Continuity
Written by Men-Gen Tsai
email: b89902089@ntu.edu.tw

1. Suppose f is a real function define on R! which satisfies

lim [f(z +h) = f(z = h)] =0

for every € R'. Does this imply that f is continuous?

Solution: No. Take f(z) =1, if z € Z; f(x) = 0. otherwise.

2. If f is a continuous mapping of a metric space X into a metric space

Y, prove that

f(E) C f(E)
for every set F C X. (E denotes the closure of F.) Show, by an

example, that f(E) can be a proper subset of f(E).

Proof: If f(E) is empty, the conclusion holds trivially. If f(F) is non-
empty, then we take an arbitrary point y € f(F). Thus, there exists
p € E such that y = f(p). Thus p € F or p € E'. Also, note that

f(E) = f(E)U(f(F)). Now we consider the following two cases:

Case 1: If p € E, then y € f(E) C f(F). Case 2: Suppose p € E'.
Since f is continuous at x = p, given € > 0, there exists > 0 such
that

dy (f(x), f(p)) < e

whenever dx(z,p) < 0 for all x € X. Since p is a limit point of FE,
then for some § > 0 there exists x € E. Thus f(x) € N.(p) for some
f(z) € f(E). Since € is arbitrary, f(p) is a limit point of f(FE) in Y.

Thus f(p) € f(E).
By case (1)(2), we proved that f(E) C f(E).
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Now we show that f(E) can be a proper subset of f(E). Define
1
x

f(@)==,X =(0,+00),Y = R E = Z*.

Thus

f(E) = f(B)={1/n:neZ"},
FB) = {i/n:neZ ) ={0}J{1/n:ne 2z}

. Let f be a continuous real function on a metric space X. Let Z(f) (the
zero set of f) be the set of all p € X at which f(p) = 0. Prove that
Z(f) is closed.

Proof: Let £ = f(X) — Z(f), that is, the set of all p € X at which
f(p) # 0. Take p[—F, and thus f(p) # 0. WLOG, we take f(p) > 0.
Since f is continuous at x = p, thus for every € > 0 there exists a d > 0
such that
|f(x) = f(p)| <e

for all points x € X for which dx(x,p) < 6. Especially, we take
e = f(p)/2 > 0. If x € Ns(p) for all z, then f(x) > f(p)/2 > 0, that
is, Ns(p) C E, that is, p is an interior point of E. (If f(p) < 0, we take
e =—f(p)/2 > 0). Since p is arbitrary, E is open. Thus, Z(f) is closed.

. Let f and g be continuous mappings of a metric space X into a metric
space Y, and let E be a dense subset of X. Prove that f(E) is dense
in f(X). If g(p) = f(p) for all p € E, prove that g(p) = f(p) for all
p € X. (In other words, a continuous mapping is determined by its

values on a dense subset of its domain.)

Proof: First we need to show f(F) is dense in f(X), that is, every
point of f(X) is a limit point of f(E), or a point of f(£) (or both).

Take any y € f(X), and then there exists a point p € X such that
y = f(p). Since E is dense in X, thus p is a limit point of £ or p € E.
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If pe E, then y = f(p) € f(E). Thus y is a point of f(£), done. If p
is a limit point of E and p ¢ E. Since f is continuous on X, for every
e > 0 there exists § > 0 such that dy(f(z), f(p)) < € for all points
x € X for which dy(z,p) < J. Since p is a limit point of F, there exists
q € Ns(p) such that ¢ # p and ¢ € E. Hence

f(q@) € N(f(p)) = Ne(y)-

and f(q) € f(E). Since p ¢ E, f(p) ¢ f(E), and f(q) # f(p). Hence
f(p) is a limit point of f(F). Thus f(F) is dense in f(X).

Suppose p € X — E. Since FE is dense in X, p is a limit point of E
and p ¢ E. Hence we can take a sequence {¢,} — p such that ¢, € F
and ¢, # p for all n. (More precisely, since p is a limit point, every
neighborhood N, (p) of p contains a point ¢ # p such that ¢ € E. Take
r =r, = 1/n, and thus r, — 0 as n — oo. At this time we can get
q=@, — pasn— oc0.) Hence

g(p) = g(lim g,

n—oo

= lim g(gn

n—oo

)
)
= lim f(qn)
)

n—oo

Thus g(p) = f(p) for all p € X.

