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1. Suppose f is a real function define on R1 which satisfies

lim
h→0

[f(x + h)− f(x− h)] = 0

for every x ∈ R1. Does this imply that f is continuous?

Solution: No. Take f(x) = 1, if x ∈ Z; f(x) = 0. otherwise.

2. If f is a continuous mapping of a metric space X into a metric space

Y , prove that

f(E) ⊂ f(E)

for every set E ⊂ X. (E denotes the closure of E.) Show, by an

example, that f(E) can be a proper subset of f(E).

Proof: If f(E) is empty, the conclusion holds trivially. If f(E) is non-

empty, then we take an arbitrary point y ∈ f(E). Thus, there exists

p ∈ E such that y = f(p). Thus p ∈ E or p ∈ E ′. Also, note that

f(E) = f(E)
⋃

(f(E))′. Now we consider the following two cases:

Case 1: If p ∈ E, then y ∈ f(E) ⊂ f(E). Case 2: Suppose p ∈ E ′.

Since f is continuous at x = p, given ε > 0, there exists δ > 0 such

that

dY (f(x), f(p)) < ε

whenever dX(x, p) < δ for all x ∈ X. Since p is a limit point of E,

then for some δ > 0 there exists x ∈ E. Thus f(x) ∈ Nε(p) for some

f(x) ∈ f(E). Since ε is arbitrary, f(p) is a limit point of f(E) in Y .

Thus f(p) ∈ f(E).

By case (1)(2), we proved that f(E) ⊂ f(E).
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Now we show that f(E) can be a proper subset of f(E). Define

f(x) =
1

x
, X = (0, +∞), Y = R1, E = Z+.

Thus

f(E) = f(E) = {1/n : n ∈ Z+},

f(E) = {1/n : n ∈ Z+} = {0}
⋃
{1/n : n ∈ Z+}.

3. Let f be a continuous real function on a metric space X. Let Z(f) (the

zero set of f) be the set of all p ∈ X at which f(p) = 0. Prove that

Z(f) is closed.

Proof: Let E = f(X) − Z(f), that is, the set of all p ∈ X at which

f(p) 6= 0. Take p[−E, and thus f(p) 6= 0. WLOG, we take f(p) > 0.

Since f is continuous at x = p, thus for every ε > 0 there exists a δ > 0

such that

|f(x)− f(p)| < ε

for all points x ∈ X for which dX(x, p) < δ. Especially, we take

ε = f(p)/2 > 0. If x ∈ Nδ(p) for all x, then f(x) > f(p)/2 > 0, that

is, Nδ(p) ⊂ E, that is, p is an interior point of E. (If f(p) < 0, we take

ε = −f(p)/2 > 0). Since p is arbitrary, E is open. Thus, Z(f) is closed.

4. Let f and g be continuous mappings of a metric space X into a metric

space Y , and let E be a dense subset of X. Prove that f(E) is dense

in f(X). If g(p) = f(p) for all p ∈ E, prove that g(p) = f(p) for all

p ∈ X. (In other words, a continuous mapping is determined by its

values on a dense subset of its domain.)

Proof: First we need to show f(E) is dense in f(X), that is, every

point of f(X) is a limit point of f(E), or a point of f(E) (or both).

Take any y ∈ f(X), and then there exists a point p ∈ X such that

y = f(p). Since E is dense in X, thus p is a limit point of E or p ∈ E.
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If p ∈ E, then y = f(p) ∈ f(E). Thus y is a point of f(E), done. If p

is a limit point of E and p /∈ E. Since f is continuous on X, for every

ε > 0 there exists δ > 0 such that dY (f(x), f(p)) < ε for all points

x ∈ X for which dX(x, p) < δ. Since p is a limit point of E, there exists

q ∈ Nδ(p) such that q 6= p and q ∈ E. Hence

f(q) ∈ Nε(f(p)) = Nε(y).

and f(q) ∈ f(E). Since p /∈ E, f(p) /∈ f(E), and f(q) 6= f(p). Hence

f(p) is a limit point of f(E). Thus f(E) is dense in f(X).

Suppose p ∈ X − E. Since E is dense in X, p is a limit point of E

and p /∈ E. Hence we can take a sequence {qn} → p such that qn ∈ E

and qn 6= p for all n. (More precisely, since p is a limit point, every

neighborhood Nr(p) of p contains a point q 6= p such that q ∈ E. Take

r = rn = 1/n, and thus rn → 0 as n → ∞. At this time we can get

q = qn → p as n →∞.) Hence

g(p) = g( lim
n→∞

qn)

= lim
n→∞

g(qn)

= lim
n→∞

f(qn)

= f( lim
n→∞

qn)

= f(p).

