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1. Prove that the empty set is a subset of every set.

Proof: For any element x of the empty set, = is also an element of
every set since x does not exist. Hence, the empty set is a subset of

every set.

2. A complex number z is said to be algebraic if there are integers ay, ..., @y,

not all zero, such that
a2 +a 2"Vt ap1z+ a, = 0.

Prove that the set of all algebraic numbers is countable. Hint: For

every positive integer N there are only finitely many equations with
n+ |ag| + |ai| + ... + |a,| = N.

Proof: For every positive integer N there are only finitely many equa-
tions with

n+ lao| + |ai| + ... + |an| = N.

(since 1 <n < N and 0 < |ag] < N). We collect those equations as
Cy. Hence | Cly is countable. For each algebraic number, we can form
an equation and this equation lies in C; for some M and thus the set

of all algebraic numbers is countable.

3. Prove that there exist real numbers which are not algebraic.

Proof: If not, R' = { all algebraic numbers } is countable, a contra-

diction.



4. Is the set of all irrational real numbers countable?

Solution: If R — Q is countable, then R' = (R — Q) U Q is countable,

a contradiction. Thus R — @ is uncountable.

5. Construct a bounded set of real numbers with exactly three limit points.

Solution: Put
A={1/n:neN}HJ{1+1/n:ne N} J{2+1/n:ne N}
A is bounded by 3, and A contains three limit points - 0, 1, 2.

6. Let E' be the set of all limit points of a set E. Prove that S’ is
closed. Prove that E and F have the same limit points. (Recall that
E=FEUFE'") Do E and E’ always have the same limit points?

Proof: For any point p of X — E’, that is, p is not a limit point £,
there exists a neighborhood of p such that ¢ is not in £ with ¢q # p for
every ¢ in that neighborhood.

Hence, p is an interior point of X — E’, that is, X — E’ is open, that

is, E’ is closed.

Next, if p is a limit point of F, then p is also a limit point of E since
E=FEUFE' If pis a limit point of E, then every neighborhood N,.(p)
of p contains a point ¢ # p such that ¢ € E. If ¢ € E, we completed
the proof. So we suppose that ¢ € E — E = E' — E. Then ¢ is a limit
point of E. Hence,
Ny (q)
1

where r’ = 5 min(r—d(p, q), d(p, q)) is a neighborhood of ¢ and contains
a point x # ¢ such that # € E. Note that N,.(¢) contains in N, (p)—{p}.
That is,  # p and x is in N,.(p). Hence, ¢ also a limit point of E. Hence,

E and E have the same limit points.



Last, the answer of the final sub-problem is no. Put
E={l/n:ne N},
and £’ = {0} and (£') = ¢.

. Let Ay, Ay, Az, ... be subsets of a metric space. (a) If B, = UL, 4,
prove that B, = U, A;, for n =1,2,3,... (b) If B = U2, prove that
B D UX, A;. Show, by an example, that this inclusion can be proper.

Proof of (a): (Method 1) B, is the smallest closed subset of X that
contains B,,. Note that [JA; is a closed subset of X that contains B,,
thus .
B, > |J 4.
i=1

If p € B,, — By, then every neighborhood of p contained a point q # p
such that ¢ € B,,. If p is not in A; for all 4, then there exists some
neighborhood N, (p) of p such that (N,,(p) —p) N A; = ¢ for all i. Take
r = min{ry,ry,...,m,}, and we have N,(p)N B, = ¢, a contradiction.

Thus p € A; for some i. Hence

By,

N
-
=

-
Il
—

that is,

B, =

AC:
e

N
Il
—

(Method 2) Since U, 4; is closed and B, = U, A; C Uk, 4,
B, C UL, Ai.

Proof of (b): Since B is closed and B D B D A;, B D A; for all 4.
Hence B D U A4;.

Note: My example is A; = (1/i,00) for all 7. Thus, A; = [1/i,00), and
B = (0,00), B = [0,00). Note that 0 is not in A; for all i. Thus this

inclusion can be proper.



8. Is every point of every open set £ C R? a limit point of E? Answer

the same question for closed sets in R2.
Solution: For the first part of this problem, the answer is yes.

(Reason): For every point p of E, p is an interior point of E. That
is, there is a neighborhood N,.(p) of p such that N,(p) is a subset of
E. Then for every real 7/, we can choose a point ¢ such that d(p,q) =
1/2min(r,7"). Note that g # p,q € N,.(p), and ¢ € N,(p). Hence, every
neighborhood N,.(p) contains a point g # p such that ¢ € N,(p) C E,
that is, p is a limit points of E.

