 6= p, q ∈ Nr′(p), and q ∈ Nr(p). Hence, every

neighborhood Nr′(p) contains a point q 6= p such that q ∈ Nr(p) ⊂ E,

that is, p is a limit points of E.

For the last part of this problem, the answer is no. Consider A =

{(0, 0)}. A′ = φ and thus (0, 0) is not a limit point of E.

9. Let Eo denote the set of all interior points of a set E.

(a) Prove that Eo is always open.

(b) Prove that E is open if and only if Eo = E.

(c) If G is contained in E and G is open, prove that G is contained in

Eo.

(d) Prove that the complement of Eo is the closure of the complement

of E.

(e) Do E and E always have the same interiors?

(f) Do E and Eo always have the same closures?

Proof of (a): If E is non-empty, take p ∈ Eo. We need to show that

p ∈ (Eo)o. Since p ∈ Eo, there is a neighborhood Nr of p such that

Nr is contained in E. For each q ∈ Nr, note that Ns(q) is contained in

Nr(p), where s = min{d(p, q), r − d(p, q)}. Hence q is also an interior

point of E, that is, Nr is contained in Eo. Hence Eo is always open.

Proof of (b): (⇒) It is clear that Eo is contained in E. Since E is

open, every point of E is an interior point of E, that is, E is contained

in Eo. Therefore Eo = E.
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(⇐) Since every point of E is an interior point of E (Eo(E) = E), E

is open.

Proof of (c): If p ∈ G, p is an interior point of G since G is open. Note

that E contains G, and thus p is also an interior point of E. Hence

p ∈ Eo. Therefore G is contained in Eo. (Thus Eo is the biggest open

set contained in E. Similarly, E is the smallest closed set containing

E.)

Proof of (d): Suppose p ∈ X − Eo. If p ∈ X − E, then p ∈ X − E

clearly. If p ∈ E, then N is not contained in E for any neighborhood

N of p. Thus N contains an point q ∈ X − E. Note that q 6= p, that

is, p is a limit point of X − E. Hence X − Eo is contained in X − E.

Next, suppose p ∈ X − E. If p ∈ X − E, then p ∈ X − Eo clearly. If

p ∈ E, then every neighborhood of p contains a point q 6= p such that

q ∈ X − E. Hence p is not an interior point of E. Hence X − E is

contained in X − Eo. Therefore X − Eo = X − E.

Solution of (e): No. Take X = R1 and E = Q. Thus Eo = φ and

E
o

= (R1)o = R1 6= φ.

Solution of (f): No. Take X = R1 and E = Q. Thus E = R1, and

Eo = φ = φ.

10. Let X be an infinite set. For p ∈ X and q ∈ X, define

d(p, q) =

 1 (if p 6= q)

0 (if p = q)

Prove that this is a metric. Which subsets of the resulting metric space

are open? Which are closed? Which are compact?

Proof: (a) d(p, q) = 1 > 0 if p 6= q; d(p, p) = 0. (b) d(p, q) = d(q, p)

since p = q implies q = p and p 6= q implies q 6= p. (c) d(p, q) ≤
d(p, r) + d(r, q) for any r ∈ X if p = q. If p 6= q, then either r = p or
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r = q, that is, r 6= p or r 6= q. Thus, d(p, q) = 1 ≤ d(p, r) + d(r, q). By

(a)-(c) we know that d is a metric.

Every subset of X is open and closed. We claim that for any p ∈ X,

p is not a limit point. Since d(p, q) = 1 > 1/2 if q 6= p, there exists an

neighborhood N1/2(p) of p contains no points of q 6= p such that q ∈ X.

Hence every subset of X contains no limit points and thus it is closed.

Since X − S is closed for every subset S of X, S = X − (X − S) is

open. Hence every subset of X is open.

Every finite subset of X is compact. Let S = {p1, ..., pn} be finite.

Consider an open cover {Gα} of S. Since S is covered by Gα, pi is

covered by Gαi
, thus {Gα1 , ..., Gαn} is finite subcover of S. Hence S is

compact. Next, suppose S is infinite. Consider an open cover {Gp} of

S, where

Gp = N 1
2
(p)

for every p ∈ S. Note that q is not in Gp if q 6= p. If S is compact,

then S can be covered by finite subcover, say

Gp1 , ..., Gpn .

Then there exists q such that q 6= pi for all i since S is infinite, a con-

tradiction. Hence only every finite subset of X is compact.