Thus g(p) = f(p) for all p ∈ X.

5. If f is a real continuous function defined on a closed set E ⊂ R1, prove

that there exist continuous real function g on R1 such that g(x) = f(x)

for all x ∈ E. (Such functions g are called continuous extensions of f

from E to R1.) Show that the result becomes false if the word ”closed”

is omitted. Extend the result to vector valued functions. Hint: Let the

graph of g be a straight line on each of the segments which constitute
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the complement of E (compare Exercise 29, Chap. 2). The result re-

mains true if R1 is replaced by any metric space, but the proof is not

so simple.

Proof: Note that the following fact:

Every open set of real numbers is the union of a countable

collection of disjoint open intervals.

Thus, consider Ec =
⋃

(ai, bi), where i ∈ Z, and ai < bi < ai+1 < bi+1.

We extend g on (ai, bi) as following:

g(x) = f(ai) + (x− ai)
f(bi)− f(ai)

bi − ai

(g(x) = f(x) for x ∈ E). Thus g is well-defined on R1, and g is contin-

uous on R1 clearly.

Next, consider f(x) = 1/x on a open set E = R−0. f is continuous on

E, but we cannot redefine f(0) = any real number to make new f(x)

continue at x = 0.

Next, consider a vector valued function

f(x) = (f1(x), ..., fn(x)),

where fi(x) is a real valued function. Since f is continuous on E, each

component of f , fi, is also continuous on E, thus we can extend fi, say

gi, for each i = 1, ..., n. Thus,

g(x) = (g1(x), ..., gn(x))

is a extension of f(x) since each component of g, gi, is continuous on

R1 implies g is continuous on Rn.
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Note: The above fact only holds in R1. If we change R1 into any

metric spaces, we have no the previous fact.

6. If f is defined on E, the graph of f is the set of points (x, f(x)), for

x ∈ E. In particular, if E is a set of real numbers, and f is real-valued,

the graph of f is a subset of the plain.

Suppose E is compact, and prove that that f is continuous on E if and

only if its graph is compact.

Proof: (⇒) Let G = {(x, f(x)) : x ∈ E}. Since f is a continuous

mapping of a compact set E into f(E), by Theorem 4.14 f(E) is also

compact. We claim that the product of finitely many compact sets is

compact. Thus G = E × f(E) is also compact.

(⇐) (Due to Shin-Yi Lee) Define

g(x) = (x, f(x))

from E to G for x ∈ E. We claim that g(x) is continuous on E.

Consider h(x, f(x)) = x from G to E. Thus h is injective, continuous

on a compact set G. Hence its inverse function g(x) is injective and

continuous on a compact set E.

Since g(x) is continuous on E, the component of g(x), say f(x), is

continuous on a compact E.

Proof of Claim: We prove that the product of two compact spaces is

compact; the claim follows by induction for any finite product.

Step 1. Suppose that we are given sets X and Y , with Y is compact.

Suppose that x0 ∈ X, and N is an open set of X × Y containing the

”slice” x0 × Y of X × Y . We prove the following:

There is a neighborhood W of x0 in X such that N contains

the entire set W × Y .
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The set W × Y is often called a tube about x0 × Y .

First let us cover x0 × Y by basis elements U × V (for the topology of

X×Y ) lying in N . The set x0×Y is compact, being homeomorphic to

Y . Therefore, we can cover x0×Y by finitely many such basis elements

U1 × V1, ..., Un × Vn.

(We assume that each of the basis elements Ui × Vi actually intersects

x0 × Y , since otherwise that basis element would be superfluous; we

could discard it from the finite collection and still have a covering of

x0 × Y .) Define

W = U1

⋂
...

⋂
Un.

The set W is open, and it contains x0 because each set Ui×Vi intersects

x0 × Y .

We assert that the sets Ui × Vi, which were chosen to cover the slice

x0 × Y , actually cover the tube W × Y . Let x× y ∈ W × Y . Consider

the point x0 × y of the slice x0 × Y having the same y-coordinate as

this point. Now x0× y ∈ Ui×Vi for some i, so that y ∈ Vi. But x ∈ Uj

for every j (because x ∈ W ). Therefore, we have x × y ∈ Ui × Vi, as

desired.