For the last part of this problem, the answer is no. Consider A =
{(0,0)}. A’ = ¢ and thus (0,0) is not a limit point of FE.

9. Let E° denote the set of all interior points of a set E.

(a) Prove that E° is always open.

(b) Prove that E' is open if and only if E° = E.

(c) If G is contained in £ and G is open, prove that G is contained in
E°.

(d) Prove that the complement of E° is the closure of the complement
of E.

(e) Do E and E always have the same interiors?

(f) Do E and E° always have the same closures?

Proof of (a): If E is non-empty, take p € E°. We need to show that
p € (E°)°. Since p € E°, there is a neighborhood N, of p such that
N, is contained in E. For each ¢ € N,, note that N,(q) is contained in
N, (p), where s = min{d(p, q),r — d(p,q)}. Hence q is also an interior

point of F, that is, IV, is contained in E°. Hence E° is always open.

Proof of (b): (=) It is clear that E° is contained in E. Since F is
open, every point of E is an interior point of E, that is, F is contained
in E°. Therefore £° = F.
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(<) Since every point of E is an interior point of £ (E°(F) = E), E
is open.

Proof of (c): If p € G, p is an interior point of G since G is open. Note
that E contains (G, and thus p is also an interior point of E. Hence
p € E°. Therefore G is contained in E°. (Thus E° is the biggest open
set contained in . Similarly, F is the smallest closed set containing
Proof of (d): Suppose pe X — E°. Ifpe X — E, thenpe X — F
clearly. If p € E, then N is not contained in £ for any neighborhood
N of p. Thus N contains an point ¢ € X — E. Note that ¢ # p, that
is, p is a limit point of X — E. Hence X — E° is contained in X — F.

Next, suppose p € X — E. If pe X — E, then p € X — E° clearly. If
p € E, then every neighborhood of p contains a point ¢ # p such that

q € X — E. Hence p is not an interior point of E. Hence X — F is
contained in X — E°. Therefore X — F° =X — F.

Solution of (e): No. Take X = R! and £ = Q. Thus E° = ¢ and
E° = (RY)° = R' # ¢.

Solution of (f): No. Take X = R' and £ = Q. Thus £ = R', and
Eo=¢=¢.

Let X be an infinite set. For p € X and ¢ € X, define
1 (ifp#q
d(p,q) = (. )
0 (ifp=q)

Prove that this is a metric. Which subsets of the resulting metric space

are open? Which are closed? Which are compact?

Proof: (a) d(p,q) =1 > 0if p # ¢; d(p,p) = 0. (b) d(p,q) = d(q,p)
since p = ¢ implies ¢ = p and p # ¢ implies g # p. (c) d(p,q) <
d(p,r) + d(r,q) for any r € X if p = q. If p # ¢, then either r = p or
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r = q, that is, r # p or r # ¢. Thus, d(p,q) =1 < d(p,r) + d(r,q). By

(a)-(c) we know that d is a metric.

Every subset of X is open and closed. We claim that for any p € X,
p is not a limit point. Since d(p,q) =1 > 1/2 if ¢ # p, there exists an
neighborhood Ny /2(p) of p contains no points of ¢ # p such that ¢ € X.
Hence every subset of X contains no limit points and thus it is closed.
Since X — S is closed for every subset S of X, S = X — (X — 9) is

open. Hence every subset of X is open.

Every finite subset of X is compact. Let S = {pi,...,p,} be finite.
Consider an open cover {G,} of S. Since S is covered by G, p; is
covered by G,,, thus {G,,, ..., G, } is finite subcover of S. Hence S is
compact. Next, suppose S is infinite. Consider an open cover {G,} of
S, where

Gp=N1(p)

2
for every p € S. Note that ¢ is not in G, if ¢ # p. If S is compact,

then S can be covered by finite subcover, say
Gpys .oy G,
Then there exists ¢ such that ¢ # p; for all ¢ since S is infinite, a con-

tradiction. Hence only every finite subset of X is compact.

11. For x € R' and y € R!, define

dl('ray) = (ny)27
do(z,y) = |z —yl,
ds(z,y) = |2* =97,
d4($a y) - |l’ - 2y|7

|z —y|
ds(z,y) = —r_ Y1
5(‘1' y) 1+‘3§'—y‘
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Determine, for each of these, whether it is a metric or not.

Solution: (1) d;(x,y) is not a metric. Since d;(0,2) =4, d;(0,1) = 1,
and di(1,2) =1, d1(0,2) > d1(0,1) + dy(1,2). Thus dy(z,y) is not a
metric.