. If f is a real continuous function defined on a closed set £ C R!, prove
that there exist continuous real function g on R' such that g(z) = f(z)
for all z € E. (Such functions g are called continuous extensions of f
from E to R'.) Show that the result becomes false if the word ”closed”
is omitted. Extend the result to vector valued functions. Hint: Let the

graph of g be a straight line on each of the segments which constitute
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the complement of E (compare Exercise 29, Chap. 2). The result re-
mains true if R! is replaced by any metric space, but the proof is not

so simple.

Proof: Note that the following fact:

Every open set of real numbers is the union of a countable

collection of disjoint open intervals.
Thus, consider E¢ = J(a;,b;), where i € Z, and a; < b; < a;11 < biq1.
We extend g on (a;,b;) as following:

f(bs) = flai)

bi—ai

g9(z) = fla;) + (z — a;)

x) = f(x) for x € E). Thus g is well-defined on R!, and ¢ is contin-
(g(x) = f(x) g g

uous on R! clearly.

Next, consider f(z) = 1/x on a open set E = R—0. f is continuous on
E, but we cannot redefine f(0) = any real number to make new f(x)

continue at x = 0.

Next, consider a vector valued function

f(%) - (fl($)7 ) fn(aj))v

where f;(z) is a real valued function. Since f is continuous on E, each
component of f, f;, is also continuous on F, thus we can extend f;, say

g;, for each : = 1,...,n. Thus,

9(x) = (91(2), ., gn(2))

is a extension of f(x) since each component of g, g;, is continuous on

R! implies ¢ is continuous on R™.



Note: The above fact only holds in R'. If we change R' into any

metric spaces, we have no the previous fact.

. If f is defined on E, the graph of f is the set of points (z, f(z)), for
x € E. In particular, if E is a set of real numbers, and f is real-valued,

the graph of f is a subset of the plain.

Suppose E' is compact, and prove that that f is continuous on E if and

only if its graph is compact.

Proof: (=) Let G = {(z, f(x)) : * € E}. Since f is a continuous
mapping of a compact set F into f(E), by Theorem 4.14 f(FE) is also
compact. We claim that the product of finitely many compact sets is

compact. Thus G = E x f(F) is also compact.
(<) (Due to Shin-Yi Lee) Define

g(x) = (, f(x))

from F to G for x € E. We claim that g(z) is continuous on E.
Consider h(z, f(z)) = x from G to E. Thus h is injective, continuous
on a compact set G. Hence its inverse function g(z) is injective and

continuous on a compact set F.

Since g(x) is continuous on E, the component of g(x), say f(x), is

continuous on a compact F.

Proof of Claim: We prove that the product of two compact spaces is

compact; the claim follows by induction for any finite product.

Step 1. Suppose that we are given sets X and Y, with Y is compact.
Suppose that zo € X, and N is an open set of X X Y containing the
"slice” zg x Y of X xY. We prove the following:

There is a neighborhood W of xy in X such that N contains
the entire set W x Y.



The set W x Y is often called a tube about zg x Y.

First let us cover xy X Y by basis elements U x V' (for the topology of
X xY) lying in N. The set zy x Y is compact, being homeomorphic to

Y. Therefore, we can cover zy X Y by finitely many such basis elements
Uy x Vi,...,U, x V,.

(We assume that each of the basis elements U; x V; actually intersects
ro X Y, since otherwise that basis element would be superfluous; we
could discard it from the finite collection and still have a covering of
xo X Y.) Define

W =U()..\Un

The set W is open, and it contains xy because each set U; X V; intersects

.T()XY.

We assert that the sets U; x V;, which were chosen to cover the slice
xo X Y, actually cover the tube W x Y. Let x x y € W x Y. Consider
the point xy x y of the slice zy x Y having the same y-coordinate as
this point. Now zy x y € U; x V; for some i, so that y € V;. But « € U;
for every j (because x € W). Therefore, we have x x y € U; x V;, as

desired.

