Differentiation

Written by Men-Gen Tsai email: b89902089@ntu.edu.tw

1. Let f be defined for all real x, and suppose that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Proof: $|f(x) - f(y)| \le (x - y)^2$ for all real x and y. Fix y, $|\frac{f(x) - f(y)}{x - y}| \le |x - y|$. Let $x \to y$, therefore,

$$0 \le \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \le \lim_{x \to y} |x - y| = 0$$

It implies that $(f(x) - f(y))/(x - y) \to 0$ as $x \to y$. Hence f'(y) = 0, f = const.

2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)} \ (a < x < b).$$

Proof: For every pair x > y in (a, b), f(x) - f(y) = f'(c)(x - y) where y < c < x by Mean-Value Theorem. Note that $c \in (a, b)$ and f'(x) > 0 in (a, b), hence f'(c) > 0. f(x) - f(y) > 0, f(x) > f(y) if x > y, f is strictly increasing in (a, b).

Let $\Delta g = g(x_0 + h) - g(x_0)$. Note that $x_0 = f(g(x_0))$, and thus,

$$(x_0 + h) - x_0 = f(g(x_0 + h)) - f(g(x_0)),$$

$$h = f(g(x_0) + \Delta g) - f(g(x_0)) = f(g + \Delta g) - f(g).$$

Thus we apply the fundamental lemma of differentiation,

$$h = [f'(g) + \eta(\Delta g)]\Delta g,$$
$$\frac{1}{f'(g) + \eta(\Delta g)} = \frac{\Delta g}{h}$$

Note that f'(g(x)) > 0 for all $x \in (a, b)$ and $\eta(\Delta g) \to 0$ as $h \to 0$, thus,

$$\lim_{h \to 0} \Delta g/h = \lim_{h \to 0} \frac{1}{f'(g) + \eta(\Delta g)} = \frac{1}{f'(g(x))}$$

Thus $g'(x) = \frac{1}{f'(g(x))}, g'(f(x)) = \frac{1}{f'(x)}.$

3. Suppose g is a real function on R^1 , with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$, and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough. (A set of admissible values of ϵ can be determined which depends only on M.)

Proof: For every x < y, and $x, y \in R$, we will show that $f(x) \neq f(y)$. By using Mean-Value Theorem:

$$g(x) - g(y) = g'(c)(x - y) \text{ where } x < c < y,$$
$$(x - y) + \epsilon((x) - g(y)) = (\epsilon g'(c) + 1)(x - y),$$

that is,

$$f(x) - f(y) = (\epsilon g'(c) + 1)(x - y). \quad (*)$$

Since $|g'(x)| \leq M$, $-M \leq g'(x) \leq M$ for all $x \in R$. Thus $1 - \epsilon M \leq \epsilon g'(c) + 1 \leq 1 + \epsilon M$, where x < c < y. Take $c = \frac{1}{2M}$, and $\epsilon g'(c) + 1 > 0$ where x < c < y for all x, y. Take into equation (*), and f(x) - f(y) < 0 since x - y < 0, that is, $f(x) \neq f(y)$, that is, f is one-to-one (injective).

4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

where $C_0, ..., C_n$ are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof: Let $f(x) = C_0 x + \ldots + \frac{C_n}{n+1} x^{n+1}$. f is differentiable in R^1 and f(0) = f(1) = 0. Thus, f(1) - f(0) = f'(c) where $c \in (0, 1)$ by Mean-Value Theorem. Note that

$$f'(x) = C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n.$$

Thus, $c \in (0, 1)$ is one real root between 0 and 1 of that equation.

5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Proof: f(x + 1) - f(x) = f'(c)(x + 1 - x) where x < c < x + 1 by Mean-Value Theorem. Thus, g(x) = f'(c) where x < c < x + 1, that is,

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} f'(c) = \lim_{c \to +\infty} f'(c) = 0.$$

6. Suppose

- (a) f is continuous for $x \ge 0$,
- (b) f'(x) exists for x > 0,
- (c) f(0) = 0,

(d) f' is monotonically increasing. Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

Proof: Our goal is to show g'(x) > 0 for all x > 0 $\Leftrightarrow g'(x) = \frac{xf'(x) - f(x)}{x^2} > 0 \Leftrightarrow f'(x) > \frac{f(x)}{x}$. Since f'(x) exists, f(x) - f(0) = f'(c)(x - 0) where 0 < c < x by Mean-Value Theorem. $\Rightarrow f'(c) = \frac{f(x)}{x}$ where 0 < c < x. Since f' is monotonically increasing, f'(x) > f'(c), that is, $f'(x) > \frac{f(x)}{x}$ for all x > 0.

7. Suppose f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that $\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$

(This holds also for complex functions.)

Proof:

$$\frac{f'(t)}{g'(t)} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} f(t)}{\lim_{t \to x} g(t)} = \lim_{t \to x} \frac{f(t)}{g(t)}$$

Surely, this holds also for complex functions.

8. Suppose f'(x) is continuous on [a, b] and $\epsilon > 0$. Prove that there exists $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying f is uniformly differentiable on [a, b] if f' is continuous on [a, b].) Does this hold for vector-valued functions too?