Since all the sets Ui × Vi ⊂ N , and since they cover W × Y , the tube

W × Y ⊂ N also.

Step 2. Now we prove the claim. Let X and Y be compact sets. Let A
be an open covering of X×Y . Given x0 ∈ X, the slice x0×Y is compact

and may therefore be covered by finitely many elements A1, ..., Am of

A. Their union N = A1
⋃

...
⋃

Am is an open set containing x0×Y ; by

Step 1, the open set N contains a tube W × Y about x0 × Y , where

W is open in X. Then W × Y is covered by finitely many elements

A1, ..., Am of A.
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Thus, for each x ∈ X, we can choose a neighborhood Wx of x such

that the tube Wx × Y can be covered by finitely many element of A.

The collection of all the neighborhoods Wx is an open covering of X;

therefore by compactness of X, there exists a finite subcollection

{W1, ...,Wk}

covering X. The union of the tubes

W1 × Y, ..., Wk × Y

is all of X × Y ; since each may be covered by finitely many elements

of A, so may X × Y be covered.

7. If E ⊂ X and if f is a function defined on X, the restriction of f to E

is the function g whose domain of definition is E, such that g(p) = f(p)

for p ∈ E. Define f and g on R2 by: f(0, 0) = g(0, 0) = 0, f(x, y) =

xy2/(x2 + y4), g(x, y) = xy2/(x2 + y6) if (x, y) 6= (0, 0). Prove that f is

bounded on R2, that g is unbounded in every neighborhood of (0, 0),

and that f is not continuous at (0, 0); nevertheless, the restriction of

both f and g to every straight line in R2 are continuous!

Proof: Since x2 + y4 ≥ 2xy2, f(x, y) ≤ 2 for all (x, y) ∈ R2. That is,

f is bounded (by 2). Next, select

(xn, yn) = (
1

n3
,
1

n
).

(xn, yn) → (0, 0) as n →∞, and g(xn, yn) = n/2 →∞ as n →∞, that

is, g(x, y) is unbounded in every neighborhood of (0, 0) by choosing

large enough n.

Next, select

(xn, yn) = (
1

n2
,
1

n
).
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(xn, yn) → (0, 0) as n →∞, and f(xn, yn) = 1/2 for all n. Thus,

lim
n→∞

f(xn, yn) =
1

2
6= 0 = f(0, 0).

for some sequence {(xn, yn)} in R2. Thus, f is not continuous at (0, 0).

Finally, we consider two cases of straight lines in R2: (1) x = c and (2)

y = ax + b. (equation of straight lines).

(1) x = c: If c 6= 0, f(x, y) = cy2/(c2+y4) and g(x, y) = cy2/(c2+y6) are

continuous since cy2, c2+y4, and c2+y6 are continuous on R1 respect to

y, and c2 + y4, c2 + y6 are nonzero. If c = 0, then f(x, y) = g(x, y) = 0,

and it is continuous trivially.

(2) y = ax + b: If b 6= 0, then this line dose not pass (0, 0). Then

f(x, y) = x(ax + b)2/(x2 + (ax + b)4) and g(x, y) = x(ax + b)2/(x2 +

(ax + b)6). By previous method we conclude that f(x, y) and g(x, y)

are continuous. If b = 0, then f(x, y) = 0 if (x, y) = (0, 0); f(x, y) =

a2x/(1 + a4x2), and g(x, y) = 0 if (x, y) = (0, 0); g(x, y) = a2x/(1 +

a6x4). Thus, f(x, y) → 0/1 = 0 = f(0, 0) and g(x, y) → 0/1 = 0 =

f(0, 0) as x → 0. Thus, f and g are continuous.

Both of two cases implies that the restriction of both f and g to every

straight line in R2 are continuous.

8. Let f be a real uniformly continuous function on the bounded set E in

R1. Prove that f is bounded on E.

Show that the conclusion is false if boundedness of E is omitted from

the hypothesis.

Proof: Let E is bounded by M > 0, that is, |x| ≤ M for all x ∈ E.

Since f is uniformly continuous, take ε = 1 there exists δ > 0 such that

|f(x)− f(y)| < ε
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whenever |x− y| < δ where x, y ∈ E. For every x ∈ E, there exists an

integer n = nx such that

nδ ≤ x < (n + 1)δ.

