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1. Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

Proof: |f(x)−f(y)| ≤ (x−y)2 for all real x and y. Fix y, |f(x)−f(y)
x−y

| ≤
|x− y|. Let x → y, therefore,

0 ≤ lim
x→y

f(x)− f(y)

x− y
≤ lim

x→y
|x− y| = 0

It implies that (f(x)− f(y))/(x− y) → 0 as x → y. Hence f ′(y) = 0,

f = const.

2. Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b),

and let g be its inverse function. Prove that g is differentible, and that

g′(f(x)) =
1

f ′(x)
(a < x < b).

Proof: For every pair x > y in (a, b), f(x)− f(y) = f ′(c)(x− y) where

y < c < x by Mean-Value Theorem. Note that c ∈ (a, b) and f ′(x) > 0

in (a, b), hence f ′(c) > 0. f(x) − f(y) > 0, f(x) > f(y) if x > y, f is

strictly increasing in (a, b).

Let ∆g = g(x0 + h)− g(x0). Note that x0 = f(g(x0)), and thus,

(x0 + h)− x0 = f(g(x0 + h))− f(g(x0)),
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h = f(g(x0) + ∆g)− f(g(x0)) = f(g + ∆g)− f(g).

Thus we apply the fundamental lemma of differentiation,

h = [f ′(g) + η(∆g)]∆g,

1

f ′(g) + η(∆g)
=

∆g

h

Note that f ′(g(x)) > 0 for all x ∈ (a, b) and η(∆g) → 0 as h → 0, thus,

lim
h→0

∆g/h = lim
h→0

1

f ′(g) + η(∆g)
=

1

f ′(g(x))
.

Thus g′(x) = 1
f ′(g(x))

, g′(f(x)) = 1
f ′(x)

.

3. Suppose g is a real function on R1, with bounded derivative (say

|g′| ≤ M). Fix ε > 0, and define f(x) = x + εg(x). Prove that f

is one-to-one if ε is small enough. (A set of admissible values of ε can

be determined which depends only on M .)

Proof: For every x < y, and x, y ∈ R, we will show that f(x) 6= f(y).

By using Mean-Value Theorem:

g(x)− g(y) = g′(c)(x− y) where x < c < y,

(x− y) + ε((x)− g(y)) = (εg′(c) + 1)(x− y),

that is,

f(x)− f(y) = (εg′(c) + 1)(x− y). (∗)

Since |g′(x)| ≤ M , −M ≤ g′(x) ≤ M for all x ∈ R. Thus 1 − εM ≤
εg′(c) + 1 ≤ 1 + εM , where x < c < y. Take c = 1

2M
, and εg′(c) + 1 > 0

where x < c < y for all x, y. Take into equation (*), and f(x)−f(y) < 0

since x− y < 0, that is, f(x) 6= f(y), that is, f is one-to-one (injective).
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4. If

C0 +
C1

2
+ ... +

Cn−1

n
+

Cn

n + 1
= 0,

where C0, ..., Cn are real constants, prove that the equation

C0 + C1x + ... + Cn−1x
n−1 + Cnx

n = 0

has at least one real root between 0 and 1.

Proof: Let f(x) = C0x + ... + Cn

n+1
xn+1. f is differentiable in R1

and f(0) = f(1) = 0. Thus, f(1) − f(0) = f ′(c) where c ∈ (0, 1) by

Mean-Value Theorem. Note that

f ′(x) = C0 + C1x + ... + Cn−1x
n−1 + Cnx

n.

Thus, c ∈ (0, 1) is one real root between 0 and 1 of that equation.

5. Suppose f is defined and differentiable for every x > 0, and f ′(x) → 0

as x → +∞. Put g(x) = f(x + 1) − f(x). Prove that g(x) → 0 as

x → +∞.

Proof: f(x + 1) − f(x) = f ′(c)(x + 1 − x) where x < c < x + 1

by Mean-Value Theorem. Thus, g(x) = f ′(c) where x < c < x + 1,

that is,

lim
x→+∞

g(x) = lim
x→+∞

f ′(c) = lim
c→+∞

f ′(c) = 0.

6. Suppose

(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,
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(d) f ′ is monotonically increasing.

Put

g(x) =
f(x)

x
(x > 0)

and prove that g is monotonically increasing.

Proof: Our goal is to show g′(x) > 0 for all x > 0

⇔ g′(x) = xf ′(x)−f(x)
x2 > 0 ⇔ f ′(x) > f(x)

x
.