Since all the sets U; x V; C N, and since they cover W x Y, the tube
W xY C N also.

Step 2. Now we prove the claim. Let X and Y be compact sets. Let A
be an open covering of X xY. Given xy € X, the slice g XY is compact
and may therefore be covered by finitely many elements Ay, ..., A,, of
A. Their union N = A;J...U A4,, is an open set containing z¢ X Y'; by
Step 1, the open set N contains a tube W x Y about xy X Y, where
W is open in X. Then W x Y is covered by finitely many elements
Aq, .. Ay, of A



Thus, for each x € X, we can choose a neighborhood W, of x such
that the tube W, x Y can be covered by finitely many element of A.
The collection of all the neighborhoods W, is an open covering of X;

therefore by compactness of X, there exists a finite subcollection
{W, ..., Wi}
covering X. The union of the tubes
Wy xY, ..., W xY

is all of X x Y’; since each may be covered by finitely many elements

of A, so may X X Y be covered.

. If EC X and if f is a function defined on X, the restriction of f to
is the function ¢ whose domain of definition is E, such that g(p) = f(p)
for p € E. Define f and g on R? by: f(0,0) = g(0,0) = 0, f(x,y) =
zy? /(2?2 +y*), g(z,y) = zy?/(x* +y°) if (x,y) # (0,0). Prove that f is
bounded on R?, that g is unbounded in every neighborhood of (0,0),
and that f is not continuous at (0,0); nevertheless, the restriction of

both f and g to every straight line in R? are continuous!

Proof: Since 2% + y* > 229, f(z,y) < 2 for all (z,y) € R?. That is,
f is bounded (by 2). Next, select

11
n3’n

).

(Tns Yn) = (

(Tn, yn) — (0,0) as n — oo, and g(x,, y,) = n/2 — oo as n — oo, that
is, g(x,y) is unbounded in every neighborhood of (0,0) by choosing

large enough n.

Next, select
11

(Tns Yn) = (ﬁa ﬁ)-



(Tn, yn) — (0,0) as n — oo, and f(x,,y,) = 1/2 for all n. Thus,

T fey) = 5 £ 0= £(0,0)

for some sequence {(x,,y,)} in R?. Thus, f is not continuous at (0, 0).

Finally, we consider two cases of straight lines in R?: (1) x = c and (2)
y = ax + b. (equation of straight lines).

(D z=c Ifc#0, f(z,y) = cy?/(+y*) and g(z,y) = cy?/(*+y°) are
continuous since cy?, ¢ +y*, and ¢?+1° are continuous on R! respect to
y, and ¢* +y*, ¢ +y5 are nonzero. If c = 0, then f(x,y) = g(z,y) =0,
and it is continuous trivially.

(2) y = ax + b: If b # 0, then this line dose not pass (0,0). Then
f(w,y) = w(az +b)*/(2* + (az + b)) and g(z,y) = z(ax +b)*/(2* +
(ax + b)®). By previous method we conclude that f(z,y) and g(x,y)
are continuous. If b = 0, then f(z,y) = 0 if (z,y) = (0,0); f(z,y) =
a’z/(1 + a*2?), and g(x,y) = 0 if (z,y) = (0,0); g(x,y) = a®x/(1 +
a®z?). Thus, f(z,y) — 0/1 =0 = £(0,0) and g(x,y) — 0/1 =0 =
£(0,0) as * — 0. Thus, f and g are continuous.

Both of two cases implies that the restriction of both f and g to every

straight line in R? are continuous.

. Let f be a real uniformly continuous function on the bounded set E in
R!'. Prove that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from

the hypothesis.
Proof: Let E is bounded by M > 0, that is, |z| < M for all z € E.

Since f is uniformly continuous, take € = 1 there exists § > 0 such that

[f(z) = fly)| <e



whenever |x — y| < 6 where 2,y € E. For every x € E, there exists an

integer n = n, such that
nd < x < (n+1)d.