(2) do(x,y) is a metric. (a) d(p,q) > 0 if p # ¢; d(p,p) = 0. (b)
dp,q) = /lp—al = \/la—pl = d(a.p). (0) Ip—a| < |p—r|+Ir—ql,
VIp—al < \/lp—r[+|r—ql < /lp—r[+/lr —ql. That is, d(p, q) <
d(p,r)+d(r,q). (3) ds(x,y) is not a metric since d3(1,—1) = 0.

(4) dy(x,y) is not a metric since dy(1,1) =1 # 0.

(5) ds(z,y) is a metric since |x — y| is a metric.

Claim: d(z,y) is a metric, then

: d(z,y)
d(v,y) = m

is also a metric.

Proof of Claim: (a) d'(p,q) > 0if p # ¢; d(p,p) = 0. (b) d'(p,q) =
d'(q,p). (c) Let x =d(p,q), y = d(p,7), and z = d(r,q). Thenz < y+=.

d(p,q) <d(p,r)+d(rq)
x Y z

< +
1+ " 14+y 14z
r(14+y)1+2) <y(l+2)1+2)+2(1+2)(1+vy)

rt+ayt+rztayz < (y+ay+yz+aoyz) + (2 + 22 +yz + xyz)
r<y+z+4+2yz+ yz
r<y-+z

(R

)

Thus, d’ is also a metric.

Let K C R' consist of 0 and the numbers 1/n, for n = 1,2,3,....
Prove that K is compact directly from the definition (without using

the Heine-Borel theorem).
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Proof: Suppose that {O,} is an arbitrary open covering of K. Let
E € {0,} consists 0. Since E is open and 0 € E, 0 is an interior point
of E. Thus there is a neighborhood N = N,(0) of 0 such that N C E.

Thus N contains
1 1

[/r]+1 [1/r]+2" "
Next, we take finitely many open sets F,, € {O,} such that 1/n € E,
for n =1,2,...,[1/r]. Hence {E, E, ..., Epny is a finite subcover of K.

Therefore, K is compact.

Note: The unique limit point of K is 0. Suppose p # 0 is a limit point
of K. Clearly, 0 < p < 1. (p cannot be 1). Thus there exists n € Z+
such that

1

<p < —.

n—+1 P=a
Hence N, (p) where r = min{% —p,p— n%rl} contains no points of K,

a contradiction.

Construct a compact set of real numbers whose limit points form a

countable set.

Solution: Let K be consist of 0 and the numbers 1/n forn =1,2,3, ...
Let tK ={zk: ke K}andx+ K ={zx+k:ke K} forx e R". I
take

1 K

Sn = (1_27)_’_%’

S = Dl Sa {1}

Claim: S is compact and the set of all limit points of S is K U{1}.
Clearly, S lies in [0,1], that is, S is bounded in R'. Note that S, C
[1 — 55,1 — 5] By Exercise 12 and its note, I have that all limit

points of SN0, 1) is
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Clearly, 1 is also a limit point of S. Therefore, the set of all limit points
of S'is K U{1}. Note that K U{1} C S, that is, K is compact. I com-
pleted the proof of my claim.

Give an example of an open cover of the segment (0,1) which has no
finite subcover.

Solution: Take {O,} = {(1/n,1)} for n = 1,2,3,.... The following is
my proof. For every x € (0, 1),

1
z € (———,0) € {0,
([l/x] +1 ) € {00}
Hence {O,} is an open covering of (0,1). Suppose there exists a finite
subcovering
(e (1)
nl ) AR nk )

where ny < ny < ... < ny, respectively. Clearly 5~ € (0,1) is not in
P

any elements of that subcover, a contradiction.

Note: By the above we know that (0, 1) is not compact.

Show that Theorem 2.36 and its Corollary become false (in R!, for ex-

ample) if the word ”compact” is replaced by ”closed” or by ”bounded.”

Theorem 2.36: If {K,} is a collection of compact subsets of a metric
space X such that the intersection of every finite subcollection of { K, }

is nonempty, then N K, is nonempty.

Corollary: If {K,} is a sequence of nonempty compact sets such that
K, contains K, .1 (n=1,2,3,...), then N K,, is not empty.

