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1. Prove that the convergence of {s,} implies convergence of {|s,|}. Is

the converse true?

Solution: Since {s,} is convergent, for any € > 0, there exists N such
that |s, — s| < € whenever n > N. By Exercise 1.13 I know that

|5n| — |8|| < |sn — s|. Thus, |[s,| — ||| <€, that is, {s,} is convergent.

The converse is not true. Consider s,, = (—1)".

2. Calculate lim, o (Vn? +n —n).

Solution:
TR =
vn?+n+n
1
 fi/ntl+1
1
- =
2
as n — o0o.

3. If s, = v/2 and

Sp41 =\/2+/sn (n=1,2,3,...),

prove that {s,} converges, and that s, < 2 forn =1,2,3, ...

Proof: First, I show that {s,} is strictly increasing. It is trivial that

Sy = /24 /51 = \/24—\/\/5 > /2 = s;. Suppose s > sp_1 when



k < n. By the induction hypothesis,

Sp = 2+ /Sn—1

By the induction, {s,} is strictly increasing. Next, I show that {s,} is
bounded by 2. Similarly, I apply the induction again. Hence {s,} is

strictly increasing and bounded, that is, {s,} converges.

7. Prove that the convergence of 3 a, implies the convergence of
S
n

if a,, > 0.

Proof: By Cauchy’s inequality,
k k k
1 an,
SIS WIS
n=1 n=1 n=1

foralln € N. Also, both Y a,, and > # are convergent; thus Zﬁzl an ‘/;T"
is bounded. Besides, @ > 0 for all n. Hence > @ is convergent.

8.

9. Find the radius of convergence of each of the following power series:

2n 2n n?

(a) Z nz", (b) Z mz", () Z ﬁz”, (d) Z 3—nz”.
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10.

11.

Solution: (a) a, = (n®)'/"

() ay, = (27/a)V/™ = 2/(n!)/™ — 0 as n — oo. Hence R = +oo0.
"—2/1=2asn—oco. Hence R =1/a=1/2.

() oy = (2/n?

— lasn — oo. Hence R=1/a = 1.

1/
(d) a,, = (n®/3M)Y" — 1/3 as n — oco. Hence R = 1/a = 3.

Suppose a,, > 0, s, = ay + ... + a,, and Y a,, diverges.

(a) Prove that 3° ;9= diverges.
(b) Prove that
AN 41 N ANtk >1— SN
SN+1 SN+k SN+k
and deduce that 3 £ diverges.
(c) Prove that
a, 1 1
n o< _
$2 7 Sn1 Sn
and deduce that >° % converges.
(d) What can be said about
a a
Zl—l—nan an Zl+n2an
Proof of (a): Note that
an 1
0 & ——0
1+a, 31
1
<~ — — 0
Qn
& a, — 0

as n — 00. IfZHa

some € = 1 there is an N; such that a,, < 1 whenever n > N;. Since

Z an
1+an
Am
1+a,,

+ ...+

4n_ converges, then a, — 0 as n — oco. Thus for

converges, for any € > 0 there is an Ny such that

ap
<€

1+ a,



all n > m > Ny. Take N = max(Ny, N2). Thus

am an
€ > + ...+
1+a,, 1+ a,
< am T Qnp,
141 7 141
. Ay + ... +ay
B 2

for all n > m > N. Thus

A + ... +a, < 2€

an

1+an

for all n > m > N. It is a contradiction. Hence >
Proof of (b):

diverges.

a a a a
N+1 N Ntk N+1 NN N+k
SN+1 SN+k SN+k SN+k

an+41 + oo + ANtk

SN+k
SN+k — SN

SN+k
SN
= 1-—

SN+k

If = 9= converges, for any € > 0 there exists IV such that

A Qp,
Sm Sn

for all m,n whenever n > m > N. Fix m = N and let n = N + k.
Thus

a a
€ > — 4.+
Sm Sn
an ANk
= — 4 ...+
SN SN+k
S
> 1- =
SN+k



for all k € N. But sy x — o0 as k — oo since > a, diverges and
a, > 0. Take e = 1/2 and we obtain a contradiction. Hence Z‘;—Z

diverges.