Since F is bounded, the collection of S = {n, : x € E} is finite.
Suppose z € E and x is the only one element satisfying nd < z <

(n+ 1) for some n. Let © = x,,, and thus

[f(@)] < [ f(zn)]
for all x € EN[nd, (n + 1)d). If there are more than two or equal to

two element satisfying that condition, then take some one as x,,. Since
|z —x,| <6
for all z € EN[nd, (n+ 1)d). Thus

[f(z) = f(zn)] <1
for all x € EN[nd, (n + 1)d), that is,

[f(@)] <1+ [f(zn)]
Hence
(@) < max (14 f(zn)).
(Since S is finite, that maximum is meaningful). Thus f(z) is bounded.

Note: If boundedness of F is omitted from the hypothesis, define
f(xz) =z for z € E = R'. Hence f is uniformly continuous on E, but
f(E) = R' is unbounded.

. Show that the requirement in the definition of uniform continuity can
be rephrased as follows, in terms of diameters of sets: To every € > 0
there exists a 6 > 0 such that diamf(F) < € for all E C X with
diamFE < .

Proof: Recall the original definition of uniformly continuity:
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10.

11.

for every € > 0 there exists 6 > 0 such that dy (f(p), f(q)) <€
for all p and ¢ in X for which dx(p,q) < 0.

(<) Given € > 0. Vp,q € X for which dx(p,q) < 9. Take

E={p,q},

and thus diamE = sup, ,cp d(p, q) = d(p, q) < 6. Hence diamf(E) < e.
Note that diam f(E) > d(f(p), f(q)) since p,q € E. Hence d(f(p), f(q)) <
€. Thus for every € > 0 there exists § > 0 such that dy (f(p), f(q)) <€

for all p and ¢ in X for which dx(p,q) < .

(=) VE C X with diamFE < 6. Vp,q € R, d(p,q) < diamFE < 6. Thus

we have
A/ ). fla)) < 5

for all p,q € E. Hence diamf(F) < €¢/2 < e. Thus to every € > 0 there
exists a § > 0 such that diamf(F) < € for all £ C X with diamF < §.

Complete the details of the following alternative proof of Theorem 4.19:
If f is not uniformly continuous, then for some € > 0 there are sequences

{pn}, {¢.} in X such that dx(pn,q.) — 0but dy (f(pn), f(g.)) > €. Use
Theorem 2.37 to obtain a contradiction.

Suppose f is a uniformly continuous mapping of a metric space X into
a metric space Y and prove that {f(z,)} is a Cauchy sequence in Y for
every Cauchy sequence {z,} in X. Use this result to give an alternative

proof of the theorem stated in Exercise 13.

Proof: Let {z,} be a Cauchy sequence in X. Ve’ > 0, IN such that
dx(xn, m) < € whenever m,n > N. Since f is a uniformly continuous,
Ve > 0, 30 > 0 such that dy (f(z), f(y)) < € whenever d(z,y) < 6. Take
¢ = 0. Thus

dy (f(zn), f(rm)) <€
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12.

13.

14.

15.

whenever m,n > N for some N; that is, { f(z,)} is a Cauchy sequence.

A uniformly continuous function of a uniformly continuous function is

uniformly continuous.

State this more precisely and prove it.

Let E be a dense subset of a metric space X, and let f be a uniformly
continuous real function defined on E. Prove that f has a continuous
extension from E to X (see Exercise 5 for terminology). (Uniqueness
follows from Exercise 4.) Hint: For each p € X and each positive
integer n, let V,(p) be the set of all ¢ € F with d(p,q) < 1/n. Use
Exercise 9 to show that the intersection of the closures of the sets
F(Vi(p)), f(Va(p)), ..., consists of a single point, say g(p), of R!. Prove

that the function g so define on X is the desired extension of f.

Let I = [0,1] be the closed unit interval. Suppose f is continuous

mapping of I into I. Prove that f(z) = x for at least one x € I.

Proof: Let g(z) = f(x) —x. If g(1) = 0 or ¢g(0) = 0, then the
conclusion holds trivially. Now suppose ¢g(1) # 0 and g(0) # 0. Since
fisfrom I to I, 0 # f(x) # 1. Thus,

g(1) = f)—1<0,
g(0) = f(0)-0>0.