11. For x ∈ R1 and y ∈ R1, define

d1(x, y) = (x, y)2,

d2(x, y) =
√
|x− y|,

d3(x, y) = |x2 − y2|,

d4(x, y) = |x− 2y|,

d5(x, y) =
|x− y|

1 + |x− y|
.
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Determine, for each of these, whether it is a metric or not.

Solution: (1) d1(x, y) is not a metric. Since d1(0, 2) = 4, d1(0, 1) = 1,

and d1(1, 2) = 1, d1(0, 2) > d1(0, 1) + d1(1, 2). Thus d1(x, y) is not a

metric.

(2) d2(x, y) is a metric. (a) d(p, q) > 0 if p 6= q; d(p, p) = 0. (b)

d(p, q) =
√
|p− q| =

√
|q − p| = d(q, p). (c) |p − q| ≤ |p − r| + |r − q|,√

|p− q| ≤
√
|p− r|+ |r − q| ≤

√
|p− r|+

√
|r − q|. That is, d(p, q) ≤

d(p, r) + d(r, q). (3) d3(x, y) is not a metric since d3(1,−1) = 0.

(4) d4(x, y) is not a metric since d4(1, 1) = 1 6= 0.

(5) d5(x, y) is a metric since |x− y| is a metric.

Claim: d(x, y) is a metric, then

d′(x, y) =
d(x, y)

1 + d(x, y)

is also a metric.

Proof of Claim: (a) d′(p, q) > 0 if p 6= q; d(p, p) = 0. (b) d′(p, q) =

d′(q, p). (c) Let x = d(p, q), y = d(p, r), and z = d(r, q). Then x ≤ y+z.

d′(p, q) ≤ d′(p, r) + d′(r, q)

⇔ x

1 + x
≤ y

1 + y
+

z

1 + z

⇔ x(1 + y)(1 + z) ≤ y(1 + z)(1 + x) + z(1 + x)(1 + y)

⇔ x + xy + xz + xyz ≤ (y + xy + yz + xyz) + (z + xz + yz + xyz)

⇔ x ≤ y + z + 2yz + xyz

⇐ x ≤ y + z

Thus, d′ is also a metric.

12. Let K ⊂ R1 consist of 0 and the numbers 1/n, for n = 1, 2, 3, ....

Prove that K is compact directly from the definition (without using

the Heine-Borel theorem).
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Proof: Suppose that {Oα} is an arbitrary open covering of K. Let

E ∈ {Oα} consists 0. Since E is open and 0 ∈ E, 0 is an interior point

of E. Thus there is a neighborhood N = Nr(0) of 0 such that N ⊂ E.

Thus N contains
1

[1/r] + 1
,

1

[1/r] + 2
, ...

Next, we take finitely many open sets En ∈ {Oα} such that 1/n ∈ En

for n = 1, 2, ..., [1/r]. Hence {E, E1, ..., E[1/r] is a finite subcover of K.

Therefore, K is compact.

Note: The unique limit point of K is 0. Suppose p 6= 0 is a limit point

of K. Clearly, 0 < p < 1. (p cannot be 1). Thus there exists n ∈ Z+

such that
1

n + 1
< p <

1

n
.

Hence Nr(p) where r = min{ 1
n
− p, p − 1

n+1
} contains no points of K,

a contradiction.

13. Construct a compact set of real numbers whose limit points form a

countable set.

Solution: Let K be consist of 0 and the numbers 1/n for n = 1, 2, 3, ...

Let xK = {xk : k ∈ K} and x + K = {x + k : k ∈ K} for x ∈ R1. I

take

Sn = (1− 1

2n
) +

K

2n+1
,

S =
∞⋃

n=1

Sn

⋃
{1}.

Claim: S is compact and the set of all limit points of S is K
⋃{1}.

Clearly, S lies in [0, 1], that is, S is bounded in R1. Note that Sn ⊂
[1 − 1

2n , 1 − 1
2n+1 ]. By Exercise 12 and its note, I have that all limit

points of S
⋂

[0, 1) is

0,
1

2
, ...,

1

2n
, ...
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Clearly, 1 is also a limit point of S. Therefore, the set of all limit points

of S is K
⋃{1}. Note that K

⋃{1} ⊂ S, that is, K is compact. I com-

pleted the proof of my claim.

14. Give an example of an open cover of the segment (0, 1) which has no

finite subcover.