Solution: For closed: [n,c0). For bounded: (—1/n,1/n) — {0}.
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Regard (@), the set of all rational numbers, as a metric space, with
d(p,q) = |p — q|. Let E be the set of all p € Q such that 2 < p? < 3.
Show that FE is closed and bounded in (), but that E is not compact.
Is E open in Q7

Proof: Let S = (v/2,v3)U(—V3,—v?2). Then E={pec Q:pc S}.
Clearly, E is bounded in @). Since @ is dense in R, every limit point of
Q isin Q. (I regard ) as a metric space). Hence, FE is closed in Q.

To prove that E is not compact, we form a open covering of F as

follows:
{Go} ={N,(p) :p€ E and (p—r,p+r)C S}

Surely, {G,} is a open covering of E. If E is compact, then there are

finitely many indices oy, ..., a;, such that

ECGuylJ.-UGa,.

For every G,, = N,,(p:), take p = maxj<;<, p;- Thus, p is the nearest
point to v/3. But N,(p) lies in E, thus [p + r,v/3) cannot be covered

since () is dense in R, a contradiction. Hence F is not compact.

Finally, the answer is yes. Take any p € (@, then there exists a
neighborhood N(p) of p contained in E. (Take r small enough where
N,.(p) = N(p), and @ is dense in R.) Thus every point in N(p) is also

in Q. Hence F is also open.

Let E be the set of all x € [0, 1] whose decimal expansion contains only
the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E' compact?
Is E perfect?

Solution:



Claim: F is uncountable.

Proof of Claim: If not, we list E as follows:

ry = 0.@11@12...(11n...
To = 0.a21a22...a2n...
T = 0.ak1ak2...akn...

(Prevent ending with all digits 9) Let x = 0.x125...2,... where

4 ifa,,=7
Ty =
7 if ap, =4

By my construction, x ¢ E, a contradiction. Thus E is uncountable.

Claim: F is not dense in [0, 1].

Proof of Claim: Note that £ ((0.47,0.74) = ¢. Hence F is not dense
in [0, 1].

Claim: FE is compact.

Proof of Claim: Clearly, E is bounded. For every limit point p of E,

I show that p € E. If not, write the decimal expansion of p as follows

p = 0.p1p2...pn...

Since p ¢ E, there exists the smallest k such that py # 4 and py # 7.
When p, = 0,1, 2,3, select the smallest [ such that p, = 7 if possible.
(If I does not exist, then p < 0.4. Thus there is a neighborhood of p

such that contains no points of E, a contradiction.) Thus

0.p1...p1—14pis1...pr—17 < p < 0.p1...pp_14.

Thus there is a neighborhood of p such that contains no points of £, a

contradiction.

11
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When p = 5,6,
O.pl...pk_llﬁ <p< O.pl...pk_171.
Thus there is a neighborhood of p such that contains no points of F, a

contradiction.

When p, = 8,9, it is similar. Hence E is closed. Therefore E is

compact.

Claim: F is perfect.
Proof of Claim: Take any p € E, and I claim that p is a limit point
of E. Write p = 0.p1ps...p,... Let

Tk = 0.y1Y2...Yn...

where
Yo =14 4 ifp,=7
7 ifp,=4

Thus, |z —p| — 0 as k — oo. Also, x # p for all k. Hence p is a limit
point of E. Therefore FE is perfect.

Is there a nonempty perfect set in R' which contains no rational num-
ber?

Solution: Yes. The following claim will show the reason.

Claim: Given a measure zero set .S, we have a perfect set P contains

no elements in S.

Proof of Claim: (due to SYLee). Since S has measure zero, there

exists a collection of open intervals {I,} such that

ScUl, and > || <1.

12
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Consider £ = R' — JI,. E is nonempty since F has positive mea-
sure. Thus F is uncountable and FE is closed. Therefore there exists
a nonempty perfect set P contained in F by Exercise 28. PN S = ¢.

Thus P is our required perfect set.

(a) If A and B are disjoint closed sets in some metric space X, prove

that they are separated.
(b) Prove the same for disjoint open sets.

(c) Fix p € X, § > 0, define A to be the set of all ¢ € X for which
d(p,q) < 9, define B similarly, with > in place of <. Prove that A and

B are separated.

(d) Prove that every connected metric space with at least two points

is uncountable. Hint: Use (c).

Proof of (a): Recall the definition of separated: A and B are sep-
arated if AN B and AN B are empty. Since A and B are closed sets,
A=Aand B=B. Hence ANB=ANB = AN B = ¢. Hence A and

B are separated.