Proof: Since f'(x) is continuous on a compact set [a, b], f'(x) is uniformly continuous on [a, b]. Hence, for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$|f'(t) - f'(x)| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$. Thus, $f'(c) = \frac{f(t) - f(x)}{t - x}$ where c between t and x by Mean-Value Theorem. Note that $0 < |c - x| < \delta$ and thus $|f'(c) - f'(x)| < \epsilon$, thus,

$$\left|\frac{f(t) - f(x)}{t - x} - f'(x)\right| < \epsilon$$

whenever $0 < |t - x| < \delta$, $a \le x \le b$, $a \le t \le b$.

Note: It does not hold for vector-valued functions. If not, take

 $f(x) = (\cos x, \sin x),$

 $[a,b] = [0,2\pi]$, and x = 0. Hence $f'(x) = (-\sin x, \cos x)$. Take any $1 > \epsilon > 0$, there exists $\delta > 0$ such that

$$\left|\frac{f(t) - f(0)}{t - 0} - f'(0)\right| < \epsilon$$

whenever $0 < |t| < \delta$ by our hypothesis. With calculating,

$$\begin{split} |(\frac{\cos t - 1}{t}, \frac{\sin t}{t}) - (0, 1)| &< \epsilon \\ |(\frac{\cos t - 1}{t}, \frac{\sin t}{t} - 1)| &< \epsilon \\ (\frac{\cos t - 1}{t})^2 + (\frac{\sin t}{t} - 1)^2 &< \epsilon^2 < \epsilon \\ \frac{2}{t^2} + 1 - \frac{2(\cos t + \sin t)}{t} < \epsilon \end{split}$$

since $1 > \epsilon > 0$. Note that

$$\frac{2}{t^2} + 1 - \frac{4}{t} < \frac{2}{t^2} + 1 - \frac{2(\cos t + \sin t)}{t}$$

But $\frac{2}{t^2} + 1 - \frac{4}{t} \to +\infty$ as $t \to 0$. It contradicts.

9. Let f be a continuous real function on R^1 , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 0$ as $x \to 0$. Dose it follow that f'(0) exists?

Note: We prove a more general exercise as following.

Suppose that f is continuous on an open interval I containing x_0 , suppose that f' is defined on I except possibly at x_0 , and suppose that $f'(x) \to L$ as $x \to x_0$. Prove that $f'(x_0) = L$.

Proof of the Note: Using L'Hospital's rule:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} f'(x_0 + h)$$

By our hypothesis: $f'(x) \to L$ as $x \to x_0$. Thus,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = L,$$

Thus $f'(x_0)$ exists and

$$f'(x_0) = L.$$

10. Suppose f and g are complex differentiable functions on (0, 1), $f(x) \to 0$, $g(x) \to 0$, $f'(x) \to A$, $g'(x) \to B$ as $x \to 0$, where A and B are complex numbers, $B \neq 0$. Prove that

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{A}{B}.$$

Compare with Example 5.18. *Hint:*

$$\frac{f(x)}{g(x)} = \left(\frac{f(x)}{x} - A\right)\frac{x}{g(x)} + A\frac{x}{g(x)}.$$

Apply Theorem 5.13 to the real and imaginary parts of $\frac{f(x)}{x}$ and $\frac{g(x)}{x}$.

Proof: Write $f(x) = f_1(x) + if_2(x)$, where $f_1(x)$, $f_2(x)$ are real-valued functions. Thus,

$$\frac{df(x)}{dx} = \frac{df_1(x)}{dx} + i\frac{df_2(x)}{dx},$$

Apply L'Hospital's rule to $\frac{f_1(x)}{x}$ and $\frac{f_2(x)}{x}$, we have

$$\lim_{x \to 0} \frac{f_1(x)}{x} = \lim_{x \to 0} f_1'(x)$$
$$\lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} f_2'(x)$$

Combine $f_1(x)$ and $f_2(x)$, we have

$$\lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} \frac{f_1(x)}{x} + i \frac{f_2(x)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$$

or

$$\lim_{x \to 0} \frac{f_1(x)}{x} + i \lim_{x \to 0} \frac{f_2(x)}{x} = \lim_{x \to 0} f_1'(x) + i \lim_{x \to 0} f_2'(x) = \lim_{x \to 0} f'(x)$$

Thus, $\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} f'(x)$. Similarly, $\lim_{x\to 0} \frac{g(x)}{x} = \lim_{x\to 0} g'(x)$. Note that $B \neq 0$. Thus,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \left(\frac{f(x)}{x} - A\right) \frac{x}{g(x)} + A \frac{x}{g(x)}$$
$$= (A - A) \frac{1}{B} + \frac{A}{B} = \frac{A}{B}.$$

Note: In Theorem 5.13, we know $g(x) \to +\infty$ as $x \to 0$. (f(x) = x, and $g(x) = x + x^2 e^{\frac{i}{x^2}})$.

11. Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$$

Show by an example that the limit may exist even if f''(x) dose not. Hint: Use Theorem 5.13.

Proof: By using L'Hospital's rule: (respect to h.)