Since f ′(x) exists, f(x) − f(0) = f ′(c)(x − 0) where 0 < c < x by

Mean-Value Theorem. ⇒ f ′(c) = f(x)
x

where 0 < c < x. Since f ′ is

monotonically increasing, f ′(x) > f ′(c), that is, f ′(x) > f(x)
x

for all

x > 0.

7. Suppose f ′(x), g′(x) exist, g′(x) 6= 0, and f(x) = g(x) = 0. Prove that

lim
t→x

f(t)

g(t)
=

f ′(x)

g′(x)
.

(This holds also for complex functions.)

Proof:

f ′(t)

g′(t)
=

limt→x
f(t)−f(x)

t−x

limt→x
g(t)−g(x)

t−x

=
limt→x f(t)

limt→x g(t)
= lim

t→x

f(t)

g(t)

Surely, this holds also for complex functions.

8. Suppose f ′(x) is continuous on [a, b] and ε > 0. Prove that there exists

δ > 0 such that

|f(t)− f(x)

t− x
− f ′(x)| < ε

whenever 0 < |t − x| < δ, a ≤ x ≤ b, a ≤ t ≤ b. (This could be

expressed by saying f is uniformly differentiable on [a, b] if f ′ is contin-

uous on [a, b].) Does this hold for vector-valued functions too?
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Proof: Since f ′(x) is continuous on a compact set [a, b], f ′(x) is uni-

formly continuous on [a, b]. Hence, for any ε > 0 there exists δ > 0

such that

|f ′(t)− f ′(x)| < ε

whenever 0 < |t − x| < δ, a ≤ x ≤ b, a ≤ t ≤ b. Thus, f ′(c) =
f(t)−f(x)

t−x
where c between t and x by Mean-Value Theorem. Note that

0 < |c− x| < δ and thus |f ′(c)− f ′(x)| < ε, thus,

|f(t)− f(x)

t− x
− f ′(x)| < ε

whenever 0 < |t− x| < δ, a ≤ x ≤ b, a ≤ t ≤ b.

Note: It does not hold for vector-valued functions. If not, take

f(x) = (cos x, sin x),

[a, b] = [0, 2π], and x = 0. Hence f ′(x) = (− sin x, cos x). Take any

1 > ε > 0, there exists δ > 0 such that

|f(t)− f(0)

t− 0
− f ′(0)| < ε

whenever 0 < |t| < δ by our hypothesis. With calculating,

|(cos t− 1

t
,
sin t

t
)− (0, 1)| < ε

|(cos t− 1

t
,
sin t

t
− 1)| < ε

(
cos t− 1

t
)2 + (

sin t

t
− 1)2 < ε2 < ε

2

t2
+ 1− 2(cos t + sin t)

t
< ε

since 1 > ε > 0. Note that

2

t2
+ 1− 4

t
<

2

t2
+ 1− 2(cos t + sin t)

t

But 2
t2

+ 1− 4
t
→ +∞ as t → 0. It contradicts.
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9. Let f be a continuous real function on R1, of which it is known that

f ′(x) exists for all x 6= 0 and that f ′(x) → 0 as x → 0. Dose it follow

that f ′(0) exists?

Note: We prove a more general exercise as following.

Suppose that f is continuous on an open interval I containing x0, sup-

pose that f ′ is defined on I except possibly at x0, and suppose that

f ′(x) → L as x → x0. Prove that f ′(x0) = L.

Proof of the Note: Using L’Hospital’s rule:

lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0
f ′(x0 + h)

By our hypothesis: f ′(x) → L as x → x0. Thus,

lim
h→0

f(x0 + h)− f(x0)

h
= L,

Thus f ′(x0) exists and

f ′(x0) = L.

10. Suppose f and g are complex differentiable functions on (0, 1), f(x) → 0,

g(x) → 0, f ′(x) → A, g′(x) → B as x → 0, where A and B are complex

numbers, B 6= 0. Prove that

lim
x→0

f(x)

g(x)
=

A

B
.

Compare with Example 5.18. Hint:

f(x)

g(x)
= (

f(x)

x
− A)

x

g(x)
+ A

x

g(x)
.