Proof of (b): Suppose AN B is not empty. Thus there exists p such
that p € A and p € B. For p € A, there exists a neighborhood N,.(p) of
p contained in A since A is open. For p € B = BUB/, if p € B, then
p € AN B. Note that A and B are disjoint, and it’s a contradiction.
If p € B', then p is a limit point of B. Thus every neighborhood of p
contains a point ¢ # p such that ¢ € B. Take an neighborhood N, (p)of
p containing a point ¢ # p such that ¢ € B. Note that N,(p) C A,
thus ¢ € A. With A and B are disjoint, we get a contradiction. Hence

AN (B) is empty.
Similarly, AN B is also empty. Thus A and B are separated.

Proof of (c): Suppose A B is not empty. Thus there exists = such
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that € Aand z € B. Since xz € A, d(p,x) < 6. x € B= BUDB’, thus
if x € B, then d(p,z) > 0, a contradiction. The only possible is x is a
limit point of B. Hence we take a neighborhood N,.(z) of x contains y
with y € B where r = ‘Pdf@’m. Clearly, d(y,p) > 0. But,

d(y,p) < d(y,v)+d(z,p)

< r+d(x,p)

0—d
= 12U e )
d+d(z,p)

2
0+0
=

J.

A contradiction. Hence A B is empty. Similarly, AN B is also empty.
Thus A and B are separated.

Note: Take care of 6 > 0. Think a while and you can prove the next

sub-exercise.
Proof of (d): Let X be a connected metric space. Take p € X, g € X
with p # ¢, thus d(p, q) > 0 is fixed. Let

A={re X :d(z,p) <d0};B={r € X :d(z,p) > d}.

Take 0 = §; = td(p,q) where t € (0,1). Thus 0 < § < d(p,q). p€ A
since d(p,p) = 0 < §, and ¢ € B since d(p,q) > §. Thus A and B are

non-empty.

By (c), A and B are separated. If X = A|J B, then X is not connected,
a contradiction. Thus there exists y, € X such that y ¢ AU B. Let

E=E={z¢e€ X :d(z,p) =6} > .

For any real t € (0,1), E; is non-empty. Next, F; and E; are disjoint

if t # s (since a metric is well-defined). Thus X contains a uncount-
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able set {y; : t € (0,1)} since (0,1) is uncountable. Therefore, X is

uncountable.

Note: It is a good exercise. If that metric space contains only one

point, then it must be separated.

Similar Exercise Given by SYLee: (a) Let A = {z : d(p,z) < r}
and B = {x : d(p,x) > r} for some p in a metric space X. Show that
A, B are separated.

(b) Show that a connected metric space with at least two points must
be uncountable. [Hint: Use (a)]

Proof of (a): By definition of separated sets, we want to show A B =
¢, and BN A = ¢. In order to do these, it is sufficient to show AN B =
¢. Let x € AN B = ¢, then we have:

(1) xe A=d(z,p) <r(2) z € B=d(z,p)>r

It is impossible. So, AN B = ¢.
Proof of (b): Suppose that C' is countable, say C' = a,b, x3,.... We

want to show C' is disconnected. So, if C' is a connected metric space
with at least two points, it must be uncountable. Consider the set
S ={d(a,z;) : z; € C}, and thus let r € R — S and inf S < r < supS.
And construct A and B as in (a), we have C' = AU B, where A and B

are separated. That is C' is disconnected.

Another Proof of (b): Let a € C, b € C, consider the continuous
function f from C into R defined by f(z) = d(z,a). So, f(C) is con-
nected and f(a) =0, f(b) > 0. That is, f(C) is an interval. Therefore,

C' is uncountable.

Are closures and interiors of connected sets always connected? (Look
at subsets of R%.)

15



Solution: Closures of connected sets is always connected, but interiors

of those is not. The counterexample is
S = Ni(2,0) N (=2,0) | {z — azis} C R
Since S is path-connected, S is connect. But S° = Ny(2) U N1(—2) is

disconnected clearly.

Claim: If S is a connected subset of a metric space, then S is con-

nected.

Pf of Claim: If not, then S is a union of two nonempty separated set
A and B. Thus ANB = AN B = ¢. Note that

S = 8-T
- AUB-T
= (AUuBNT
= (ANTHUBNAT)

where T'= S — S. Thus

(ANT)BAOT ¢ (ANT)NBNT*
ANB
= ¢

N N

Hence (ANT)NBNT¢ = ¢. Similarly, ANT*N(BNT°) = ¢.

Now we claim that both ANT¢ and BN T*° are nonempty. Suppose
that BT = ¢. Thus

ANT =85 & ANGS-8)°=S5
& ANAUB-9°=5
& ANAUBNS) =5
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& AN NBIUS) =5
& (ANHUANANE) =
o ANS=S.