Solution: Take {On} = {(1/n, 1)} for n = 1, 2, 3, .... The following is

my proof. For every x ∈ (0, 1),

x ∈ (
1

[1/x] + 1
, 0) ∈ {On}

Hence {On} is an open covering of (0, 1). Suppose there exists a finite

subcovering

(
1

n1

, 1), ..., (
1

nk

, 1)

where n1 < n2 < ... < nk, respectively. Clearly 1
2np

∈ (0, 1) is not in

any elements of that subcover, a contradiction.

Note: By the above we know that (0, 1) is not compact.

15. Show that Theorem 2.36 and its Corollary become false (in R1, for ex-

ample) if the word ”compact” is replaced by ”closed” or by ”bounded.”

Theorem 2.36: If {Kα} is a collection of compact subsets of a metric

space X such that the intersection of every finite subcollection of {Kα}
is nonempty, then

⋂
Kα is nonempty.

Corollary: If {Kn} is a sequence of nonempty compact sets such that

Kn contains Kn+1 (n = 1, 2, 3, ...), then
⋂

Kn is not empty.

Solution: For closed: [n,∞). For bounded: (−1/n, 1/n)− {0}.
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16. Regard Q, the set of all rational numbers, as a metric space, with

d(p, q) = |p − q|. Let E be the set of all p ∈ Q such that 2 < p2 < 3.

Show that E is closed and bounded in Q, but that E is not compact.

Is E open in Q?

Proof: Let S = (
√

2,
√

3)
⋃

(−
√

3,−
√

2). Then E = {p ∈ Q : p ∈ S}.
Clearly, E is bounded in Q. Since Q is dense in R, every limit point of

Q is in Q. (I regard Q as a metric space). Hence, E is closed in Q.

To prove that E is not compact, we form a open covering of E as

follows:

{Gα} = {Nr(p) : p ∈ E and (p− r, p + r) ⊂ S}

Surely, {Gα} is a open covering of E. If E is compact, then there are

finitely many indices α1, ..., αn such that

E ⊂ Gα1

⋃
...

⋃
Gαn .

For every Gαi
= Nri

(pi), take p = max1≤i≤n pi. Thus, p is the nearest

point to
√

3. But Nr(p) lies in E, thus [p + r,
√

3) cannot be covered

since Q is dense in R, a contradiction. Hence E is not compact.

Finally, the answer is yes. Take any p ∈ Q, then there exists a

neighborhood N(p) of p contained in E. (Take r small enough where

Nr(p) = N(p), and Q is dense in R.) Thus every point in N(p) is also

in Q. Hence E is also open.

17. Let E be the set of all x ∈ [0, 1] whose decimal expansion contains only

the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact?

Is E perfect?

Solution:

E =
{ ∞∑

n=1

an

10n
: an = 4 or an = 7

}
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Claim: E is uncountable.

Proof of Claim: If not, we list E as follows:

x1 = 0.a11a12...a1n...

x2 = 0.a21a22...a2n...

... ...

xk = 0.ak1ak2...akn...

... ...

(Prevent ending with all digits 9) Let x = 0.x1x2...xn... where

xn =

 4 if ann = 7

7 if ann = 4

By my construction, x /∈ E, a contradiction. Thus E is uncountable.

Claim: E is not dense in [0, 1].

Proof of Claim: Note that E
⋂

(0.47, 0.74) = φ. Hence E is not dense

in [0, 1].

Claim: E is compact.

Proof of Claim: Clearly, E is bounded. For every limit point p of E,

I show that p ∈ E. If not, write the decimal expansion of p as follows

p = 0.p1p2...pn...

Since p /∈ E, there exists the smallest k such that pk 6= 4 and pk 6= 7.

When pk = 0, 1, 2, 3, select the smallest l such that pl = 7 if possible.

(If l does not exist, then p < 0.4. Thus there is a neighborhood of p

such that contains no points of E, a contradiction.) Thus

0.p1...pl−14pl+1...pk−17 < p < 0.p1...pk−14.

Thus there is a neighborhood of p such that contains no points of E, a

contradiction.
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When pk = 5, 6,

0.p1...pk−147 < p < 0.p1...pk−174.

Thus there is a neighborhood of p such that contains no points of E, a

contradiction.

When pk = 8, 9, it is similar. Hence E is closed. Therefore E is

compact.

Claim: E is perfect.

Proof of Claim: Take any p ∈ E, and I claim that p is a limit point

of E. Write p = 0.p1p2...pn... Let

xk = 0.y1y2...yn...

where

yn =


pk if k 6= n

4 if pn = 7

7 if pn = 4

Thus, |xk−p| → 0 as k →∞. Also, xk 6= p for all k. Hence p is a limit

point of E. Therefore E is perfect.