Apply Theorem 5.13 to the real and imaginary parts of f(x)
x

and g(x)
x

.
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Proof: Write f(x) = f1(x)+ if2(x), where f1(x), f2(x) are real-valued

functions. Thus,
df(x)

dx
=

df1(x)

dx
+ i

df2(x)

dx
,

Apply L’Hospital’s rule to f1(x)
x

and f2(x)
x

, we have

lim
x→0

f1(x)

x
= lim

x→0
f ′1(x)

lim
x→0

f2(x)

x
= lim

x→0
f ′2(x)

Combine f1(x) and f2(x), we have

lim
x→0

f1(x)

x
+ i lim

x→0

f2(x)

x
= lim

x→0

f1(x)

x
+ i

f2(x)

x
= lim

x→0

f(x)

x

or

lim
x→0

f1(x)

x
+ i lim

x→0

f2(x)

x
= lim

x→0
f ′1(x) + i lim

x→0
f ′2(x) = lim

x→0
f ′(x)

Thus, limx→0
f(x)

x
= limx→0 f ′(x). Similarly, limx→0

g(x)
x

= limx→0 g′(x).

Note that B 6= 0. Thus,

lim
x→0

f(x)

g(x)
= lim

x→0
(
f(x)

x
− A)

x

g(x)
+ A

x

g(x)

= (A− A)
1

B
+

A

B
=

A

B
.

Note: In Theorem 5.13, we know g(x) → +∞ as x → 0. (f(x) = x,

and g(x) = x + x2e
i

x2 ).

11. Suppose f is defined in a neighborhood of x, and suppose f”(x) exists.

Show that

lim
h→0

f(x + h) + f(x− h)− 2f(x)

h2
= f ′′(x).
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Show by an example that the limit may exist even if f”(x) dose not.

Hint: Use Theorem 5.13.

Proof: By using L’Hospital’s rule: (respect to h.)

lim
h→0

f(x + h) + f(x− h)− 2f(x)

h2
= lim

h→0

f ′(x + h)− f ′(x− h)

2h

Note that

f ′′(x) =
1

2
(f ′′(x) + f ′′(x))

=
1

2
(lim
h→0

f ′(x + h)− f ′(x)

h
+ lim

h→0

f ′(x− h)− f ′(x)

−h
)

=
1

2
lim
h→0

f ′(x + h)− f ′(x− h)

h

= lim
h→0

f ′(x + h)− f ′(x− h)

2h

Thus,
f(x + h) + f(x− h)− 2f(x)

h2
→ f ′′(x)

as h → 0. Counter-example: f(x) = x|x| for all real x.

12. If f(x) = |x|3, compute f ′(x), f ′′(x) for all real x, and show that f (3)(0)

does not exist.

Proof: f ′(x) = 3|x|2 if x 6= 0. Consider

f(h)− f(0)

h
=
|h|3

h

Note that |h|/h is bounded and |h|2 → 0 as h → 0. Thus,

f ′(0) = lim
h→0

f(h)− f(0)

h
= 0.

Hence, f ′(x) = 3|x|2 for all x. Similarly,

f ′′(x) = 6|x|.
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Thus,
f ′′(h)− f(0)

h
= 6

|h|
h

Since |h|
h

= 1 if h > 0 and = −1 if h < 0, f ′′′(0) does not exist.

13. Suppose a and c are real numbers, c > 0, and f is defined on [−1, 1] by

f(x) =

 xa sin (x−c) (if x 6= 0),

0 (if x = 0).

Prove the following statements:

(a) f is continuous if and only if a > 0.

(b) f ′(0) exists if and only if a > 1.

(c) f ′ is bounded if and only if a ≥ 1 + c.

(d) f ′ is continuous if and only if a > 1 + c.

(e) f ′′(0) exists if and only if a > 2 + c.

(f) f ′′ is bounded if and only if a ≥ 2 + 2c.

(g) f ′′ is continuous if and only if a > 2 + 2c.

Proof: For (a): (⇒) f is continuous iff for any sequence {xn} → 0

with xn 6= 0, xa
n sin x−c

n → 0 as n →∞. In particular, take

xn = (
1

2nπ + π/2
)

1
c > 0

and thus xa
n → 0 as n →∞. Hence a > 0. (If not, then a = 0 or a < 0.

When a = 0, xa
n = 1. When a < 0, xa

n = 1/x−a
n → ∞ as n → ∞. It

contradicts.)

(⇐) f is continuous on [−1, 1]− {0} clearly. Note that

−|xa| ≤ xa sin (x−c) ≤ |xa|,

and |xa| → 0 as x → 0 since a > 0. Thus f is continuous at x = 0.

Hence f is continuous.
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For (b): f ′(0) exists iff xa−1 sin (x−c) → 0 as x → 0. In the previous

proof we know that f ′(0) exists if and only if a−1 > 0. Also, f ′(0) = 0.

14. Let f be a differentiable real function defined in (a, b). Prove that f is

convex if and only if f ′ is monotonically increasing. Assume next that

f ′′(x) exist for every x ∈ (a, b), and prove that f is convex if and only

if f ′′(x) ≥ 0 for all x ∈ (a, b).