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

Note that

$$\begin{aligned} f''(x) &= \frac{1}{2}(f''(x) + f''(x)) \\ &= \frac{1}{2}(\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} + \lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h}) \\ &= \frac{1}{2}\lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{h} \\ &= \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h} \end{aligned}$$

Thus,

$$\frac{f(x+h) + f(x-h) - 2f(x)}{h^2} \to f''(x)$$

as $h \to 0$. Counter-example: f(x) = x|x| for all real x.

12. If $f(x) = |x|^3$, compute f'(x), f''(x) for all real x, and show that $f^{(3)}(0)$ does not exist.

Proof: $f'(x) = 3|x|^2$ if $x \neq 0$. Consider

$$\frac{f(h) - f(0)}{h} = \frac{|h|^3}{h}$$

Note that |h|/h is bounded and $|h|^2 \to 0$ as $h \to 0$. Thus,

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = 0.$$

Hence, $f'(x) = 3|x|^2$ for all x. Similarly,

$$f''(x) = 6|x|.$$

Thus,

$$\frac{f''(h) - f(0)}{h} = 6\frac{|h|}{h}$$

Since $\frac{|h|}{h} = 1$ if h > 0 and = -1 if h < 0, f'''(0) does not exist.

13. Suppose a and c are real numbers, c > 0, and f is defined on [-1, 1] by

$$f(x) = \begin{cases} x^{a} \sin(x^{-c}) & (\text{if } x \neq 0), \\ 0 & (\text{if } x = 0). \end{cases}$$

Prove the following statements:

- (a) f is continuous if and only if a > 0.
- (b) f'(0) exists if and only if a > 1.
- (c) f' is bounded if and only if $a \ge 1 + c$.
- (d) f' is continuous if and only if a > 1 + c.
- (e) f''(0) exists if and only if a > 2 + c.
- (f) f'' is bounded if and only if $a \ge 2 + 2c$.
- (g) f'' is continuous if and only if a > 2 + 2c.

Proof: For (a): (\Rightarrow) f is continuous iff for any sequence $\{x_n\} \to 0$ with $x_n \neq 0$, $x_n^a \sin x_n^{-c} \to 0$ as $n \to \infty$. In particular, take

$$x_n = (\frac{1}{2n\pi + \pi/2})^{\frac{1}{c}} > 0$$

and thus $x_n^a \to 0$ as $n \to \infty$. Hence a > 0. (If not, then a = 0 or a < 0. When a = 0, $x_n^a = 1$. When a < 0, $x_n^a = 1/x_n^{-a} \to \infty$ as $n \to \infty$. It contradicts.)

(\Leftarrow) f is continuous on $[-1,1] - \{0\}$ clearly. Note that

$$-|x^a| \le x^a \sin\left(x^{-c}\right) \le |x^a|,$$

and $|x^a| \to 0$ as $x \to 0$ since a > 0. Thus f is continuous at x = 0. Hence f is continuous. For (b): f'(0) exists iff $x^{a-1} \sin(x^{-c}) \to 0$ as $x \to 0$. In the previous proof we know that f'(0) exists if and only if a-1 > 0. Also, f'(0) = 0.

- 14. Let f be a differentiable real function defined in (a, b). Prove that f is convex if and only if f' is monotonically increasing. Assume next that f''(x) exist for every $x \in (a, b)$, and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.
- 15. Suppose $a \in \mathbb{R}^1$, f is a twice-differentiable real function on (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)|,respectively, on (a, ∞) . Prove that

$$M_1^2 \le 4M_0M_2.$$

Hint: If h > 0, Taylor's theorem shows that

$$f'(x) = \frac{1}{2h} [f(x+2h) - f(x)] - hf''(\xi)$$

for some $\xi \in (x, x + 2h)$. Hence

$$|f'(x)| \le hM_2 + \frac{M_0}{h}.$$

To show that $M_1^2 = 4M_0M_2$ can actually happen, take a = -1, define

$$f(x) = \begin{cases} 2x^2 - 1 & (-1 < x < 0), \\ \frac{x^2 - 1}{x^2 + 1} & (0 \le x < \infty), \end{cases}$$

and show that $M_0 = 1, M_1 = 4, M_2 = 4$. Does $M_1^2 \le 4M_0M_2$ hold for vector-valued functions too?

Proof: Suppose h > 0. By using Taylor's theorem:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(\xi)$$

for some $x < \xi < x + 2h$. Thus

$$h|f'(x)| \le |f(x+h)| + |f(x)| + \frac{h^2}{2}|f''(\xi)|$$
$$h|f'(x)| \le 2M_0 + \frac{h^2}{2}M_2.$$
$$h^2M_2 - 2h|f'(x)| + 4M_0 \ge 0 \quad (*)$$

Since equation (*) holds for all h > 0, its determinant must be non-positive.

$$4|f'(x)|^2 - 4M_2(4M_0) \le 0$$
$$|f'(x)|^2 \le 4M_0M_2$$
$$(M_1)^2 \le 2M_0M_2$$

Note: There is a similar exercise:

Suppose $f(x)(-\infty < x < +\infty)$ is a twice-differentiable real function, and

$$M_k = \sup_{-\infty < x < +\infty} |f^{(k)}(x)| < +\infty \ (k = 0, 1, 2).$$

Prove that $M_1^2 \leq 2M_0M_2$.