18. Is there a nonempty perfect set in R1 which contains no rational num-

ber?

Solution: Yes. The following claim will show the reason.

Claim: Given a measure zero set S, we have a perfect set P contains

no elements in S.

Proof of Claim: (due to SYLee). Since S has measure zero, there

exists a collection of open intervals {In} such that

S ⊂
⋃

In and
∑
|In| < 1.
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Consider E = R1 − ⋃
In. E is nonempty since E has positive mea-

sure. Thus E is uncountable and E is closed. Therefore there exists

a nonempty perfect set P contained in E by Exercise 28. P
⋂

S = φ.

Thus P is our required perfect set.

19. (a) If A and B are disjoint closed sets in some metric space X, prove

that they are separated.

(b) Prove the same for disjoint open sets.

(c) Fix p ∈ X, δ > 0, define A to be the set of all q ∈ X for which

d(p, q) < δ, define B similarly, with > in place of <. Prove that A and

B are separated.

(d) Prove that every connected metric space with at least two points

is uncountable. Hint: Use (c).

Proof of (a): Recall the definition of separated: A and B are sep-

arated if A
⋂

B and A
⋂

B are empty. Since A and B are closed sets,

A = A and B = B. Hence A
⋂

B = A
⋂

B = A
⋂

B = φ. Hence A and

B are separated.

Proof of (b): Suppose A
⋂

B is not empty. Thus there exists p such

that p ∈ A and p ∈ B. For p ∈ A, there exists a neighborhood Nr(p) of

p contained in A since A is open. For p ∈ B = B
⋃

B′, if p ∈ B, then

p ∈ A
⋂

B. Note that A and B are disjoint, and it’s a contradiction.

If p ∈ B′, then p is a limit point of B. Thus every neighborhood of p

contains a point q 6= p such that q ∈ B. Take an neighborhood Nr(p)of

p containing a point q 6= p such that q ∈ B. Note that Nr(p) ⊂ A,

thus q ∈ A. With A and B are disjoint, we get a contradiction. Hence

A
⋂

(B) is empty.

Similarly, A
⋂

B is also empty. Thus A and B are separated.

Proof of (c): Suppose A
⋂

B is not empty. Thus there exists x such
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that x ∈ A and x ∈ B. Since x ∈ A, d(p, x) < δ. x ∈ B = B
⋃

B′, thus

if x ∈ B, then d(p, x) > δ, a contradiction. The only possible is x is a

limit point of B. Hence we take a neighborhood Nr(x) of x contains y

with y ∈ B where r = δ−d(x,p)
2

. Clearly, d(y, p) > δ. But,

d(y, p) ≤ d(y, x) + d(x, p)

< r + d(x, p)

=
δ − d(x, p)

2
+ d(x, p)

=
δ + d(x, p)

2

<
δ + δ

2
= δ.

A contradiction. Hence A
⋂

B is empty. Similarly, A
⋂

B is also empty.

Thus A and B are separated.

Note: Take care of δ > 0. Think a while and you can prove the next

sub-exercise.

Proof of (d): Let X be a connected metric space. Take p ∈ X, q ∈ X

with p 6= q, thus d(p, q) > 0 is fixed. Let

A = {x ∈ X : d(x, p) < δ}; B = {x ∈ X : d(x, p) > δ}.

Take δ = δt = td(p, q) where t ∈ (0, 1). Thus 0 < δ < d(p, q). p ∈ A

since d(p, p) = 0 < δ, and q ∈ B since d(p, q) > δ. Thus A and B are

non-empty.

By (c), A and B are separated. If X = A
⋃

B, then X is not connected,

a contradiction. Thus there exists yt ∈ X such that y /∈ A
⋃

B. Let

E = Et = {x ∈ X : d(x, p) = δt} 3 yt.

For any real t ∈ (0, 1), Et is non-empty. Next, Et and Es are disjoint

if t 6= s (since a metric is well-defined). Thus X contains a uncount-
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able set {yt : t ∈ (0, 1)} since (0, 1) is uncountable. Therefore, X is

uncountable.

Note: It is a good exercise. If that metric space contains only one

point, then it must be separated.

Similar Exercise Given by SYLee: (a) Let A = {x : d(p, x) < r}
and B = {x : d(p, x) > r} for some p in a metric space X. Show that

A, B are separated.