15. Suppose a ∈ R1, f is a twice-differentiable real function on (a,∞),

and M0, M1, M2 are the least upper bounds of |f(x)|, |f ′(x)|, |f ′′(x)|,
respectively, on (a,∞). Prove that

M2
1 ≤ 4M0M2.

Hint: If h > 0, Taylor’s theorem shows that

f ′(x) =
1

2h
[f(x + 2h)− f(x)]− hf ′′(ξ)

for some ξ ∈ (x, x + 2h). Hence

|f ′(x)| ≤ hM2 +
M0

h
.

To show that M2
1 = 4M0M2 can actually happen, take a = −1, define

f(x) =

 2x2 − 1 (−1 < x < 0),
x2−1
x2+1

(0 ≤ x < ∞),

and show that M0 = 1, M1 = 4, M2 = 4. Does M2
1 ≤ 4M0M2 hold for

vector-valued functions too?

Proof: Suppose h > 0. By using Taylor’s theorem:

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ)
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for some x < ξ < x + 2h. Thus

h|f ′(x)| ≤ |f(x + h)|+ |f(x)|+ h2

2
|f ′′(ξ)|

h|f ′(x)| ≤ 2M0 +
h2

2
M2.

h2M2 − 2h|f ′(x)|+ 4M0 ≥ 0 (∗)

Since equation (*) holds for all h > 0, its determinant must be non-

positive.

4|f ′(x)|2 − 4M2(4M0) ≤ 0

|f ′(x)|2 ≤ 4M0M2

(M1)
2 ≤ 2M0M2

Note: There is a similar exercise:

Suppose f(x)(−∞ < x < +∞) is a twice-differentiable real function,

and

Mk = sup
−∞<x<+∞

|f (k)(x)| < +∞ (k = 0, 1, 2).

Prove that M2
1 ≤ 2M0M2.

Proof of Note:

f(x + h) = f(x) + f ′(x)h +
f ′′(ξ1)

2
h2

(x < ξ1 < x + h or x > ξ1 > x + h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (*)

f(x− h) = f(x)− f ′(x)h +
f ′′(ξ2)

2
h2

(x− h < ξ2 < x or x− h > ξ2 > x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (**)

(*) minus (**):

f(x + h)− f(x− h) = 2f ′(x)h +
h2

2
(f ′′(ξ1)− f ′′(ξ2)).
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2h|f ′(x)| ≤ |2hf ′(x)|

2h|f ′(x)| ≤ |f(x + h)|+ |f(x− h)|+ h2

2
(|f ′′(ξ1)|+ |f ′′(ξ2)|)

2h|f ′(x)| ≤ 2M0 + h2M2

M2h
2 − 2|f ′(x)|h + 2M0 ≥ 0

Since this equation holds for all h, its determinant must be non-positive:

4|f ′(x)|2 − 4M2(2M0) ≤ 0,

|f ′(x)|2 ≤ 2M0M2

Thus

M2
1 ≤ 2M0M2

16. Suppose f is twice-differentiable on (0,∞), f ′′ is bounded on (0,∞),

and f(x) → 0 as x → ∞. Prove that f ′(x) → 0 as x → ∞. Hint: Let

a →∞ in Exercise 15.

Proof: Suppose a ∈ (0,∞), and M0, M1, M2 are the least upper

bounds of |f(x)|, |f ′(x)|, |f ′′(x)| on (a,∞). Hence, M2
1 ≤ 4M0M2. Let

a →∞, M0 = sup |f(x)| → 0. Since M2 is bounded, therefore M2
1 → 0

as a →∞. It implies that sup |f ′(x)| → 0 as x →∞.

17. Suppose f is a real, three times differentiable function on [−1, 1], such

that

f(−1) = 0, f(0) = 0, f(1) = 1, f ′(0) = 0.

Prove that f (3)(x) ≥ 3 for some x ∈ (−1, 1).

Note that equality holds for 1
2
(x3 + x2).
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Hint: Use Theorem 5.15, with α = 0 and β = 1,−1, to show that

there exist s ∈ (0, 1) and t ∈ (−1, 0) such that

f (3)(s) + f (3)(t) = 6.