Since g is continuous on [0, 1], by Intermediate Value Theorem (Theo-
rem 4.23)

g9(c) =0
for some ¢ € (0,1). Hence f(c) = ¢ for some ¢ € (0,1).

Call a mapping of X into Y open if f(V') is an open set Y whenever V'

is an open set X.
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Prove that every continuous open mapping of R! into R' is monotonic.

Proof: Suppose not, there exist three points z; < z9 < x3 € R' such
that

f(x2) > f(z1), f(z2) > f(xs)
or
f(z2) < fz1), f(22) < f(3).
WLOG, we only consider the case that f(zs) > f(z1), f(xa) > f(x3)

for some x; < x5 < 3. Since f is continuous on R, for

_ flxa) = f(21)
E—f>0

there exists 9; > 0 such that

|f(z) = f(z1)] <e
whenever |r — z1| < 6;. That is,

f(x1) + f(x9)

5 < f(z2)

fx) <

whenever ¢ < x7 + 0;. Note that d; < z9 — ;. Hence we can take

y1 € (x1, 71 + 071). Similarly, for
fw2) = flas)

A7 L VA
¢ 2

there exists d5 > 0 such that

[f(z) = flzs)] <€
whenever |x — 3| < dy. That is,

f(@2) + f(x5)

5 < f(z2)

fx) <
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16.

17.

whenever £ > x3 — 0. Note that dy < z3 — x9. Hence we can take
Y2 € (x3 — 09, x3). Note that yo > y;. Since f is continuous on a closed

set [y1, 2], f take a maximum value at p € [y;,y2]. Note that

sup  f(z) < sup f(x)

x€(x1,23) z€[y1,y2]

by previous inequations. Also,

sup f(z) > sup f(x)

x€(x1,23) z€[y1,y2]

Hence Sup,e(,, 24) f (%) = SUp,epy, 401 f(2). Since (21, 73) is an open set,
f((x1,23)) is also open. Note that f(p) € f((z1,x3)) but f(p) is not an
interior point of f((x1,x3)). (otherwise f(p) + € € f((x1,x3)) for some
e > 0. That is, f(p) + € > f(p), a contradiction with the maximum of

f().

Let [z] denote the largest integer contained in z, this is, [z] is a integer
such that x — 1 < [z] < z; and let (x) = z — [z] denote the fractional

part of xz. What discontinuities do the function [z] and (x) have?

Let f be a real function defined on (a,b). Prove that the set of points
at which f has a simple discontinuity is at most countable. Hint: Let E
be the set on which f(z—) < f(z+). With each point x of F, associate
a triple (p, ¢, 7) of rational numbers such that

(a) flz—) <p < flz+),

(b) a < g <t <z implies f(t) < p,

(¢) x <t <r <bimplies f(t) > p.

The set of all such triples is countable. Show that each triple is as-
sociated with at most one point of E. Deal similarly with the other

possible types of simple discontinuities.
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18.

19.

Every rational x can be written in the form = = m/n, where n > 0,
and m and n are integers without any common divisors. When x = 0,
we take n = 1. Consider the function f defined on R! by

fx) =

)

Prove that f is continuous at every irrational point, and that f has a

{ 0 (z irrational),

simple discontinity at every rational point.

Suppose f is a real function with domain R' which has the interme-
diate value property: If f(a) < ¢ < f(b), then f(z) = ¢ for some x

between a and b.

Suppose also, for every rational 7, that the set of all z with f(z) = r

is closed. Prove that f is continuous.

Hint: If x, — xo, but f(x,) > r > f(zo) for some r and all n, then

f(t,) = r for some ¢, between xy and z,; thus ¢, — zo. Find a contra-
diction. (N. J. Fine, Amer. Math. Monthly, vol. 73, 1966, p. 782.)