(b) Show that a connected metric space with at least two points must

be uncountable. [Hint: Use (a)]

Proof of (a): By definition of separated sets, we want to show A
⋂

B =

φ, and B
⋂

A = φ. In order to do these, it is sufficient to show A
⋂

B =

φ. Let x ∈ A
⋂

B = φ, then we have:

(1) x ∈ A ⇒ d(x, p) ≤ r(2) x ∈ B ⇒ d(x, p) > r

It is impossible. So, A
⋂

B = φ.

Proof of (b): Suppose that C is countable, say C = a, b, x3, .... We

want to show C is disconnected. So, if C is a connected metric space

with at least two points, it must be uncountable. Consider the set

S = {d(a, xi) : xi ∈ C}, and thus let r ∈ R− S and inf S < r < sup S.

And construct A and B as in (a), we have C = A
⋃

B, where A and B

are separated. That is C is disconnected.

Another Proof of (b): Let a ∈ C, b ∈ C, consider the continuous

function f from C into R defined by f(x) = d(x, a). So, f(C) is con-

nected and f(a) = 0, f(b) > 0. That is, f(C) is an interval. Therefore,

C is uncountable.

20. Are closures and interiors of connected sets always connected? (Look

at subsets of R2.)
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Solution: Closures of connected sets is always connected, but interiors

of those is not. The counterexample is

S = N1(2, 0)
⋃

N1(−2, 0)
⋃
{x− axis} ⊂ R2.

Since S is path-connected, S is connect. But So = N1(2)
⋃

N1(−2) is

disconnected clearly.

Claim: If S is a connected subset of a metric space, then S is con-

nected.

Pf of Claim: If not, then S is a union of two nonempty separated set

A and B. Thus A
⋂

B = A
⋂

B = φ. Note that

S = S − T

= A
⋃

B − T

= (A
⋃

B)
⋂

T c

= (A
⋂

T c)
⋃

(B
⋂

T c)

where T = S − S. Thus

(A
⋂

T c)
⋂

B
⋂

T c ⊂ (A
⋂

T c)
⋂

B
⋂

T c

⊂ A
⋂

B

= φ.

Hence (A
⋂

T c)
⋂

B
⋂

T c = φ. Similarly, A
⋂

T c
⋂

(B
⋂

T c) = φ.

Now we claim that both A
⋂

T c and B
⋂

T c are nonempty. Suppose

that B
⋂

T c = φ. Thus

A
⋂

T c = S ⇔ A
⋂

(S − S)c = S

⇔ A
⋂

(A
⋃

B − S)c = S

⇔ A
⋂

((A
⋃

B)
⋂

Sc)c = S
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⇔ A
⋂

((Ac
⋂

Bc)
⋃

S) = S

⇔ (A
⋂

S)
⋃

(A
⋂

Ac
⋂

Bc) = S

⇔ A
⋂

S = S.

Thus B is empty, a contradiction. Thus B
⋂

T c is nonempty. Similarly,

A
⋂

T c nonempty. Therefore S is a union of two nonempty separated

sets, a contradiction. Hence S is connected.

21. Let A and B be separated subsets of some Rk, suppose a ∈ A, b ∈ B,

and define

p(t) = (1− t)a + tb

for t ∈ R1. Put A0 = p−1(A), B0 = p−1(B). [Thus t ∈ A0 if and only

if p(t) ∈ A.]

(a) Prove that A0 and B0 are separated subsets of R1.

(b) Prove that there exists t0 ∈ (0, 1) such that p(t0) /∈ A
⋃

B.

(c) Prove that every convex subset of Rk is connected.

Proof of (a): I claim that A0
⋂

B0 is empty. (B0
⋂

A0 is similar). If

not, take x ∈ A0
⋂

B0. x ∈ A0 and x ∈ B0. x ∈ B0 or x is a limit

point of B0. x ∈ B0 will make x ∈ A0
⋂

B0, that is, p(x) ∈ A
⋂

B, a

contradiction since A and B are separated.

Claim: x is a limit point of B0 ⇒ p(x) is a limit point of B. Take any

neighborhood Nr of p(x), and p(t) lies in B for small enough t. More

precisely,

x− r

|b− a|
< t < x +

r

|b− a|
.

Since x is a limit point of B0, and (x − r/|b − a|, x + r/|b − a|) is a

neighborhood N of x, thus N contains a point y 6= x such that y ∈ B0,

that is, p(y) ∈ B. Also, p(y) ∈ Nr. Therefore, p(x) is a limit point of

B. Hence p(x) ∈ A
⋂

B, a contradiction since A and B are separated.
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Hence A0
⋂

B0 is empty, that is, A0 and B0 are separated subsets of

R1.