Proof of Note:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\xi_1)}{2}h^2$$

 $(x < \xi_1 < x + h \text{ or } x > \xi_1 > x + h)$ (*)

$$f(x-h) = f(x) - f'(x)h + \frac{f''(\xi_2)}{2}h^2$$

 $(x - h < \xi_2 < x \text{ or } x - h > \xi_2 > x)$ (**) (*) minus (**):

$$f(x+h) - f(x-h) = 2f'(x)h + \frac{h^2}{2}(f''(\xi_1) - f''(\xi_2)).$$

$$2h|f'(x)| \le |2hf'(x)|$$

$$2h|f'(x)| \le |f(x+h)| + |f(x-h)| + \frac{h^2}{2}(|f''(\xi_1)| + |f''(\xi_2)|)$$

$$2h|f'(x)| \le 2M_0 + h^2M_2$$

$$M_2h^2 - 2|f'(x)|h + 2M_0 \ge 0$$

Since this equation holds for all h, its determinant must be non-positive:

$$4|f'(x)|^2 - 4M_2(2M_0) \le 0,$$
$$|f'(x)|^2 \le 2M_0M_2$$

Thus

$$M_1^2 \le 2M_0 M_2$$

16. Suppose f is twice-differentiable on $(0, \infty)$, f'' is bounded on $(0, \infty)$, and $f(x) \to 0$ as $x \to \infty$. Prove that $f'(x) \to 0$ as $x \to \infty$. Hint: Let $a \to \infty$ in Exercise 15.

Proof: Suppose $a \in (0, \infty)$, and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)| on (a, ∞) . Hence, $M_1^2 \leq 4M_0M_2$. Let $a \to \infty, M_0 = \sup |f(x)| \to 0$. Since M_2 is bounded, therefore $M_1^2 \to 0$ as $a \to \infty$. It implies that $\sup |f'(x)| \to 0$ as $x \to \infty$.

17. Suppose f is a real, three times differentiable function on [-1, 1], such that

$$f(-1) = 0, f(0) = 0, f(1) = 1, f'(0) = 0.$$

Prove that $f^{(3)}(x) \ge 3$ for some $x \in (-1, 1)$. Note that equality holds for $\frac{1}{2}(x^3 + x^2)$. **Hint:** Use Theorem 5.15, with $\alpha = 0$ and $\beta = 1, -1$, to show that there exist $s \in (0, 1)$ and $t \in (-1, 0)$ such that

$$f^{(3)}(s) + f^{(3)}(t) = 6.$$

Proof: By Theorem 5.15, we take $\alpha = 0, \beta = 1$,

$$f(1) = f(0) + f'(0) + \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}$$

where $s \in (0, 1)$. Take $\alpha = 0, and\beta = -1$,

$$f(-1) = f(0) - f'(0) + \frac{f''(0)}{2} - \frac{f^{(3)}(t)}{6}$$

where $t \in (-1, 0)$. Thus

$$1 = \frac{f''(0)}{2} + \frac{f^{(3)}(s)}{6}, s \in (0, 1) \quad (*)$$
$$0 = \frac{f''(0)}{2} - \frac{f^{(3)}(s)}{6}, s \in (-1, 0) \quad (**)$$

Equation (*) - equation (**):

$$\frac{f^{(3)}(s)}{6} + \frac{f^{(3)}(t)}{6}, s \in (0, 1), t \in (-1, 0).$$
$$f^{(3)}(s) + f^{(3)}(t) = 6, s, t \in (-1, 1).$$
$$f^{(3)}(x) \ge 3 \text{ for some } x \in (-1, 1).$$

Theorem 5.15: Suppose f is a real function on [a, b], n is a positive integer, $f^{(n-1)}$ is continuous on [a, b], $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of [a, b], and define

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!} (t-\alpha)^k.$$

Then there exists a point x between α and β such that

$$f(\beta) = P(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n.$$

18. Suppose f is a real function on [a, b], n is a positive integer, and $f^{(n-1)}$ exists for every $t \in [a, b]$. Let α , β , and P be as in Taylor's theorem (5.15). Define

$$Q(t) = \frac{f(t) - f(\beta)}{t - \beta}$$

for $t \in [a, b], t \neq \beta$, differentiate

$$f(t) - f(\beta) = (t - \beta)Q(t)$$

n-1 times at $t = \alpha$, and derive the following version of Taylor's theorem:

$$f(\beta) = P(\beta) + \frac{Q^{(n-1)}(\alpha)}{(n-1)!} (\beta - \alpha)^n.$$

19. Suppose f is defined in (-1, 1) and f'(0) exists. Suppose $-1 < \alpha_n < \beta_n < 1, \alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Define the difference quotients

$$D_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}$$

Prove the following statements:

- (a) If $\alpha_n < 0 < \beta_n$, then $\lim D_n = f'(0)$.
- (b) If $0 < \alpha_n < \beta_n$ and $\{\beta_n/(\beta_n \alpha_n)\}$ is bounded, then $\lim D_n = f'(0)$.
- (c) If f' is continuous in (-1, 1), then $\lim D_n = f'(0)$.