Since E is bounded, the collection of S = {nx : x ∈ E} is finite.

Suppose x ∈ E and x is the only one element satisfying nδ ≤ x <

(n + 1)δ for some n. Let x = xn, and thus

|f(x)| ≤ |f(xn)|

for all x ∈ E
⋂

[nδ, (n + 1)δ). If there are more than two or equal to

two element satisfying that condition, then take some one as xn. Since

|x− xn| < δ

for all x ∈ E
⋂

[nδ, (n + 1)δ). Thus

|f(x)− f(xn)| < 1

for all x ∈ E
⋂

[nδ, (n + 1)δ), that is,

|f(x)| < 1 + |f(xn)|.

Hence

|f(x)| < max
n∈S

(1 + f(xn)).

(Since S is finite, that maximum is meaningful). Thus f(x) is bounded.

Note: If boundedness of E is omitted from the hypothesis, define

f(x) = x for x ∈ E = R1. Hence f is uniformly continuous on E, but

f(E) = R1 is unbounded.

9. Show that the requirement in the definition of uniform continuity can

be rephrased as follows, in terms of diameters of sets: To every ε > 0

there exists a δ > 0 such that diamf(E) < ε for all E ⊂ X with

diamE < δ.

Proof: Recall the original definition of uniformly continuity:
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for every ε > 0 there exists δ > 0 such that dY (f(p), f(q)) < ε

for all p and q in X for which dX(p, q) < δ.

(⇐) Given ε > 0. ∀p, q ∈ X for which dX(p, q) < δ. Take

E = {p, q},

and thus diamE = supp,q∈E d(p, q) = d(p, q) < δ. Hence diamf(E) < ε.

Note that diamf(E) ≥ d(f(p), f(q)) since p, q ∈ E. Hence d(f(p), f(q)) <

ε. Thus for every ε > 0 there exists δ > 0 such that dY (f(p), f(q)) < ε

for all p and q in X for which dX(p, q) < δ.

(⇒) ∀E ⊂ X with diamE < δ. ∀p, q ∈ R, d(p, q) ≤ diamE < δ. Thus

we have

d(f(p), f(q)) <
ε

2

for all p, q ∈ E. Hence diamf(E) ≤ ε/2 < ε. Thus to every ε > 0 there

exists a δ > 0 such that diamf(E) < ε for all E ⊂ X with diamE < δ.

10. Complete the details of the following alternative proof of Theorem 4.19:

If f is not uniformly continuous, then for some ε > 0 there are sequences

{pn}, {qn} in X such that dX(pn, qn) → 0 but dY (f(pn), f(qn)) > ε. Use

Theorem 2.37 to obtain a contradiction.

11. Suppose f is a uniformly continuous mapping of a metric space X into

a metric space Y and prove that {f(xn)} is a Cauchy sequence in Y for

every Cauchy sequence {xn} in X. Use this result to give an alternative

proof of the theorem stated in Exercise 13.

Proof: Let {xn} be a Cauchy sequence in X. ∀ε′ > 0, ∃N such that

dX(xn, xm) < ε′ whenever m, n ≥ N . Since f is a uniformly continuous,

∀ε > 0, ∃δ > 0 such that dY (f(x), f(y)) < ε whenever d(x, y) < δ. Take

ε′ = δ. Thus

dY (f(xn), f(xm)) < ε
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whenever m, n ≥ N for some N ; that is, {f(xn)} is a Cauchy sequence.

12. A uniformly continuous function of a uniformly continuous function is

uniformly continuous.

State this more precisely and prove it.

13. Let E be a dense subset of a metric space X, and let f be a uniformly

continuous real function defined on E. Prove that f has a continuous

extension from E to X (see Exercise 5 for terminology). (Uniqueness

follows from Exercise 4.) Hint: For each p ∈ X and each positive

integer n, let Vn(p) be the set of all q ∈ E with d(p, q) < 1/n. Use

Exercise 9 to show that the intersection of the closures of the sets

f(V1(p)), f(V2(p)), ..., consists of a single point, say g(p), of R1. Prove

that the function g so define on X is the desired extension of f .

14. Let I = [0, 1] be the closed unit interval. Suppose f is continuous

mapping of I into I. Prove that f(x) = x for at least one x ∈ I.