Proof of (b): Suppose not. For every t0 ∈ (0, 1), neither p(t0) ∈ A

nor p(t0) ∈ B (since A and B are separated). Also, p(t0) ∈ A
⋃

B for

all t0 ∈ (0, 1). Hence (0, 1) = A0
⋃

B0, a contradiction since (0, 1) is

connected. I completed the proof.

Proof of (c): Let S be a convex subset of Rk. If S is not connected,

then S is a union of two nonempty separated sets A and B. By (b),

there exists t0 ∈ (0, 1) such that p(t0) /∈ A
⋃

B. But S is convex, p(t0)

must lie in A
⋃

B, a contradiction. Hence S is connected.

22. A metric space is called separable if it contains a countable dense sub-

set. Show that Rk is separable. Hint: Consider the set of points which

have only rational coordinates.

Proof: Consider S = the set of points which have only rational coor-

dinates. For any point x = (x1, x2, ..., xk) ∈ Rk, we can find a rational

sequence {rij} → xj for j = 1, ..., k since Q is dense in R1. Thus,

ri = (ri1 , ri2 , ..., rik) → x

and ri ∈ S for all i. Hence S is dense in Rk. Also, S is countable, that

is, S is a countable dense subset in Rk, Rk is separable.

23. A collection {Vα} of open subsets of X is said to be a base for X if the

following is true: For every x ∈ X and every open set G ⊂ X such that

x ∈ G, we have x ∈ Vα ⊂ G for some α. In other words, every open set

in X is the union of a subcollection of {Vα}.

Prove that every separable metric space has a countable base. Hint:

Take all neighborhoods with rational radius and center in some count-

able dense subset of X.
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Proof: Let X be a separable metric space, and S be a countable dense

subset of X. Let a collection {Vα} = { all neighborhoods with rational

radius and center in S }. We claim that {Vα} is a base for X.

For every x ∈ X and every open set G ⊂ X such that x ∈ G, there

exists a neighborhood Nr(p) of p such that Nr(p) ⊂ G since x is an

interior point of G. Since S is dense in X, there exists {sn} → x. Take

a rational number rn such that rn < r
2
, and {Vα} 3 Nrn(sn) ⊂ Nr(p)

for enough large n. Hence we have x ∈ Vα ⊂ G for some α. Hence

{Vα} is a base for X.

24. Let X be a metric space in which every infinite subset has a limit

point. Prove that X is separable. Hint: Fix δ > 0, and pick x1 ∈
X. Having chosen x1, ..., xj ∈ X, choose xj+1, if possible, so that

d(xi, xj+1) ≥ δ for i = 1, ..., j. Show that this process must stop after

finite number of steps, and that X can therefore be covered by finite

many neighborhoods of radius δ. Take δ = 1/n(n = 1, 2, 3, ...), and

consider the centers of the corresponding neighborhoods.

Proof: Fix δ > 0, and pick x1 ∈ X. Having chosen x1, ..., xj ∈ X,

choose xj+1, if possible, so that d(xi, xj+1) ≥ δ for i = 1, ..., j. If

this process cannot stop, then consider the set A = {x1, x2, ..., xk}. If

p is a limit point of A, then a neighborhood Nδ/3(p) of p contains a

point q 6= p such that q ∈ A. q = xk for only one k ∈ N . If not,

d(xi, xj) ≤ d(xi, p) + d(xj, p) ≤ δ/3 + δ/3 < δ, and it contradicts the

fact that d(xi, xj) ≥ δ for i 6= j. Hence, this process must stop after

finite number of steps.

Suppose this process stop after k steps, and X is covered by Nδ(x1),

Nδ(x2), ..., Nδ(xk), that is, X can therefore be covered by finite many

neighborhoods of radius δ.

Take δ = 1/n(n = 1, 2, 3, ...), and consider the set A of the centers of
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the corresponding neighborhoods.

Fix p ∈ X. Suppose that p is not in A, and every neighborhood

Nr(p). Note that Nr/2(p) can be covered by finite many neighborhoods

Ns(x1), ..., Ns(xk) of radius s = 1/n where n = [2/r] + 1 and xi ∈ A

for i = 1, ..., k. Hence, d(x1, p) ≤ d(x1, q) + d(q, p) ≤ r/2 + s < r where

q ∈ Nr/2(p)
⋂

Ns(x1). Therefore, x1 ∈ Nr(p) and x1 6= p since p is not

in A. Hence, p is a limit point of A if p is not in A, that is, A is a

countable dense subset, that is, X is separable.