Give an example in which f is differentiable in (-1,1) (but f' is not continuous at 0) and in which α_n , β_n tend to 0 in such a way that

 $\lim D_n$ exists but is different from f'(0).

Proof: For (a):

$$D_n = \frac{f(\beta_n) - f(0)}{\beta_n} \frac{\beta_n}{\beta_n - \alpha_n} + \frac{f(\alpha_n) - f(0)}{\alpha_n} \frac{-\alpha_n}{\beta_n - \alpha_n}$$

Note that

$$f'(0) = \lim_{n \to \infty} \frac{f(\alpha_n) - f(0)}{\alpha_n} = \lim_{n \to \infty} \frac{f(\beta_n) - f(0)}{\beta_n}$$

Thus for any $\epsilon > 0$, there exists N such that

$$L - \epsilon < \frac{f(\alpha_n) - f(0)}{\alpha_n} < L + \epsilon,$$
$$L - \epsilon < \frac{f(\beta_n) - f(0)}{\beta_n} < L + \epsilon,$$

whenever n > N where L = f'(0) respectively. Note that $\beta_n/(\beta_n - \alpha_n)$ and $-\alpha_n/(\beta_n - \alpha_n)$ are positive. Hence,

$$\frac{\beta_n}{\beta_n - \alpha_n} (L - \epsilon) < \frac{f(\beta_n) - f(0)}{\beta_n} \frac{\beta_n}{\beta_n - \alpha_n} < \frac{\beta_n}{\beta_n - \alpha_n} (L + \epsilon)$$
$$\frac{-\alpha_n}{\beta_n - \alpha_n} (L - \epsilon) < \frac{f(\alpha_n) - f(0)}{\alpha_n} \frac{-\alpha_n}{\beta_n - \alpha_n} < \frac{-\alpha_n}{\beta_n - \alpha_n} (L + \epsilon)$$

Combine two inequations,

$$L - \epsilon < D_n < L + \epsilon$$

Hence, $\lim D_n = L = f'(0)$.

For (b): We process as above prove, but note that $-\alpha_n/(\beta_n - \alpha_n) < 0$. Thus we only have the following inequations:

$$\frac{\beta_n}{\beta_n - \alpha_n} (L - \epsilon) < \frac{f(\beta_n) - f(0)}{\beta_n} \frac{\beta_n}{\beta_n - \alpha_n} < \frac{\beta_n}{\beta_n - \alpha_n} (L + \epsilon)$$

$$\frac{-\alpha_n}{\beta_n - \alpha_n}(L + \epsilon) < \frac{f(\alpha_n) - f(0)}{\alpha_n} \frac{-\alpha_n}{\beta_n - \alpha_n} < \frac{-\alpha_n}{\beta_n - \alpha_n}(L - \epsilon)$$

Combine them:

$$L - \frac{\beta_n + \alpha_n}{\beta_n - \alpha_n} \epsilon < D_n < L + \frac{\beta_n + \alpha_n}{\beta_n - \alpha_n} \epsilon$$

Note that $\{\beta_n/(\beta_n - \alpha_n)\}$ is bounded, ie,

$$|\frac{\beta_n}{\beta_n - \alpha_n}| \le M$$

for some constant M. Thus

$$\left|\frac{\beta_n + \alpha_n}{\beta_n - \alpha_n}\right| = \left|\frac{2\beta_n}{\beta_n - \alpha_n} - 1\right| \le 2M + 1$$

Hence,

$$L - (2M+1)\epsilon < D_n < L + (2M+1)\epsilon$$

Hence, $\lim D_n = L = f'(0)$.

For (c): By using Mean-Value Theorem,

$$D_n = f'(t_n)$$

where t_n is between α_n and β_n . Note that

$$\min\{\alpha_n, \beta_n\} < t_n < \max\{\alpha_n, \beta_n\}$$

and

$$\max\{\alpha_n, \beta_n\} = \frac{1}{2}(\alpha_n + \beta_n + |\alpha_n - \beta_n|)$$
$$\min\{\alpha_n, \beta_n\} = \frac{1}{2}(\alpha_n + \beta_n - |\alpha_n - \beta_n|)$$

Thus, $\max\{\alpha_n, \beta_n\} \to 0$ and $\min\{\alpha_n, \beta_n\} \to 0$ as $\alpha_n \to 0$ and $\beta_n \to 0$. By squeezing principle for limits, $t_n \to 0$. With the continuity of f', we have

$$\lim D_n = \lim f'(t_n) = f'(\lim t_n) = f'(0).$$

Example: Let f be defined by

$$f(x) = \begin{cases} x^2 \sin(1/x) & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Thus f'(x) is not continuous at x = 0, and f'(0) = 0. Take $\alpha_n = \frac{1}{\pi/2 + 2n\pi}$ and $\beta_n = \frac{1}{2n\pi}$. It is clear that $\alpha_n \to 0$, and $\beta_n \to 0$ as $n \to \infty$. Also,

$$D_n = \frac{-4n\pi}{\pi(\pi/2 + 2n\pi)} \to -\frac{2}{\pi}$$

as $n \to \infty$. Thus, $\lim D_n = -2/\pi$ exists and is different from 0 = f'(0).