Proof: Let g(x) = f(x) − x. If g(1) = 0 or g(0) = 0, then the

conclusion holds trivially. Now suppose g(1) 6= 0 and g(0) 6= 0. Since

f is from I to I, 0 6= f(x) 6= 1. Thus,

g(1) = f(1)− 1 < 0,

g(0) = f(0)− 0 > 0.

Since g is continuous on [0, 1], by Intermediate Value Theorem (Theo-

rem 4.23)

g(c) = 0

for some c ∈ (0, 1). Hence f(c) = c for some c ∈ (0, 1).

15. Call a mapping of X into Y open if f(V ) is an open set Y whenever V

is an open set X.
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Prove that every continuous open mapping of R1 into R1 is monotonic.

Proof: Suppose not, there exist three points x1 < x2 < x3 ∈ R1 such

that

f(x2) > f(x1), f(x2) > f(x3)

or

f(x2) < f(x1), f(x2) < f(x3).

WLOG, we only consider the case that f(x2) > f(x1), f(x2) > f(x3)

for some x1 < x2 < x3. Since f is continuous on R1, for

ε =
f(x2)− f(x1)

2
> 0

there exists δ1 > 0 such that

|f(x)− f(x1)| < ε

whenever |x− x1| < δ1. That is,

f(x) <
f(x1) + f(x2)

2
< f(x2)

whenever x < x1 + δ1. Note that δ1 < x2 − x1. Hence we can take

y1 ∈ (x1, x1 + δ1). Similarly, for

ε =
f(x2)− f(x3)

2
> 0

there exists δ2 > 0 such that

|f(x)− f(x3)| < ε

whenever |x− x3| < δ2. That is,

f(x) <
f(x2) + f(x3)

2
< f(x2)
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whenever x > x3 − δ2. Note that δ2 < x3 − x2. Hence we can take

y2 ∈ (x3− δ2, x3). Note that y2 > y1. Since f is continuous on a closed

set [y1, y2], f take a maximum value at p ∈ [y1, y2]. Note that

sup
x∈(x1,x3)

f(x) ≤ sup
x∈[y1,y2]

f(x)

by previous inequations. Also,

sup
x∈(x1,x3)

f(x) ≥ sup
x∈[y1,y2]

f(x)

Hence supx∈(x1,x3) f(x) = supx∈[y1,y2] f(x). Since (x1, x3) is an open set,

f((x1, x3)) is also open. Note that f(p) ∈ f((x1, x3)) but f(p) is not an

interior point of f((x1, x3)). (otherwise f(p) + ε ∈ f((x1, x3)) for some

ε > 0. That is, f(p) + ε > f(p), a contradiction with the maximum of

f(p)).

16. Let [x] denote the largest integer contained in x, this is, [x] is a integer

such that x − 1 < [x] ≤ x; and let (x) = x − [x] denote the fractional

part of x. What discontinuities do the function [x] and (x) have?

17. Let f be a real function defined on (a, b). Prove that the set of points

at which f has a simple discontinuity is at most countable. Hint: Let E

be the set on which f(x−) < f(x+). With each point x of E, associate

a triple (p, q, r) of rational numbers such that

(a) f(x−) < p < f(x+),

(b) a < q < t < x implies f(t) < p,

(c) x < t < r < b implies f(t) > p.

The set of all such triples is countable. Show that each triple is as-

sociated with at most one point of E. Deal similarly with the other

possible types of simple discontinuities.

13



18. Every rational x can be written in the form x = m/n, where n > 0,

and m and n are integers without any common divisors. When x = 0,

we take n = 1. Consider the function f defined on R1 by

f(x) =

 0 (x irrational),
1
n

(x = m
n
).

Prove that f is continuous at every irrational point, and that f has a

simple discontinity at every rational point.

19. Suppose f is a real function with domain R1 which has the interme-

diate value property: If f(a) < c < f(b), then f(x) = c for some x

between a and b.

Suppose also, for every rational r, that the set of all x with f(x) = r

is closed. Prove that f is continuous.

Hint: If xn → x0, but f(xn) > r > f(x0) for some r and all n, then

f(tn) = r for some tn between x0 and xn; thus tn → x0. Find a contra-

diction. (N. J. Fine, Amer. Math. Monthly, vol. 73, 1966, p. 782.)

Proof: Let S = {x : f(x) = r}. If xn → x0, but f(xn) > r > f(x0)

for some r and all n since Q is dense in R1, then f(tn) = r for some tn

between x0 and xn; thus tn → x0. Hence x0 is a limit point of S. Since

S is closed, f(x0) = r, a contradiction. Hence, lim sup f(xn) ≤ f(x0).