Thus B is empty, a contradiction. Thus B (7 is nonempty. Similarly,
ANT* nonempty. Therefore S is a union of two nonempty separated

sets, a contradiction. Hence S is connected.

Let A and B be separated subsets of some R, suppose a € A, b € B,
and define
p(t)=(1—t)a+tb

for t € R'. Put Ag = p ' (A), By =p '(B). [Thus t € Ay if and only
if p(t) € A

(a) Prove that Ay and By are separated subsets of R'.

(b) Prove that there exists ¢y € (0,1) such that p(ty) ¢ AU B.

(c) Prove that every convex subset of R* is connected.

Proof of (a): I claim that Ay By is empty. (Bo A is similar). If
not, take x € AgNBy. * € Ay and z € By. x € By or x is a limit
point of By. = € By will make z € Ay By, that is, p(x) € AN B, a

contradiction since A and B are separated.

Claim: z is a limit point of By = p(x) is a limit point of B. Take any
neighborhood N, of p(z), and p(t) lies in B for small enough ¢. More

precisely,

T <t<zx+

r r
[b-a |b—al’

Since z is a limit point of By, and (z —r/|b —a|,z +r/|b —a|) is a
neighborhood N of x, thus N contains a point y # x such that y € By,
that is, p(y) € B. Also, p(y) € N,. Therefore, p(z) is a limit point of
B. Hence p(x) € AN B, a contradiction since A and B are separated.
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Hence AgN By is empty, that is, Ay and B, are separated subsets of
R

Proof of (b): Suppose not. For every ty € (0, 1), neither p(ty) € A
nor p(tg) € B (since A and B are separated). Also, p(ty) € AU B for
all tg € (0,1). Hence (0,1) = AgU By, a contradiction since (0, 1) is
connected. I completed the proof.

Proof of (c): Let S be a convex subset of R*. If S is not connected,
then S is a union of two nonempty separated sets A and B. By (b),
there exists to € (0,1) such that p(ty) ¢ AUB. But S is convex, p(to)

must lie in AU B, a contradiction. Hence S is connected.

A metric space is called separable if it contains a countable dense sub-
set. Show that R is separable. Hint: Consider the set of points which

have only rational coordinates.

Proof: Consider S = the set of points which have only rational coor-
dinates. For any point z = (21, 29, ..., 7;) € RF, we can find a rational

sequence {r;.} — x. for j =1, ...,k since Q is dense in R'. Thus
j J (AR )
T, = (7’1‘1,7”1'2, ...,Tik) — X

and 7; € S for all i. Hence S is dense in R*. Also, S is countable, that

is, S is a countable dense subset in R¥, R¥ is separable.

A collection {V,,} of open subsets of X is said to be a base for X if the
following is true: For every x € X and every open set G C X such that
x € G, we have x € V,, C G for some «. In other words, every open set

in X is the union of a subcollection of {V,}.

Prove that every separable metric space has a countable base. Hint:
Take all neighborhoods with rational radius and center in some count-
able dense subset of X.

18



24.

Proof: Let X be a separable metric space, and S be a countable dense
subset of X. Let a collection {V,} = { all neighborhoods with rational
radius and center in S }. We claim that {V,,} is a base for X.

For every x € X and every open set G C X such that z € G, there
exists a neighborhood N, (p) of p such that N,.(p) C G since z is an
interior point of G. Since S is dense in X, there exists {s,} — z. Take
a rational number r, such that r, < %, and {V,} > N, ,(sn,) C N,(p)
for enough large n. Hence we have x € V, C G for some a. Hence

{V.} is a base for X.

Let X be a metric space in which every infinite subset has a limit
point. Prove that X is separable. Hint: Fix 0 > 0, and pick z; €
X. Having chosen x,...,2; € X, choose x4, if possible, so that
d(z;,xj11) > 6 for i = 1,...,5. Show that this process must stop after
finite number of steps, and that X can therefore be covered by finite
many neighborhoods of radius . Take § = 1/n(n = 1,2,3,...), and

consider the centers of the corresponding neighborhoods.

Proof: Fix 6 > 0, and pick z; € X. Having chosen zy,...,z; € X,
choose z,44, if possible, so that d(x;,xj11) > 0 for ¢ = 1,...,5. If
this process cannot stop, then consider the set A = {x1,xo, ..., zx}. If
p is a limit point of A, then a neighborhood Nj/3(p) of p contains a
point ¢ # p such that ¢ € A. ¢ = z;, for only one kK € N. If not,
d(zi,xj) < d(xi,p) +d(zj,p) < 0/3+0/3 < 0, and it contradicts the
fact that d(x;,x;) > 0 for i # j. Hence, this process must stop after

finite number of steps.