20.

21.

22. Suppose f is a real function on $(-\infty, \infty)$. Call x a fixed point of f if f(x) = x.

(a) If f is differentiable and $f'(t) \neq 1$ for every real t, prove that f has at most one fixed point.

(b) Show that the function f defined by

$$f(t) = t + (1 + e^t)^{-1}$$

has no fixed point, although 0 < f'(t) < 1 for all real t.

(c) However, if there is a constant A < 1 such that $|f'(t)| \leq A$ for all real t, prove that a fixed point x of f exists, and that $x = \lim x_n$, where x_1 is an arbitrary real number and

$$x_{n+1} = f(x_n)$$

for n = 1, 2, 3, ...

(d) Show that the process describe in (c) can be visualized by the zigzag path

$$(x_1, x_2) \to (x_2, x_2) \to (x_2, x_3) \to (x_3, x_3) \to (x_3, x_4) \to \dots$$

Proof: For (a): If not, then there exists two distinct fixed points, say x and y, of f. Thus f(x) = x and f(y) = y. Since f is differentiable, by applying Mean-Value Theorem we know that

$$f(x) - f(y) = f'(t)(x - y)$$

where t is between x and y. Since $x \neq y$, f'(t) = 1. It contradicts. For (b): We show that 0 < f'(t) < 1 for all real t first:

$$f'(t) = 1 + (-1)(1 + e^t)^{-2}e^t = 1 - \frac{e^t}{(1 + e^t)^2}$$

Since

$$e^t > 0$$

$$(1 + e^t)^2 = (1 + e^t)(1 + e^t) > 1(1 + e^t) = 1 + e^t > e^t > 0$$

for all real t, thus

$$(1+e^t)^{-2}e^t > 0$$

 $(1+e^t)^{-2}e^t < 1$

for all real t. Hence 0 < f'(t) < 1 for all real t.

Next, since $f(t) - t = (1 - e^t)^{-1} > 0$ for all real t, f(t) has no fixed point.

For (c): Suppose $x_{n+1} \neq x_n$ for all n. (If $x_{n+1} = x_n$, then $x_n = x_{n+1} = \dots$ and x_n is a fixed point of f).

By Mean-Value Theorem,

$$f(x_{n+1}) - f(x_n) = f'(t_n)(x_{n+1} - x_n)$$

where t_n is between x_n and x_{n+1} . Thus,

$$|f(x_{n+1}) - f(x_n)| = |f'(t_n)||(x_{n+1} - x_n)|$$

Note that $|f'(t_n)|$ is bounded by A < 1, $f(x_n) = x_{n+1}$, and $f(x_{n+1}) = x_{n+2}$. Thus

$$|x_{n+2} - x_{n+1}| \le A|x_{n+1} - x_n|$$
$$|x_{n+1} - x_n| \le CA^{n-1}$$

where $C = |x_2 - x_1|$. For two positive integers p > q,

$$\begin{aligned} |x_p - x_q| &\leq |x_p - x_{p-1}| + \dots + |x_{q+1} - x_q| \\ &= C(A^{q-1} + A^q + \dots + A^{p-2}) \\ &\leq \frac{CA^{q-1}}{1 - A}. \end{aligned}$$

Hence

$$|x_p - x_q| \le \frac{CA^{q-1}}{1 - A}.$$

Hence, for any $\epsilon > 0$, there exists $N = [\log_A \frac{\epsilon(1-A)}{C}] + 2$ such that $|x_p - x_q| < \epsilon$ whenever $p > q \ge N$. By Cauchy criterion we know that $\{x_n\}$ converges to x. Thus,

$$\lim_{n \to \infty} x_{n+1} = f(\lim_{n \to \infty} x_n)$$

since f is continuous. Thus,

$$x = f(x).$$

x is a fixed point of f.

For (d): Since $x_{n+1} = f(x_n)$, it is trivial.

23.

24.

25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 \le f''(x) \le M$ for all $x \in [a, b]$. Let ξ be the unique point in (a, b) at which $f(\xi) = 0$.

Complete the details in the following outline of Newton's method for computing ξ .

(a) Choose $x_1 \in (\xi, b)$, and define $\{x_n\}$ by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Interpret this geometrically, in terms of a tangent to the graph of f.

(b) Prove that $x_{n+1} < x_n$ and that

$$\lim_{n \to oo} x_n = \xi.$$

(c) Use Taylor's theorem to show that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

for some $t_n \in (\xi, x_n)$.

(d) If $A = \frac{M}{2\delta}$, deduce that

$$0 \le x_{n+1} - \xi \le \frac{1}{A} [A(x_1 - \xi)]^{2^n}.$$

(Compare with Exercise 16 and 18, Chap. 3)

(e) Show that Newton's method amounts to finding a fixed point of the function g defined by

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

How does g'(x) behave for x near ξ ?

(f) Put $f(x) = x^{1/3}$ on $(-\infty, \infty)$ and try Newton's method. What happens?