25. Prove that every compact metric space K has a countable base, and

that K is therefore separable. Hint: For every positive integer n, there

are finitely many neighborhood of radius 1/n whose union covers K.

Proof: For every positive integer n, there are finitely many neighbor-

hood of radius 1/n whose union covers K (since K is compact). Collect

all of them, say {Vα}, and it forms a countable collection. We claim

{Vα} is a base.

For every x ∈ X and every open set G ⊂ X, there exists Nr(x) such that

Nr(x) ⊂ G since x is an interior point of G. Hence x ∈ Nm(p) ∈ {Vα}
for some p where m = [2/r] + 1. For every y ∈ Nm(p), we have

d(y, x) ≤ d(y, p) + d(p, x) < m + m = 2m < r.

Hence Nm(p) ⊂ G, that is, Vα ⊂ G for some α, and therefore {Vα} is a

countable base of K. Next, collect all of the center of Vα, say D, and

we claim D is dense in K (D is countable since Vα is countable). For all

p ∈ K and any ε > 0 we can find Nn(xn) ∈ {Vα} where n = [1/ε] + 1.

Note that xn ∈ D for all n and d(p, xn) → 0 as n → ∞. Hence D is

dense in K.
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26. Let X be a metric space in which every infinite subsets has a limit

point. Prove that X is compact. Hint: By Exercises 23 and 24, X has

a countable base. It follows that every open cover of X has a countable

subcover {Gn}, n = 1, 2, 3, .... If no finite subcollection of {Gn} covers

X, then the complement Fn of G1
⋃

...
⋃

Gn is nonempty for each n,

but
⋂

Fn is empty. If E is a set contains a point from each Fn, consider

a limit point of E, and obtain a contradiction.

Proof: By Exercises 23 and 24, X has a countable base. It follows that

every open cover of X has a countable subcover {Gn}, n = 1, 2, 3, ....

If no finite subcollection of {Gn} covers X, then the complement Fn of

G1
⋃

...
⋃

Gn is nonempty for each n, but
⋂

Fn is empty. If E is a set

contains a point from each Fn, consider a limit point of E.

Note that Fk ⊃ Fk+1 ⊃ ... and Fn is closed for all n, thus p lies in Fk

for all k. Hence p lies in
⋂

Fn, but
⋂

Fn is empty, a contradiction.

27. Define a point p in a metric space X to be a condensation point of a set

E ⊂ X if every neighborhood of p contains uncountably many points

of E.

Suppose E ⊂ Rk, E is uncountable, and let P be the set of all conden-

sation points of E. Prove that P is perfect and that at most countably

many points of E are not in P . In other words, show that P c ⋂
E is at

most countable. Hint: Let {Vn} be a countable base of Rk, let W be

the union of those Vn for which E
⋂

Vn is at most countable, and show

that P = W c.

Proof: Let {Vn} be a countable base of Rk, let W be the union of

those Vn for which E
⋂

Vn is at most countable, and we will show that

P = W c. Suppose x ∈ P . (x is a condensation point of E). If

x ∈ Vn for some n, then E
⋂

Vn is uncountable since Vn is open. Thus

x ∈ W c. (If x ∈ W , then there exists Vn such that x ∈ Vn and E
⋂

Vn
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is uncountable, a contradiction). Therefore P ⊂ W c.

Conversely, suppose x ∈ W c. x /∈ Vn for any n such that E
⋂

Vn is

countable. Take any neighborhood N(x) of x. Take x ∈ Vn ⊂ N(x),

and E
⋂

Vn is uncountable. Thus E
⋂

N(x) is also uncountable, x is a

condensation point of E. Thus W c ⊂ P . Therefore P = W c. Note that

W is countable, and thus W ⊂ W
⋂

E = P c ⋂
E is at most countable.

To show that P is perfect, it is enough to show that P contains no

isolated point. (since P is closed). If p is an isolated point of P , then

there exists a neighborhood N of p such that N
⋂

E = φ. p is not a

condensation point of E, a contradiction. Therefore P is perfect.

28. Prove that every closed set in a separable metric space is the union

of a (possible empty) perfect set and a set which is at most countable.

(Corollary: Every countable closed set in Rk has isolated points.) Hint:

Use Exercise 27.

Proof: Let X be a separable metric space, let E be a closed set on

X. Suppose E is uncountable. (If E is countable, there is nothing

to prove.) Let P be the set of all condensation points of E. Since X

has a countable base, P is perfect, and P c ⋂
E is at most countable by

Exercise 27. Since E is closed, P ⊂ E. Also, P c ⋂
E = E − P . Hence

E = P
⋃

(E − P ).