Proof: By Theorem 5.15, we take α = 0, β = 1,

f(1) = f(0) + f ′(0) +
f ′′(0)

2
+

f (3)(s)

6

where s ∈ (0, 1). Take α = 0, andβ = −1,

f(−1) = f(0)− f ′(0) +
f ′′(0)

2
− f (3)(t)

6

where t ∈ (−1, 0). Thus

1 =
f ′′(0)

2
+

f (3)(s)

6
, s ∈ (0, 1) (∗)

0 =
f ′′(0)

2
− f (3)(s)

6
, s ∈ (−1, 0) (∗∗)

Equation (*) - equation (**):

f (3)(s)

6
+

f (3)(t)

6
, s ∈ (0, 1), t ∈ (−1, 0).

f (3)(s) + f (3)(t) = 6, s, t ∈ (−1, 1).

f (3)(x) ≥ 3 for some x ∈ (−1, 1).

Theorem 5.15: Suppose f is a real function on [a, b], n is a positive

integer, f (n−1) is continuous on [a, b], f (n)(t) exists for every t ∈ (a, b).

Let α, β be distinct points of [a, b], and define

P (t) =
n−1∑
k=0

f (k)(α)

k!
(t− α)k.
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Then there exists a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

18. Suppose f is a real function on [a, b], n is a positive integer, and f (n−1)

exists for every t ∈ [a, b]. Let α, β, and P be as in Taylor’s theorem

(5.15). Define

Q(t) =
f(t)− f(β)

t− β

for t ∈ [a, b], t 6= β, differentiate

f(t)− f(β) = (t− β)Q(t)

n − 1 times at t = α, and derive the following version of Taylor’s

theorem:

f(β) = P (β) +
Q(n−1)(α)

(n− 1)!
(β − α)n.

19. Suppose f is defined in (−1, 1) and f ′(0) exists. Suppose −1 < αn <

βn < 1, αn → 0, and βn → 0 as n →∞. Define the difference quotients

Dn =
f(βn)− f(αn)

βn − αn

Prove the following statements:

(a) If αn < 0 < βn, then lim Dn = f ′(0).

(b) If 0 < αn < βn and {βn/(βn−αn)} is bounded, then lim Dn = f ′(0).

(c) If f ′ is continuous in (−1, 1), then lim Dn = f ′(0).

Give an example in which f is differentiable in (−1, 1) (but f ′ is not

continuous at 0) and in which αn, βn tend to 0 in such a way that
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lim Dn exists but is different from f ′(0).

Proof: For (a):

Dn =
f(βn)− f(0)

βn

βn

βn − αn

+
f(αn)− f(0)

αn

−αn

βn − αn

Note that

f ′(0) = lim
n→∞

f(αn)− f(0)

αn

= lim
n→∞

f(βn)− f(0)

βn

Thus for any ε > 0, there exists N such that

L− ε <
f(αn)− f(0)

αn

< L + ε,

L− ε <
f(βn)− f(0)

βn

< L + ε,

whenever n > N where L = f ′(0) respectively. Note that βn/(βn−αn)

and −αn/(βn − αn) are positive. Hence,

βn

βn − αn

(L− ε) <
f(βn)− f(0)

βn

βn

βn − αn

<
βn

βn − αn

(L + ε)

−αn

βn − αn

(L− ε) <
f(αn)− f(0)

αn

−αn

βn − αn

<
−αn

βn − αn

(L + ε)

Combine two inequations,

L− ε < Dn < L + ε

Hence, lim Dn = L = f ′(0).

For (b): We process as above prove, but note that −αn/(βn−αn) < 0.

Thus we only have the following inequations:

βn

βn − αn

(L− ε) <
f(βn)− f(0)

βn

βn

βn − αn

<
βn

βn − αn

(L + ε)
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−αn

βn − αn

(L + ε) <
f(αn)− f(0)

αn

−αn

βn − αn

<
−αn

βn − αn

(L− ε)

Combine them:

L− βn + αn

βn − αn

ε < Dn < L +
βn + αn

βn − αn

ε

Note that {βn/(βn − αn)} is bounded, ie,

| βn

βn − αn

| ≤ M

for some constant M . Thus

|βn + αn

βn − αn

| = | 2βn

βn − αn

− 1| ≤ 2M + 1

Hence,

L− (2M + 1)ε < Dn < L + (2M + 1)ε

Hence, lim Dn = L = f ′(0).

For (c): By using Mean-Value Theorem,

Dn = f ′(tn)

where tn is between αn and βn. Note that

min{αn, βn} < tn < max{αn, βn}

and

max{αn, βn} =
1

2
(αn + βn + |αn − βn|)

min{αn, βn} =
1

2
(αn + βn − |αn − βn|)

Thus, max{αn, βn} → 0 and min{αn, βn} → 0 as αn → 0 and βn → 0.