Proof: Let S = {z : f(x) =r}. If x,, — xo, but f(x,) > r > f(x0)
for some 7 and all n since @ is dense in R!, then f(t,) = r for some ¢,
between zy and x,,; thus t,, — xy. Hence xg is a limit point of S. Since
S is closed, f(z) = r, a contradiction. Hence, limsup f(z,) < f(xg).
Similarly, liminf f(z,) > f(zo). Hence, lim f(z,) = f(zo), and [ is

continuous at xg.

Note: Original problem is stated as follows:

Let f be a function from the reals to the reals, differentiable

at every point. Suppose that, for every r, the set of points
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20.

x, where f'(x) =r, is closed. Prove that f’ is continuous.
If we replace @ into any dense subsets of R!, the conclusion also holds.

If F/ is a nonempty subset of a metric space X, define the distance from
x € X to E by

pi(e) = inf d(z, 2).

(a) Prove that pg(r) = 0 if and only if x € F.
(b) Prove that pg(x) is a uniformly continuous function on X, by show-
ing that

pe(z) — pe(y)| < d(z,y)

forall x € X, y € X. Hint: pp(x) <d(z,z) <d(x,y)+d(y, z), so that
pe(r) < d(,y) + pe(y).
Proof of (a): (<) If x € E C E, then

inf d(z,2) < d(x,z) =0

zeE

since we take z = x € FE. Hence pg(z) = 0 if x € E. Suppose
x € E—E, that is, x is a limit point of E. Thus for every neighborhood
of x contains a point y # z such that ¢ € E. It implies that d(x,y) — 0
for some y € F, that is, pg(x) = inf,cpd(x, z) = 0 exactly.

(=) Suppose pgp(x) = inf,cgd(z,z) = 0. Fixed some z € X. If
d(z,z) = 0 for some z € E, then x = 2, that isz € E C E. If
d(xz,z) > 0 for all z € E, then by inf,cpd(x, z) = 0, for any € > 0 there
exists z € F such that

d(z,z) <€,

that is,
z € Ne(x).

Since € is arbitrary and z € E, z is a limit point of . Thusz € E' C E.
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Proof of (b): Forallz € X, ye€ X, z € E,
Take infimum on both sides, and we get that

pe(z) < d(z,y) + pe(y).

Similarly, we also have

pe(y) < d(x,y) + pr(r).

Hence
lpe(z) — pr(y)| < d(z,y)

forallz € X, y € X. Thus pg is a uniformly continuous function on X.

Exercise 1: (Due to Shin-Yi Lee) In a metric space (S5,d), let A be
a nonempty subset of S. Define a function fa(z) : S — R by the

equation
fa(z) = inf{d(z,y) - y € A}
for every x € S. The value f4(z) is called the distance from = to A.

(a) Prove that f, is uniformly continuous on S.
(b) Prove A={z € S : fa(z) =0}.

Exercise 2: (Due to Shin-Yi Lee) In a metric space (5, d). Let A and
B be two disjoint closed subsets of S. Prove that there are two open

subset of S, say U and V such that A C U and B C V withUNV = ¢.

It will be shown in Exercise 4.22.
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21. Suppose K and F' are disjoint sets in a metric space X. K is compact.
F is closed. Prove that there exists § > 0 such that d(p,q) > 0 if

p€ K, q€ F. Hint: pr is a continuous positive function on K.

Show that the conclusion may fail for two disjoint closed sets if neither

is compact.
Proof: Let
pr(x) = inf d(r. 2)
for all z € K. By Exercise 4.20(a), we know that

pr(x)=0& € F=F

(since F'is closed). That is, pp(z) = 0if and only if z € F'. Since K and
F are disjoint, pp(x) is a positive function. Also, by Exercise 4.20(b)

pr(z) is continuous. Thus pp(x) is a continuous positive function.

Since K is compact, pr(z) takes minimum m > 0 for some zy € K.
Take § = m/2 > 0 as desired.

Next, let X = R!,

A = 77 —{2},
B = {n+1/n:neZ"}

Hence A and B are disjoint, and they are not compact. Suppose there
exists such 0 > 0. Take

1 1
x:[g]—l—lEA,y:x%—;EB.