For corollary: if there is no isolated point in E, then E is perfect. Thus

E is uncountable, a contradiction.

Note: It’s also called Cauchy-Bendixon Theorem.

29. Prove that every open set in R1 is the union of an at most countable

collection of disjoint segments. Hint: Use Exercise 22.
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Proof: (due to H.L.Royden, Real Analysis) Since O is open, for each x

in O, there is a y > x such that (x, y) ⊂ O. Let b = sup{y : (x, y) ⊂ O}.
Let a = inf{z : (z, x) ⊂ O}. Then a < x < b, and Ix = (a, b) is an open

interval containing x.

Now Ix ⊂ O, for if w ∈ Ix, say x < w < b, we have by the definition of

b a number y > w such that (x, y) ⊂ O, and so w ∈ O).

Moreover, b /∈ O, for if b ∈ O, then for some ε > 0 we have (b−ε, b+ε) ⊂
O, whence (x, b + ε) ⊂ O, contradicting the definition of b. Similarly,

a /∈ O.

Consider the collection of open intervals {Ix}, x ∈ O. Since each x ∈ O

is contained in Ix, and each Ix ⊂ O, we have O =
⋃

Ix.

Let (a, b) and (c, d) be two intervals in this collection with a point in

common. Then we must have c < b and a < d. Since c /∈ O, it does not

belong to (a, b) and we have c ≤ a. Since a /∈ O and hence not to (c, d),

we have a ≤ c. Thus a = c. Similarly, b = d, and (a, b) = (c, d). Thus

two different intervals in the collection {Ix} must be disjoint. Thus

O is the union of the disjoint collection {Ix} of open intervals, and it

remains only to show that this collection is countable. But each open

interval contains a rational number since Q is dense in R. Since we

have a collection of disjoint open intervals, each open interval contains

a different rational number, and the collection can be put in one-to-one

correspondence with a subset of the rationals. Thus it is a countable

collection.

30. Imitate the proof of Theorem 2.43 to obtain the following result:

If Rk =
⋃∞

1 Fn, where each Fn is a closed subset of Rk, then

at least one Fn has a nonempty interior.

Equivalent statement: If Gn is a dense open subset of Rk, for
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n = 1, 2, 3, ..., then
⋂∞

1 Gn is not empty (in fact, it is dense

in Rk).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for

the general case.)

Proof: I prove Baire’s theorem directly. Let Gn be a dense open

subset of Rk for n = 1, 2, 3, .... I need to prove that
⋂∞

1 Gn intersects

any nonempty open subset of Rk is not empty.

Let G0 is a nonempty open subset of Rk. Since G1 is dense and G0

is nonempty, G0
⋂

G1 6= φ. Suppose x1 ∈ G0
⋂

G1. Since G0 and G1

are open, G0
⋂

G1 is also open, that is, there exist a neighborhood V1

such that V1 ⊂ G0
⋂

G1. Next, since G2 is a dense open set and V1

is a nonempty open set, V1
⋂

G2 6= φ. Thus, I can find a nonempty

open set V2 such that V2 ⊂ V1
⋂

G2. Suppose I have get n nonempty

open sets V1, V2, ..., Vn such that V1 ⊂ G0
⋂

G1 and Vi+1 ⊂ Vi
⋂

Gn+1

for all i = 1, 2, ..., n − 1. Since Gn+1 is a dense open set and Vn is a

nonempty open set, Vn
⋂

Gn+1 is a nonempty open set. Thus I can find

a nonempty open set Vn+1 such that Vn+1 ⊂ Vn
⋂

Gn+1. By induction, I

can form a sequence of open sets {Vn : n ∈ Z+} such that V1 ⊂ G0
⋂

G1

and Vi+1 ⊂ Vi
⋂

Gi+1 for all n ∈ Z+. Since V1 is bounded and V1 ⊃
V2 ⊃ ... ⊃ Vn ⊃ ..., by Theorem 2.39 I know that

∞⋂
n=1

Vn 6= φ.

Since V1 ⊂ G0
⋂

G1 and Vn+1 ⊂ Gn+1, G0
⋂

(
⋂∞

n=1 Gn) 6= φ. Proved.

Note: By Baire’s theorem, I’ve proved the equivalent statement. Next,

Fn has a empty interior if and only if Gn = Rk − Fn is dense in Rk.

Hence we completed all proof.
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