By squeezing principle for limits, tn → 0. With the continuity of f ′,

we have

lim Dn = lim f ′(tn) = f ′(lim tn) = f ′(0).
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Example: Let f be defined by

f(x) =

 x2 sin(1/x) (x 6= 0),

0 (x = 0).

Thus f ′(x) is not continuous at x = 0, and f ′(0) = 0. Take αn =
1

π/2+2nπ
and βn = 1

2nπ
. It is clear that αn → 0, and βn → 0 as n →∞.

Also,

Dn =
−4nπ

π(π/2 + 2nπ)
→ − 2

π

as n →∞. Thus, lim Dn = −2/π exists and is different from 0 = f ′(0).

20.

21.

22. Suppose f is a real function on (−∞,∞). Call x a fixed point of f if

f(x) = x.

(a) If f is differentiable and f ′(t) 6= 1 for every real t, prove that f has

at most one fixed point.

(b) Show that the function f defined by

f(t) = t + (1 + et)−1

has no fixed point, although 0 < f ′(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that |f ′(t)| ≤ A for all

real t, prove that a fixed point x of f exists, and that x = lim xn, where

x1 is an arbitrary real number and

xn+1 = f(xn)

for n = 1, 2, 3, ...

17



(d) Show that the process describe in (c) can be visualized by the zig-

zag path

(x1, x2) → (x2, x2) → (x2, x3) → (x3, x3) → (x3, x4) → ....

Proof: For (a): If not, then there exists two distinct fixed points, say

x and y, of f . Thus f(x) = x and f(y) = y. Since f is differeniable,

by applying Mean-Value Theorem we know that

f(x)− f(y) = f ′(t)(x− y)

where t is between x and y. Since x 6= y, f ′(t) = 1. It contradicts.

For (b): We show that 0 < f ′(t) < 1 for all real t first:

f ′(t) = 1 + (−1)(1 + et)−2et = 1− et

(1 + et)2

Since

et > 0

(1 + et)2 = (1 + et)(1 + et) > 1(1 + et) = 1 + et > et > 0

for all real t, thus

(1 + et)−2et > 0

(1 + et)−2et < 1

for all real t. Hence 0 < f ′(t) < 1 for all real t.

Next, since f(t) − t = (1 − et)−1 > 0 for all real t, f(t) has no fixed

point.

For (c): Suppose xn+1 6= xn for all n. (If xn+1 = xn, then xn = xn+1 =

... and xn is a fixed point of f).

By Mean-Value Theorem,

f(xn+1)− f(xn) = f ′(tn)(xn+1 − xn)

18



where tn is betweem xn and xn+1. Thus,

|f(xn+1)− f(xn)| = |f ′(tn)||(xn+1 − xn)|

Note that |f ′(tn)| is bounded by A < 1, f(xn) = xn+1, and f(xn+1) =

xn+2. Thus

|xn+2 − xn+1| ≤ A|xn+1 − xn|

|xn+1 − xn| ≤ CAn−1

where C = |x2 − x1|. For two positive integers p > q,

|xp − xq| ≤ |xp − xp−1|+ ... + |xq+1 − xq|

= C(Aq−1 + Aq + ... + Ap−2)

≤ CAq−1

1− A
.

Hence

|xp − xq| ≤
CAq−1

1− A
.

Hence, for any ε > 0, there exists N = [logA
ε(1−A)

C
] + 2 such that

|xp − xq| < ε whenever p > q ≥ N . By Cauchy criterion we know that

{xn} converges to x. Thus,

lim
n→∞

xn+1 = f( lim
n→∞

xn)

since f is continuous. Thus,

x = f(x).

x is a fixed point of f .

For (d): Since xn+1 = f(xn), it is trivial.

23.

24.
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25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f ′(x) ≥
δ > 0, and 0 ≤ f ′′(x) ≤ M for all x ∈ [a, b]. Let ξ be the unique point

in (a, b) at which f(ξ) = 0.

Complete the details in the following outline of Newton’s method for

computing ξ.

(a) Choose x1 ∈ (ξ, b), and define {xn} by

xn+1 = xn −
f(xn)

f ′(xn)
.

Interpret this geometrically, in terms of a tangent to the graph of f .

(b) Prove that xn+1 < xn and that

lim
n−>oo

xn = ξ.

(c) Use Taylor’s theorem to show that

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2

for some tn ∈ (ξ, xn).

(d) If A = M
2δ

, deduce that

0 ≤ xn+1 − ξ ≤ 1

A
[A(x1 − ξ)]2

n

.

(Compare with Exercise 16 and 18, Chap. 3)

(e) Show that Newton’s method amounts to finding a fixed point of the

function g defined by

g(x) = x− f(x)

f ′(x)
.