However,

1 1
d(xuy):;<175:5,

a contradiction.
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22. Let A and B be disjoint nonempty closed sets in a metric space X, and

define
pa(p)

~ pa(p) +r5(p)’
Show that f is a continuous function on X whose range lies in [0, 1],
that f(p) = 0 precisely on A and f(p) = 1 precisely on B. This

establishes a converse of Exercise 3: Every closed set A contained in X

(p € X).

is Z(f) for some continuous real f on X. Setting

V= r7(0,1/2)), W = f1((1/2,1)),

show that V and W are open and disjoint, and that A is contained in
V', B is contained in W. (Thus pairs of disjoint closed set in a metric
space can be covered by pairs of disjoint open sets. This property of

metric spaces is called normality.)

Proof: Note that pA(p) and pp(p) are (uniformly) continuous on X,
and pa(p) + ps(p) > 0. (Clearly, pa(p) + pg(p) > 0 by the definition.
If pa(p) + pe(p) = 0, then p € AN B by Exercise 20, a contradiction).
Thus f(p) = pa(p)/(pa(p)+ps(p)) is continuous on X. Next, f(p) > 0,
and f(p) < 1 since pa(p) < pa(p) + pp(p). Thus f(X) lies in [0, 1].

(p

Next, f(p) = 0 < pa(p) = 0 & p € A precisely, and f(p) = 1 <
pe(p) = 0 < p € B precisely by Exercise 20.

Now we prove a converse of Exercise 3: Every closed set A C X is Z(f)
for some continuous real f on X. If Z(f) = ¢, then f(z) = 1 for all
x € X satisfies our requirement. If Z(f) # ¢, we consider two possible
cases: (1) Z(f) = X; (2) Z(f) # X. If Z(f) = X, then f(z) =0 for
all z € X. If Z(f) # X, we can choose p € X such that f(p) # 0.
Note that Z(f) and {p} are one pair of disjoint closed sets. Hence we
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23.

24.

25.

let
R 101 C)
fl@) pz(p) (%) + ppy ()

By the previous result, we know that f(x) satisfies our requirement.

Hence we complete the whole proof.

Note that [0,1/2) and (1/2, 1] are two open sets of f(X). Since f is
continuous, V = f71([0,1/2)) and W = f~1((1/2, 1]) are two open sets.
f7H{0}) € f71([0,1/2)), and f71({1}) € f71((1/2,1]). Thus, ACV

and B C W. Thus a metric space X is normal.

A real-valued function f defined in (a,b) is said to be convez if

fOr+ (1 =Ny) <Af(x) + (1 =N f(y)

whenever a < x < b, a <y < b, 0 < A < 1. Prove that every convex
function is continuous. Prove that every increasing convex function of

a convex function is convex. (For example, if f is convex, so is e/.)

If fis convex in (a,b) and if @ < s <t < u < b, show that

) = fls) _ fw) = fls) _ flw) = F(D).

t—s uU—S - u—t

Assume that f is a continuous real function defined in (a, b) such that

fc+y) < flx) + f(y)
2 2

i

for all z,y € (a,b). Prove that f is convex.

If AC R¥ and B C R*, define A + B to be the set of all sums x +y
with x € A, y € B.

(a) If K is compact and C'is closed in R¥, prove that K + C is closed.
Hint: Takez ¢ K+ C, put F'=2z—C, the set of all z—y with y € C.
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26.

Then K and F are disjoint. Choose ¢ as in Exercise 21. Show that the

open ball with center z and radius ¢ does not intersect K + C.

(b) Let a be an irrational real number. Let C} be the set of all integers,
let C5 be the set of all na with n € C;. Show that C'; and Cy are closed
subsets of R whose sum C} + C5 is not closed, by showing that C + Cs

is a countable dense subset of R'.

Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X
into Y, let g be a continuous one-to-one mapping of Y into Z, and put
h(z) = g(f(z)) for z € X.

Prove that f is uniformly continuous if A is uniformly continuous. Hint:

g~! has compact domain g(Y), and f(x) = g~ '(h(z)).
Prove also that f is continuous if h is continuous.

Show (by modifying Example 4.21, or by finding a different example)
that the compactness of Y cannot be omitted from the hypothese, even

when X and Z are compact.
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