Similarly, lim inf f(xn) ≥ f(x0). Hence, lim f(xn) = f(x0), and f is

continuous at x0.

Note: Original problem is stated as follows:

Let f be a function from the reals to the reals, differentiable

at every point. Suppose that, for every r, the set of points
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x, where f ′(x) = r, is closed. Prove that f ′ is continuous.

If we replace Q into any dense subsets of R1, the conclusion also holds.

20. If E is a nonempty subset of a metric space X, define the distance from

x ∈ X to E by

ρE(x) = inf
z∈E

d(x, z).

(a) Prove that ρE(x) = 0 if and only if x ∈ E.

(b) Prove that ρE(x) is a uniformly continuous function on X, by show-

ing that

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x ∈ X, y ∈ X. Hint: ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z), so that

ρE(x) ≤ d(x, y) + ρE(y).

Proof of (a): (⇐) If x ∈ E ⊂ E, then

inf
z∈E

d(x, z) ≤ d(x, x) = 0

since we take z = x ∈ E. Hence ρE(x) = 0 if x ∈ E. Suppose

x ∈ E−E, that is, x is a limit point of E. Thus for every neighborhood

of x contains a point y 6= x such that q ∈ E. It implies that d(x, y) → 0

for some y ∈ E, that is, ρE(x) = infz∈E d(x, z) = 0 exactly.

(⇒) Suppose ρE(x) = infz∈E d(x, z) = 0. Fixed some x ∈ X. If

d(x, z) = 0 for some z ∈ E, then x = z, that is x ∈ E ⊂ E. If

d(x, z) > 0 for all z ∈ E, then by infz∈E d(x, z) = 0, for any ε > 0 there

exists z ∈ E such that

d(x, z) < ε,

that is,

z ∈ Nε(x).

Since ε is arbitrary and z ∈ E, x is a limit point of E. Thus x ∈ E ′ ⊂ E.
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Proof of (b): For all x ∈ X, y ∈ X, z ∈ E,

ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Take infimum on both sides, and we get that

ρE(x) ≤ d(x, y) + ρE(y).

Similarly, we also have

ρE(y) ≤ d(x, y) + ρE(x).

Hence

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x ∈ X, y ∈ X. Thus ρE is a uniformly continuous function on X.

Exercise 1: (Due to Shin-Yi Lee) In a metric space (S, d), let A be

a nonempty subset of S. Define a function fA(x) : S → R by the

equation

fA(x) = inf{d(x, y) : y ∈ A}

for every x ∈ S. The value fA(x) is called the distance from x to A.

(a) Prove that fA is uniformly continuous on S.

(b) Prove A = {x ∈ S : fA(x) = 0}.

Exercise 2: (Due to Shin-Yi Lee) In a metric space (S, d). Let A and

B be two disjoint closed subsets of S. Prove that there are two open

subset of S, say U and V such that A ⊂ U and B ⊂ V with U
⋂

V = φ.

It will be shown in Exercise 4.22.
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21. Suppose K and F are disjoint sets in a metric space X. K is compact.

F is closed. Prove that there exists δ > 0 such that d(p, q) > δ if

p ∈ K, q ∈ F . Hint: ρF is a continuous positive function on K.

Show that the conclusion may fail for two disjoint closed sets if neither

is compact.

Proof: Let

ρF (x) = inf
z∈F

d(x, z)

for all x ∈ K. By Exercise 4.20(a), we know that

ρF (x) = 0 ⇔ x ∈ F = F

(since F is closed). That is, ρF (x) = 0 if and only if x ∈ F . Since K and

F are disjoint, ρF (x) is a positive function. Also, by Exercise 4.20(b)

ρF (x) is continuous. Thus ρF (x) is a continuous positive function.

Since K is compact, ρF (x) takes minimum m > 0 for some x0 ∈ K.

Take δ = m/2 > 0 as desired.

Next, let X = R1,

A = Z+ − {2},

B = {n + 1/n : n ∈ Z+}.

Hence A and B are disjoint, and they are not compact. Suppose there

exists such δ > 0. Take

x = [
1

δ
] + 1 ∈ A, y = x +

1

x
∈ B.

However,

d(x, y) =
1

x
<

1

1/δ
= δ,

a contradiction.
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22. Let A and B be disjoint nonempty closed sets in a metric space X, and

define

f(p) =
ρA(p)

ρA(p) + ρB(p)
, (p ∈ X).