How does g′(x) behave for x near ξ?

(f) Put f(x) = x1/3 on (−∞,∞) and try Newton’s method. What

happens?

20



Proof: For (a): You can see the picture in the following URL:

http://archives.math.utk.edu/visual.calculus/3/newton.5/1.html.

For (b): We show that xn ≥ xn+1 ≥ ξ. (induction). By Mean-Value

Theorem, f(xn) − f(ξ) = f ′(cn)(xn − ξ) where cn ∈ (ξ, xn). Since

f ′′ ≥ 0, f ′ is increasing and thus

f(xn)

xn − ξ
= f ′(cn) ≤ f ′(xn) =

f(xn)

xn − xn+1

f(xn)(xn − ξ) ≤ f(xn)(xn − xn+1)

Note that f(xn) > f(ξ) = 0 since f ′ ≥ δ > 0 and f is strictly increasing.

Thus,

xn − ξ ≤ xn − xn+1

ξ ≤ xn+1

Note that f(xn) > 0 and f ′(xn) > 0. Thus xn+1 < xn. Hence,

xn > xn+1 ≥ ξ.

Thus, {xn} converges to a real number ζ. Suppose ζ 6= ξ, then

xn+1 = xn −
f(xn)

f ′(xn)

Note that f(xn)
f ′(xn)

> f(ζ)
δ

. Let α = f(ζ)
δ

> 0, be a constant. Thus,

xn+1 < xn − α

for all n. Thus, xn < x1 − (n − 1)α, that is, xn → −∞ as n → ∞. It

contradicts. Thus, {xn} converges to ξ.

For (c): By using Taylor’s theorem,

f(ξ) = f(xn) + f ′(xn)(ξ − xn) +
f ′′(tn)

2(xn − ξ)2

0 = f(xn) + f ′(xn)(ξ − xn) +
f ′′(tn)

2(xn − ξ)2
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0 =
f(xn)

f ′(xn)
− xn + ξ +

f ′′(tn)

2f ′(xn)
(xn − ξ)2

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2

where tn ∈ (ξ, xn).

For (d): By (b) we know that 0 ≤ xn+1 − ξ for all n. Next by (c) we

know that

xn+1 − ξ =
f ′′(tn)

2f ′(xn)
(xn − ξ)2

Note that f ′′ ≤ M and f ′ ≥ δ > 0. Thus

xn+1 − ξ ≤ A(xn − ξ)2 ≤ 1

A
(A(x1 − ξ))2n

by the induction. Thus,

0 ≤ xn+1 − ξ ≤ 1

A
[A(x1 − ξ)]2

n

.

For (e): If x0 is a fixed point of g(x), then g(x0) = x0, that is,

x0 −
f(x0)

f ′(x0)
= x0

f(x0) = 0.

It implies that x0 = ξ and x0 is unique since f is strictly increasing.

Thus, we choose x1 ∈ (ξ, b) and apply Newton’s method, we can find

out ξ. Hence we can find out x0.

Next, by calculating

g′(x) =
f(x)f ′′(x)

f ′(x)2

0 ≤ g′(x) ≤ f(x)
M

δ2
.

As x near ξ from right hand side, g′(x) near f(ξ) = 0.
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For (f): xn+1 = xn − f(xn)
f ′(xn)

= −2xn by calculating. Thus,

xn = (−2)n−1x1

for all n, thus {xn} does not converges for any choice of x1, and we

cannot find ξ such that f(ξ) = 0 in this case.

26. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number

A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all

x ∈ [a, b]. Hint: Fix x0 ∈ [a, b], let

M0 = sup |f(x)|, M1 = sup |f ′(x)|

for a ≤ x ≤ x0. For any such x,

|f(x)| ≤ M1(x0 − a) ≤ A(x0 − a)M0.

Hence M0 = 0 if A(x0 − a) < 1. That is, f = 0 on [a, x0]. Proceed.

Proof: Suppose A > 0. (If not, then f = 0 on [a, b] clearly.) Fix

x0 ∈ [a, b], let

M0 = sup |f(x)|, M1 = sup |f ′(x)|

for a ≤ x ≤ x0. For any such x,

f(x)− f(a) = f ′(c)(x− a)

where c is between x and a by using Mean-Value Theorem. Thus

|f(x)| ≤ M1(x− a) ≤ M1(x0 − a) ≤ A(x0 − a)M0

Hence M0 = 0 if A(x0 − a) < 1. That is, f = 0 on [a, x0] by taking

x0 = a + 1
2A

. Repeat the above argument by replacing a with x0, and

note that 1
2A

is a constant. Hence, f = 0 on [a, b].
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27. Let φ be a real function defined on a rectangle R in the plane, given

by a ≤ x ≤ b, α ≤ y ≤ β. A solution of the initial-value problem

y′ = φ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f on [a, b] such that f(a) = c,

α ≤ f(x) ≤ β, and

f ′(x) = φ(x, f(x)) (a ≤ x ≤ b)

Prove that such a problem has at most one solution if there is a constant

A such that

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|

whenever (x, y1) ∈ R and (x, y2) ∈ R.