Proof of (c):

1 1
Sn—1 S Sp ) S
sz SnSn—1
PN &; S an _ Sn — Sp—1
Sh SpnSn—1 SnSn—1
a 1 1
& = < - —
Sh Sp—1 Sn
for all n.
Hence

(]
bl
A

n=2 Sn n=2 Sn—1 Sn
1 1
S1 Sn

Note that Si — (0 asn — oo since }_ a, diverges. Hence 3° % converges.
n n

Proof of (d): Y —%— may converge or diverge, and > —%%— con-

1+nan 1+n2an
verges. To see this, we put a, = 1/n. 1J:‘;;an = i, that is, > 1f7’;an =
2> 1/n diverges. Besides, if we put
1
n = n(logn)?
where p > 1 and n > 2, then
an, 1
1+na, n(logn)?((logn)? + 1)
1
2n(logn)3p
for large enough n. By Theorem 3.25 and Theorem 3.29, }° ; T

converges. Next,

a, B 1
Zl—l—nQan N Zl/an—l—nQ



1
< Zﬁ

for all a,,. Note that > % converges, and thus - ; J:;;an converges.
12. Suppose a, > 0 and Y a,, converges. Put
o)
Tn = Z am
(a) Prove that
am Qn T'n
—+ .+ —=>1-—
Tm Tn Tm
if m < n, and deduce that > - diverges.
(b) Prove that
a
" < 2(\/Th — \/Tn
\/E ( +1)
and deduce that \;—;Ln converges.
Proof of (a):
Ao, Qn, Qp, + ... + ap
L
T'm Tn T'm
_ Tm —Tn
= -
TTL
- 1--
Tm

if m <n. If 3° % converges, for any € > 0 there exists IV such that

am an
— + .+ —<e€
'm Tn

for all m,n whenever n > m > N. Fix m = N. Thus

am an Tn
T+ > 1=
T'm Tn T'm
— 1_?;"

N



foralln > N. But r, — 0 as n — oo; thus %+...+‘;—:—> 1l asn — oc.

If we take e = 1/2, we will get a contradiction.

Proof of (b): Note that

T'n+1 <r, < v 'n+1 < n

54 \/E‘f’ V1 < 2m
VTn + /Tni <9
N

VTn + /Tnl
& (Vra— \/Tn+1)T
Tn — Tn+1

A T<2(\/E—M)

j;_n<2m—m>

since a,, > 0 for all n.

=

< 2(/F — \/FarD)

Hence,

Z_:l \j:.—n < 2_312(@_ \/Tn+1)
= 2(\/E - \ﬂ"kﬂ)

Note that r, — 0 as n — oo. Thus Y \;77% is bounded. Hence Y \;7%

converges.

Note: If we say Y a, converges faster than b, it means that

lim — = 0.
n1—>Hc}o b,

According the above exercise, we can construct a faster convergent se-
ries from a known convergent one easily. It implies that there is no
perfect tests to test all convergences of the series from a known con-

vergent one.



13. Prove that the Cauchy product of two absolutely convergent series con-

14.

verges absolutely.

Note: Given ) a, and }_b,, we put ¢, = > ;_,arb,—r and call 3 ¢,

the Cauchy product of the two given series.

Proof: Put A, =Y} |ak|, Bn = X1 |bkl, C = X f_o |ck|.- Then

Ch

lagbo| + |aobr + arbo| + ... + |aohn, + a1bp_1 + ... + a,bo|
|ao|[bo| + (ao|[b1] + |ax][bo|) + ...

+(laolbn] + lar|[bn—1| + ... + |an][bo])

= |ao|Bn + |a1|Bn_1 + ... + |an|Bo

< lao|Bpn + |a1|Bn + ... + |an| By

= (lao| + |a1| + ... + |an|) B, = A, B, < AB

IN

where A = lim A,, and B = lim B,,. Hence {C,} is bounded. Note
that {C,} is increasing, and thus C, is a convergent sequence, that
is, the Cauchy product of two absolutely convergent series converges

absolutely.

If {a,} is a complex sequence, define its arithmetic means o,, by

- _ So Tt sttt sy
" n+1

(n=0,1,2,...).

(a) If lim s,, = s, prove that limo, = s.

(b) Construct a sequence {s,,} which does not converge, although lim o,
0.
(c) Can it happen that s, > 0 for all n and that limsups, = oo,
although limo,, = 07



(d) Put a, = s, — s,_1, for n > 1. Show that

L Z kak.

n+1k:1

Sp — On =

Assume that lim(na,) = 0 and that {0, } converges. Prove that {s,}
converges. [This gives a converse of (a), but under the additional as-

sumption that na, — 0.]

(e) Derive the last conclusion from a weaker hypothesis: Assume M <
o0, |na,| < M for all n, and limo,, = 0. Prove that lims, = o, by

completing the following outline:

If m < n, then

m+ 1 1 n
Sy — Op = On — Om Sp — Si).
)t S ()

For these 1,

(n—idi)M - (n—m—1)M
i+1 7 m+2

lsn — si| <

Fix € > 0 and associate with each n the integer m that satisfies

n—e

m < <m+ 1.