Show that f is a continuous function on X whose range lies in [0, 1],

that f(p) = 0 precisely on A and f(p) = 1 precisely on B. This

establishes a converse of Exercise 3: Every closed set A contained in X

is Z(f) for some continuous real f on X. Setting

V = f−1([0, 1/2)), W = f−1((1/2, 1]),

show that V and W are open and disjoint, and that A is contained in

V , B is contained in W . (Thus pairs of disjoint closed set in a metric

space can be covered by pairs of disjoint open sets. This property of

metric spaces is called normality.)

Proof: Note that ρA(p) and ρB(p) are (uniformly) continuous on X,

and ρA(p) + ρB(p) > 0. (Clearly, ρA(p) + ρB(p) ≥ 0 by the definition.

If ρA(p) + ρB(p) = 0, then p ∈ A
⋂

B by Exercise 20, a contradiction).

Thus f(p) = ρA(p)/(ρA(p)+ρB(p)) is continuous on X. Next, f(p) ≥ 0,

and f(p) ≤ 1 since ρA(p) ≤ ρA(p) + ρB(p). Thus f(X) lies in [0, 1].

Next, f(p) = 0 ⇔ ρA(p) = 0 ⇔ p ∈ A precisely, and f(p) = 1 ⇔
ρB(p) = 0 ⇔ p ∈ B precisely by Exercise 20.

Now we prove a converse of Exercise 3: Every closed set A ⊂ X is Z(f)

for some continuous real f on X. If Z(f) = φ, then f(x) = 1 for all

x ∈ X satisfies our requirement. If Z(f) 6= φ, we consider two possible

cases: (1) Z(f) = X; (2) Z(f) 6= X. If Z(f) = X, then f(x) = 0 for

all x ∈ X. If Z(f) 6= X, we can choose p ∈ X such that f(p) 6= 0.

Note that Z(f) and {p} are one pair of disjoint closed sets. Hence we
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let

f(x) =
ρZ(f)(x)

ρZ(f)(x) + ρ{p}(x)
.

By the previous result, we know that f(x) satisfies our requirement.

Hence we complete the whole proof.

Note that [0, 1/2) and (1/2, 1] are two open sets of f(X). Since f is

continuous, V = f−1([0, 1/2)) and W = f−1((1/2, 1]) are two open sets.

f−1({0}) ⊂ f−1([0, 1/2)), and f−1({1}) ⊂ f−1((1/2, 1]). Thus, A ⊂ V

and B ⊂ W . Thus a metric space X is normal.

23. A real-valued function f defined in (a, b) is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever a < x < b, a < y < b, 0 < λ < 1. Prove that every convex

function is continuous. Prove that every increasing convex function of

a convex function is convex. (For example, if f is convex, so is ef .)

If f is convex in (a, b) and if a < s < t < u < b, show that

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

24. Assume that f is a continuous real function defined in (a, b) such that

f(
x + y

2
) ≤ f(x) + f(y)

2

for all x, y ∈ (a, b). Prove that f is convex.

25. If A ⊂ Rk and B ⊂ Rk, define A + B to be the set of all sums x + y

with x ∈ A, y ∈ B.

(a) If K is compact and C is closed in Rk, prove that K + C is closed.

Hint: Take z /∈ K + C, put F = z−C, the set of all z−y with y ∈ C.
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Then K and F are disjoint. Choose δ as in Exercise 21. Show that the

open ball with center z and radius δ does not intersect K + C.

(b) Let α be an irrational real number. Let C1 be the set of all integers,

let C2 be the set of all nα with n ∈ C1. Show that C1 and C2 are closed

subsets of R1 whose sum C1 +C2 is not closed, by showing that C1 +C2

is a countable dense subset of R1.

26. Suppose X, Y , Z are metric spaces, and Y is compact. Let f map X

into Y , let g be a continuous one-to-one mapping of Y into Z, and put

h(x) = g(f(x)) for x ∈ X.

Prove that f is uniformly continuous if h is uniformly continuous. Hint:

g−1 has compact domain g(Y ), and f(x) = g−1(h(x)).

Prove also that f is continuous if h is continuous.

Show (by modifying Example 4.21, or by finding a different example)

that the compactness of Y cannot be omitted from the hypothese, even

when X and Z are compact.
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