Hint: Apply Exercise 26 to the difference of two solutions. Note that

this uniqueness theorem does not hold for the initial-value problem

y′ = y1/2, y(0) = 0,

which has two solutions: f(x) = 0 and f(x) = x2/4. Find all other

solutions.

Proof: Suppose y1 and y2 are solutions of that problem. Since

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|,

y(a) = c, y′1 = φ(x, y1), and y′2 = φ(x, y2), by Exercise 26 we know that

y1 − y2 = 0, y1 = y2. Hence, such a problem has at most one solution.

Note: Suppose there is initial-value problem

y′ = y1/2, y(0) = 0.
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If y1/2 6= 0, then y1/2dy = dx. By integrating each side and noting that

y(0) = 0, we know that f(x) = x2/4. With y1/2 = 0, or y = 0. All

solutions of that problem are

f(x) = 0 and f(x) = x2/4

Why the uniqueness theorem does not hold for this problem? One

reason is that there does not exist a constant A satisfying

|y′1 − y′2| ≤ A|y1 − y2|

if y1 and y2 are solutions of that problem. (since 2/x → ∞ as x → 0

and thus A does not exist).

28. Formulate and prove an analogous uniqueness theorem for systems of

differential equations of the form

y′j = φj(x, y1, ..., yk), yj(a) = cj (j = 1, ..., k)

Note that this can be rewritten in the form

y′ = φ(x, y), y(a) = c

where y = (y1, ..., yk) ranges over a k-cell, φ is the mapping of a (k+1)-

cell into the Euclidean k-space whose components are the function

φ1, ..., φk, and c is the vector (c1, ..., ck). Use Exercise 26, for vector-

valued functions.

Theorem: Let φj(j = 1, ..., k) be real functions defined on a rectangle

Rj in the plane given by a ≤ x ≤ b, αj ≤ yj ≤ βj.

A solution of the initial-value problem

y′j = φ(x, yj), yj(a) = cj (αj ≤ cj ≤ βj)
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is, by definition, a differentiable function fj on [a, b] such that fj(a) =

cj, αj ≤ fj(x) ≤ βj, and

f ′j(x) = φj(x, fj(x)) (a ≤ x ≤ b)

Then this problem has at most one solution if there is a constant A

such that

|φj(x, yj2)− φj(x, yj1)| ≤ A|yj2 − yj1|

whenever (x, yj1) ∈ Rj and (x, yj2) ∈ Rj.

Proof: Suppose y1 and y2 are solutions of that problem. For each

components of y1 and y2, say y1j and y2j respectively, y1j = y2j by

using Exercise 26. Thus, y1 = y2

29. Specialize Exercise 28 by considering the system

y′j = yj+1 (j = 1, ..., k − 1),

y′k = f(x)−
k∑

j=1

gj(x)yj

where f, g1, ..., gk are continuous real functions on [a, b], and derive a

uniqueness theorem for solutions of the equation

y(k) + gk(x)y(k−1) + ... + g2(x)y′ + g1(x)y = f(x),

subject to initial conditions

y(a) = c1, y
′(a) = c1, ..., y

(k−1)(a) = ck.

Theorem: Let Rj be a rectangle in the plain, given by a ≤ x ≤ b,

min yj ≤ yj ≤ max yj. (since yj is continuous on the compact set, say
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[a, b], we know that yj attains minimal and maximal.) If there is a

constant A such that |yj+1,1 − yj+1,2| ≤ A|yj,1 − yj,2| (j < k)

|∑k
j=1 gj(x)(yj,1 − yj,2)| ≤ A|yk,1 − yk,2|

whenever (x, yj,1) ∈ Rj and (x, yj,2) ∈ Rj.

Proof: Since the system y′1, ..., y
′
k with initial conditions satisfies a fact

that there is a constant A such that |y′1−y′2| ≤ A|y1−y2|, that system

has at most one solution. Hence,

y(k) + gk(x)y(k−1) + ... + g2(x)y′ + g1(x)y = f(x),

with initial conditions has at most one solution.
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