Suppose this process stop after k steps, and X is covered by Ns(z1),
Ns(z3), ..., Ns(xy), that is, X can therefore be covered by finite many
neighborhoods of radius ¢.

Take § = 1/n(n = 1,2,3,...), and consider the set A of the centers of
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25.

the corresponding neighborhoods.

Fix p € X. Suppose that p is not in A, and every neighborhood
N, (p). Note that N, 2(p) can be covered by finite many neighborhoods
Ng(z1), ..., Ng(zg) of radius s = 1/n where n = [2/r] + 1 and z; € A
fori=1,....,k. Hence, d(z1,p) < d(z1,q)+d(q,p) <r/2+ s < r where
q € N,/2(p) N Ng(z1). Therefore, ;1 € N,(p) and z; # p since p is not
in A. Hence, p is a limit point of A if p is not in A, that is, A is a

countable dense subset, that is, X is separable.

Prove that every compact metric space K has a countable base, and
that K is therefore separable. Hint: For every positive integer n, there

are finitely many neighborhood of radius 1/n whose union covers K.

Proof: For every positive integer n, there are finitely many neighbor-
hood of radius 1/n whose union covers K (since K is compact). Collect
all of them, say {V,}, and it forms a countable collection. We claim
{V,.} is a base.

For every x € X and every open set G C X, there exists V,.(z) such that
N,(x) C G since x is an interior point of G. Hence = € N,,(p) € {V,}
for some p where m = [2/r] + 1. For every y € N,,(p), we have

d(y,r) <d(y,p) +d(p,x) <m-+m=2m <r,

Hence N,,(p) C G, that is, V,, C G for some «, and therefore {V,,} is a
countable base of K. Next, collect all of the center of V,,, say D, and
we claim D is dense in K (D is countable since V,, is countable). For all
p € K and any € > 0 we can find N, (z,) € {V,} where n = [1/¢] + 1.
Note that x,, € D for all n and d(p,z,) — 0 as n — oo. Hence D is

dense in K.
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27.

Let X be a metric space in which every infinite subsets has a limit
point. Prove that X is compact. Hint: By Exercises 23 and 24, X has
a countable base. It follows that every open cover of X has a countable
subcover {G,}, n =1,2,3,.... If no finite subcollection of {G,,} covers
X, then the complement F, of G;U...UG, is nonempty for each n,
but N F,, is empty. If F is a set contains a point from each F},, consider

a limit point of E, and obtain a contradiction.

Proof: By Exercises 23 and 24, X has a countable base. It follows that
every open cover of X has a countable subcover {G,}, n = 1,2,3,....
If no finite subcollection of {G,} covers X, then the complement F,, of
G1U...UG, is nonempty for each n, but N F), is empty. If E is a set

contains a point from each F;,, consider a limit point of FE.

Note that Fj, D Fyi1 D ... and F,, is closed for all n, thus p lies in Fj
for all k. Hence p lies in () F},, but N F}, is empty, a contradiction.

Define a point p in a metric space X to be a condensation point of a set
E C X if every neighborhood of p contains uncountably many points
of E.

Suppose £ C R, F is uncountable, and let P be the set of all conden-
sation points of E. Prove that P is perfect and that at most countably
many points of £ are not in P. In other words, show that PN E is at
most countable. Hint: Let {V,,} be a countable base of R*, let W be
the union of those V,, for which £ NV, is at most countable, and show
that P = W¢e.

Proof: Let {V,} be a countable base of R*, let W be the union of
those V,, for which £V, is at most countable, and we will show that
P = W¢°. Suppose x € P. (z is a condensation point of F). If

x €V, for some n, then £V, is uncountable since V,, is open. Thus
x € We. (If x € W, then there exists V,, such that z € V,, and ENV,,
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28.

29.

is uncountable, a contradiction). Therefore P C W°.

Conversely, suppose x € W¢. x ¢ V, for any n such that ENV,, is
countable. Take any neighborhood N(z) of x. Take z € V,, C N(x),
and £ NV, is uncountable. Thus E'N N(z) is also uncountable, x is a
condensation point of E. Thus W¢ C P. Therefore P = W¢. Note that
W is countable, and thus W C W N E = P°( E is at most countable.