1+e¢

Then (m+1)/(n —m) < 1/e and |s, — s;| < Me. Hence

limsup |s,, — o] < Me.

n—oo

Since € was arbitrary, lim s, = o.

Proof of (a): The proof is straightforward. Let ¢, = s,—s, 7, = 0,—s5.

(Or you may suppose that s = 0.) Then

ottty
n n+1 ’

n



Choose M > 0 such that |t,,| < M for all n. Given € > 0, choose N
so that n > N implies |t,| < e. Takingn > N in 7, = (to +t1 + ... +
tn)/(n+ 1), and then

lto] + ... + |tn]  [tver + o+ |t
- n+1 n+1
(N +1)M
n+1

|Tn|
+ €.

Hence, limsup,,_, . |7.| < €. Since € is arbitrary, it follows that lim,, . |7,] =

0, that is, lim o,, = s.

Proof of (b): Let s, = (—1)". Hence |o,| < 1/(n + 1), that is,

lim g, = 0. However, lim s,, does not exists.

Proof of (c): Let

1 ,n=020,
S, =14 n'*+n"'  n=Fk>?for some integer k,
n-! , otherwise.

It is obvious that s, > 0 and limsup s,, = co. Also,

Sg4 ...+, =1+nn"'+ {\/ﬁJ nt/* =2+ {\/ﬁJ nt/4.

That is,

2 | /1] nt/*
+
n+1 n+1
The first term 2/(n + 1) — 0 as n — oo. Note that

1/4
) < Lvaln
- n+1

n —

< n2pV /4=t — -1/

It implies that the last term — 0. Hence, lim o,, = 0.
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Proof of (d):

n n n
> kay = Sk —Sk—1) = ks — Y ksy_a
k=1 k=1 P

n—1
= - > (k
—1 - n—1
= ns, + Z ksj — Z(k}—F 1)sk — so
k=1 k=1

n—1
= nSn—ZSk—So (n+1)s Zsk
k=1

= (n+1)(sp —on).

That is,

Sp — Op =

Note that {na,} is a complex sequence. By (a),

1
li k = 1i n=0.

Also, lim o, = 0. Hence by the previous equation, lims = o.

Proof of (e): If m < n, then

n

'_Z (s —si) + (m+1)(o,, — o)

= (n—m)s, — > s+ (m+1)(0, — o)

1=m+1

— (h—m)s (Zsz z;) (m+ 1)(0n — o)
= (n—m)s, — (n+ 1o, + (m+1)o, + (m+ 1)(

= (n—m)s, — (n—m)oy,.

11

On — Om)



15.

Hence,

For these i, recall a, = s, — s,—1 and |na,| < M for all n,

n

n "M (n—i)M
< 2 dml= 3 om =

lsn — si| = Z ay
k=i+1 k=it+1 k=it1
(n—m+1))M (n—m-—1)M
(m+1)+1 m+2

Fix € > 0 and associate with each n the integer m that satisfies

n—e

m < <m+ 1.
+e€
Thus
n—m n—m—1
> ¢ and <,
m+1 m+ 2
or -
m < - and |s, — s;| < Me.
n—m "~ €
Hence,

1
|sp — o] <|op — o]+ E(|an — 0|+ |om — o) + Me.
Let n — oo and thus m — oo too, and thus
limsup |s,, — o] < Me.
n—oo

Since € was arbitrary, lims, = o.

12



16. Fix a positive number o. Choose 1 > /o, and define xs, 3, x4,

ceey

by the recursion formula

1 Q
Tn+1l = §(In + ;)

(a) Prove that {z,} decreases monotonically and that lim x, = /.
(b) Put €, = x,, — v/, and show that

2 2
n n

ntl = 5~ <
T o, 2Ja
so that, setting 5 = 2/,

Enil < 5(;)2" (n=1,2,3,..).

(c) This is a good algorithm for computing square roots, since the
recursion formula is simple and the convergence is extremely rapid.

For example, if « = 3 and z; = 2, show that €,/ < % and therefore

€5 <4-1071% ¢ < 4-10732

Proof of (a):

1 o
Ty — Tpy1 = xn—§(xn+f)
1 a
= 5(%—;”)
1,22 -«
= )

since x, > «a. Hence {z,} decreases monotonically. Also, {z,} is

bounded by 0; thus {z,} converges. Let limz, = x. Hence

1 o) 1 a
lima, =lim=(z,+ —) & z=< -
im x4 1m2(:p +$n) x 2(w—|—x)

< 2=a.
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17.