Proof: For (a): You can see the picture in the following URL: http://archives.math.utk.edu/visual.calculus/3/newton.5/1.html.

For (b): We show that $x_n \ge x_{n+1} \ge \xi$. (induction). By Mean-Value Theorem, $f(x_n) - f(\xi) = f'(c_n)(x_n - \xi)$ where $c_n \in (\xi, x_n)$. Since $f'' \ge 0$, f' is increasing and thus

$$\frac{f(x_n)}{x_n - \xi} = f'(c_n) \le f'(x_n) = \frac{f(x_n)}{x_n - x_{n+1}}$$
$$f(x_n)(x_n - \xi) \le f(x_n)(x_n - x_{n+1})$$

Note that $f(x_n) > f(\xi) = 0$ since $f' \ge \delta > 0$ and f is strictly increasing. Thus,

$$x_n - \xi \le x_n - x_{n+1}$$
$$\xi \le x_{n+1}$$

Note that $f(x_n) > 0$ and $f'(x_n) > 0$. Thus $x_{n+1} < x_n$. Hence,

$$x_n > x_{n+1} \ge \xi.$$

Thus, $\{x_n\}$ converges to a real number ζ . Suppose $\zeta \neq \xi$, then

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Note that $\frac{f(x_n)}{f'(x_n)} > \frac{f(\zeta)}{\delta}$. Let $\alpha = \frac{f(\zeta)}{\delta} > 0$, be a constant. Thus,

 $x_{n+1} < x_n - \alpha$

for all n. Thus, $x_n < x_1 - (n-1)\alpha$, that is, $x_n \to -\infty$ as $n \to \infty$. It contradicts. Thus, $\{x_n\}$ converges to ξ .

For (c): By using Taylor's theorem,

$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2(x_n - \xi)^2}$$
$$0 = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2(x_n - \xi)^2}$$

$$0 = \frac{f(x_n)}{f'(x_n)} - x_n + \xi + \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$
$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

where $t_n \in (\xi, x_n)$.

For (d): By (b) we know that $0 \le x_{n+1} - \xi$ for all n. Next by (c) we know that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

Note that $f'' \leq M$ and $f' \geq \delta > 0$. Thus

$$x_{n+1} - \xi \le A(x_n - \xi)^2 \le \frac{1}{A}(A(x_1 - \xi))^{2^n}$$

by the induction. Thus,

$$0 \le x_{n+1} - \xi \le \frac{1}{A} [A(x_1 - \xi)]^{2^n}.$$

For (e): If x_0 is a fixed point of g(x), then $g(x_0) = x_0$, that is,

$$x_0 - \frac{f(x_0)}{f'(x_0)} = x_0$$

 $f(x_0) = 0.$

It implies that $x_0 = \xi$ and x_0 is unique since f is strictly increasing. Thus, we choose $x_1 \in (\xi, b)$ and apply Newton's method, we can find out ξ . Hence we can find out x_0 .

Next, by calculating

$$g'(x) = \frac{f(x)f''(x)}{f'(x)^2}$$
$$0 \le g'(x) \le f(x)\frac{M}{\delta^2}.$$

As x near ξ from right hand side, g'(x) near $f(\xi) = 0$.

For (f): $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = -2x_n$ by calculating. Thus, $x_n = (-2)^{n-1}x_1$

for all n, thus $\{x_n\}$ does not converges for any choice of x_1 , and we cannot find ξ such that $f(\xi) = 0$ in this case.

26. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such that $|f'(x)| \leq A|f(x)|$ on [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$. Hint: Fix $x_0 \in [a, b]$, let

$$M_0 = \sup |f(x)|, M_1 = \sup |f'(x)|$$

for $a \leq x \leq x_0$. For any such x,

$$|f(x)| \le M_1(x_0 - a) \le A(x_0 - a)M_0.$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$. That is, f = 0 on $[a, x_0]$. Proceed.

Proof: Suppose A > 0. (If not, then f = 0 on [a, b] clearly.) Fix $x_0 \in [a, b]$, let

$$M_0 = \sup |f(x)|, M_1 = \sup |f'(x)|$$

for $a \leq x \leq x_0$. For any such x,

$$f(x) - f(a) = f'(c)(x - a)$$

where c is between x and a by using Mean-Value Theorem. Thus

$$|f(x)| \le M_1(x-a) \le M_1(x_0-a) \le A(x_0-a)M_0$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$. That is, f = 0 on $[a, x_0]$ by taking $x_0 = a + \frac{1}{2A}$. Repeat the above argument by replacing a with x_0 , and note that $\frac{1}{2A}$ is a constant. Hence, f = 0 on [a, b].

27. Let ϕ be a real function defined on a rectangle R in the plane, given by $a \leq x \leq b, \alpha \leq y \leq \beta$. A solution of the initial-value problem

$$y' = \phi(x, y), \ y(a) = c \ (\alpha \le c \le \beta)$$

is, by definition, a differentiable function f on [a, b] such that f(a) = c, $\alpha \leq f(x) \leq \beta$, and

$$f'(x) = \phi(x, f(x)) \quad (a \le x \le b)$$

Prove that such a problem has at most one solution if there is a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$.