To show that P is perfect, it is enough to show that P contains no
isolated point. (since P is closed). If p is an isolated point of P, then
there exists a neighborhood N of p such that NN E = ¢. p is not a

condensation point of E, a contradiction. Therefore P is perfect.

Prove that every closed set in a separable metric space is the union
of a (possible empty) perfect set and a set which is at most countable.
(Corollary: Every countable closed set in R* has isolated points.) Hint:

Use Exercise 27.

Proof: Let X be a separable metric space, let E be a closed set on
X. Suppose FE is uncountable. (If E is countable, there is nothing
to prove.) Let P be the set of all condensation points of E. Since X
has a countable base, P is perfect, and P F is at most countable by
Exercise 27. Since F is closed, P C E. Also, P°NE = E — P. Hence
E=PU(E-P).

For corollary: if there is no isolated point in E, then E is perfect. Thus

FE is uncountable, a contradiction.

Note: It’s also called Cauchy-Bendixon Theorem.

Prove that every open set in R! is the union of an at most countable

collection of disjoint segments. Hint: Use Exercise 22.
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Proof: (due to H.L.Royden, Real Analysis) Since O is open, for each x
in O, thereis ay > z such that (z,y) C O. Let b = sup{y : (z,y) C O}.
Let a = inf{z: (z,2) C O}. Then a < x < b, and I, = (a,b) is an open

interval containing x.

Now I, C O, for if w € I, say x < w < b, we have by the definition of
b a number y > w such that (z,y) C O, and so w € O).

Moreover, b ¢ O, forif b € O, then for some € > 0 we have (b—e¢, b+¢) C
O, whence (x,b+ €) C O, contradicting the definition of b. Similarly,
a¢O.

Consider the collection of open intervals {1}, x € O. Since each x € O

is contained in I, and each I, C O, we have O = I,.

Let (a,b) and (c,d) be two intervals in this collection with a point in
common. Then we must have ¢ < b and a < d. Since ¢ ¢ O, it does not
belong to (a,b) and we have ¢ < a. Since a ¢ O and hence not to (¢, d),
we have a < ¢. Thus a = ¢. Similarly, b = d, and (a,b) = (¢,d). Thus
two different intervals in the collection {I,} must be disjoint. Thus
O is the union of the disjoint collection {I,} of open intervals, and it
remains only to show that this collection is countable. But each open
interval contains a rational number since () is dense in R. Since we
have a collection of disjoint open intervals, each open interval contains
a different rational number, and the collection can be put in one-to-one
correspondence with a subset of the rationals. Thus it is a countable

collection.

30. Imitate the proof of Theorem 2.43 to obtain the following result:

If R¥ = J{° F,, where each F), is a closed subset of R, then

at least one F), has a nonempty interior.

Equivalent statement: If G,, is a dense open subset of R¥, for
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n=1,2,3,..., then N}° G,, is not empty (in fact, it is dense
in R¥).

(This is a special case of Baire’s theorem; see Exercise 22, Chap. 3, for

the general case.)

Proof: I prove Baire’s theorem directly. Let G, be a dense open
subset of R¥ for n = 1,2,3,.... T need to prove that N;° G,, intersects

any nonempty open subset of R* is not empty.

Let Gy is a nonempty open subset of R¥. Since G is dense and G
is nonempty, Go(G1 # ¢. Suppose z1 € Gy G1. Since Gy and Gy
are open, Gy G is also open, that is, there exist a neighborhood V}
such that V; C GyNG:. Next, since G5 is a dense open set and V;
is a nonempty open set, Vi1 (G2 # ¢. Thus, I can find a nonempty
open set Vs such that V5, € Vi N Gs. Suppose I have get n nonempty
open sets Vi, Vs, ..., V, such that V; C GoNG; and Vi ; C ViNGhia
for all ¢ = 1,2,....,n — 1. Since G, is a dense open set and V,, is a
nonempty open set, V,, N G, 1 is a nonempty open set. Thus I can find
a nonempty open set V41 such that V,, ;1 C V,, N G,41. By induction, I
can form a sequence of open sets {V,, : n € Z7} such that V; C GyN Gy
and Vi, C ViN Gy for all n € ZT. Since V] is bounded and V; D
VoD ...DV,D.., by Theorem 2.39 I know that

ﬁw¢¢

Since V; C GoN G and V11 C Gri1, GoN(NSY, Gy) # ¢. Proved.

Note: By Baire’s theorem, I've proved the equivalent statement. Next,
F, has a empty interior if and only if G,, = R*¥ — F}, is dense in RF.

Hence we completed all proof.
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