18.

Note that x,, > 0 for all n. Thus z = /a. limz, = \/a.
Proof of (b):

1 «
Lpt1 = i(xn + 7)

Tn
1 a

§($n+;)—\/a

122 — 2z, /a+ «
2 Ty

= $n+1—\/a:

= $n+1—\/a:

Tn4+1 — \/_ = (In - \/a)z

=

2z,

2 2

€ €

= 1= - < — .

T om, 2V

Hence

61 on

€n+1<ﬁ<ﬁ>

where 3 = 2/« by induction.
Proof of (c):

e 2—/3 1 1 1

3 2v3  2V3(2+V3) T 6+4v3 10

Thus

&5 < 5(;)24 <2V3-1071% < 4.1076,
€1

5 )P <2v3-1072 < 4.107%.

6 < B

Note: It is an application of Newton’s method. Let f(z) = 2? — a in
Exercise 5.25.
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19.

20.

21.

22.

23.

Suppose X is a complete metric space, and {G,,} is a sequence of dense
open subsets of X. Prove Baire’s theorem, namely, that N;° G, is not
empty. (In fact, it is dense in X.) Hint: Find a shrinking sequence of
neighborhoods E,, such that E, C G, and apply Exercise 21.

Proof: I've proved it in Chapter 2 Exercise 30.

Suppose {p,} and {¢,} are Cauchy sequences in a metric space X.

Show that the sequence {d(py, q,)} converges. Hint: For any m,n,

d(Pns @n) < APy Pm) + Ay @) + A(Gm, @n);

it follows that
|d(pn7 qﬁ) - d(pm, Qm>|

is small if m and n are large.

Proof: For any € > 0, there exists N such that d(p,,pn) < € and
d(Gm, qn) < € whenever m,n > N. Note that

APy @n) < APy Pm) + A(Dms @) + A(Gm;s @n)-

It follows that

|d(Pr, @n) — AP, @) | < APy D) + (G @n) < 2€.

Thus {d(pn,qn)} is a Cauchy sequence in X. Hence {d(pn,q.)} con-

verges.
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24. Let X be a metric space. (a) Call two Cauchy sequences {p,}, {¢.} in
X equivalent if
lim d(pn, ¢.) = 0.

Prove that this is an equivalence relation.

(b) Let X* be the set of all equivalence classes so obtained. If P € X*,
Q€ X* {pn} € P, {qn} € Q, define

A(P,Q) = lim d(pn, ¢n);

by Exercise 23, this limit exists. Show that the number A(P, Q) is
unchanged if {p,} and {g,} are replaced by equivalent sequences, and

hence that A is a distance function in X*.

(c) Prove that the resulting metric space X* is complete.

Proof of (a): Suppose there are three Cauchy sequences {p,}, {qn},
and {r,}. First, d(p,,p,) = 0 for all n. Hence, d(p,,p,) = 0asn — oco.
Thus it is reflexive. Next, d(gn, pn) = d(pn, ¢n) — 0 as n — oo. Thus it
is symmetric. Finally, if d(p,,q,) — 0 as n — oo and if d(q,,r,) — 0
as n — 00, d(pp, 1) < d(pn,qn) + d(Gn,mn) — 04+0 =0 as n — 0.

Thus it is transitive. Hence this is an equivalence relation.
Proof of (b):

Proof of (c): Let {P,} be a Cauchy sequence in (X*, A). We wish to
show that there is a point P € X* such that A(F,, P) — 0 as n — oo.
For each P,, there is a Cauchy sequence in X, denoted {Qxn}, such
that A(P,,Qxn) — 0 as k — oco. Let ¢, > 0 be a sequence tending
to 0 as n — oo. From the double sequence {Qyn} we can extract a
subsequence ), such that A(P,, Q) < €, for all n. From the triangle
inequality, it follows that

A(Q, @) < AQ, Pa) + APy, Pr) + AP, @) (1)
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25.

Since {P,} is a Cauchy sequence, given € > 0, there is an N > 0 such
that A(P,, Py,) < € for m,n > N. We choose m and n so large that
€m < €, €, < €. Thus (1) shows that {Q’,} is a Cauchy sequence in X.

Let P be the corresponding equivalence class in S. Since
AP, P,) < A(P,Q) + AQ.,, P,) < 2

for n > N, we conclude that P, — P as n — oco. That is, X* is

complete.
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