Hint: Apply Exercise 26 to the difference of two solutions. Note that this uniqueness theorem does not hold for the initial-value problem

$$y' = y^{1/2}, y(0) = 0,$$

which has two solutions: f(x) = 0 and $f(x) = x^2/4$. Find all other solutions.

Proof: Suppose y_1 and y_2 are solutions of that problem. Since

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1|,$$

 $y(a) = c, y'_1 = \phi(x, y_1)$, and $y'_2 = \phi(x, y_2)$, by Exercise 26 we know that $y_1 - y_2 = 0, y_1 = y_2$. Hence, such a problem has at most one solution. Note: Suppose there is initial-value problem

 $y' = y^{1/2}, y(0) = 0.$

If $y^{1/2} \neq 0$, then $y^{1/2}dy = dx$. By integrating each side and noting that y(0) = 0, we know that $f(x) = x^2/4$. With $y^{1/2} = 0$, or y = 0. All solutions of that problem are

$$f(x) = 0$$
 and $f(x) = x^2/4$

Why the uniqueness theorem does not hold for this problem? One reason is that there does not exist a constant A satisfying

$$|y_1' - y_2'| \le A|y_1 - y_2|$$

if y_1 and y_2 are solutions of that problem. (since $2/x \to \infty$ as $x \to 0$ and thus A does not exist).

28. Formulate and prove an analogous uniqueness theorem for systems of differential equations of the form

$$y'_{j} = \phi_{j}(x, y_{1}, ..., y_{k}), \quad y_{j}(a) = c_{j} \quad (j = 1, ..., k)$$

Note that this can be rewritten in the form

$$\mathbf{y}' = \phi(x, y), \ \mathbf{y}(a) = \mathbf{c}$$

where $\mathbf{y} = (y_1, ..., y_k)$ ranges over a k-cell, ϕ is the mapping of a (k+1)cell into the Euclidean k-space whose components are the function $\phi_1, ..., \phi_k$, and **c** is the vector $(c_1, ..., c_k)$. Use Exercise 26, for vectorvalued functions.

Theorem: Let $\phi_j (j = 1, ..., k)$ be real functions defined on a rectangle R_j in the plane given by $a \le x \le b$, $\alpha_j \le y_j \le \beta_j$.

A *solution* of the initial-value problem

$$y'_j = \phi(x, y_j), \quad y_j(a) = c_j \quad (\alpha_j \le c_j \le \beta_j)$$

is, by definition, a differentiable function f_j on [a, b] such that $f_j(a) = c_j, \alpha_j \leq f_j(x) \leq \beta_j$, and

$$f'_j(x) = \phi_j(x, f_j(x)) \quad (a \le x \le b)$$

Then this problem has at most one solution if there is a constant A such that

$$|\phi_j(x, y_{j_2}) - \phi_j(x, y_{j_1})| \le A|y_{j_2} - y_{j_1}|$$

whenever $(x, y_{j_1}) \in R_j$ and $(x, y_{j_2}) \in R_j$.

Proof: Suppose $\mathbf{y_1}$ and $\mathbf{y_2}$ are solutions of that problem. For each components of $\mathbf{y_1}$ and $\mathbf{y_2}$, say y_{1j} and y_{2j} respectively, $y_{1j} = y_{2j}$ by using Exercise 26. Thus, $\mathbf{y_1} = \mathbf{y_2}$

29. Specialize Exercise 28 by considering the system

$$y'_{j} = y_{j+1} \ (j = 1, ..., k - 1),$$

 $y'_{k} = f(x) - \sum_{j=1}^{k} g_{j}(x)y_{j}$

where $f, g_1, ..., g_k$ are continuous real functions on [a, b], and derive a uniqueness theorem for solutions of the equation

$$y^{(k)} + g_k(x)y^{(k-1)} + \dots + g_2(x)y' + g_1(x)y = f(x),$$

subject to initial conditions

$$y(a) = c_1, y'(a) = c_1, ..., y^{(k-1)}(a) = c_k.$$

Theorem: Let R_j be a rectangle in the plain, given by $a \le x \le b$, min $y_j \le y_j \le \max y_j$. (since y_j is continuous on the compact set, say [a, b], we know that y_j attains minimal and maximal.) If there is a constant A such that

$$\begin{cases} |y_{j+1,1} - y_{j+1,2}| \le A |y_{j,1} - y_{j,2}| & (j < k) \\ |\sum_{j=1}^{k} g_j(x)(y_{j,1} - y_{j,2})| \le A |y_{k,1} - y_{k,2}| \end{cases}$$

whenever $(x, y_{j,1}) \in R_j$ and $(x, y_{j,2}) \in R_j$.

Proof: Since the system $y'_1, ..., y'_k$ with initial conditions satisfies a fact that there is a constant A such that $|\mathbf{y}'_1 - \mathbf{y}'_2| \leq A|\mathbf{y}_1 - \mathbf{y}_2|$, that system has at most one solution. Hence,

$$y^{(k)} + g_k(x)y^{(k-1)} + \dots + g_2(x)y' + g_1(x)y = f(x),$$

with initial conditions has at most one solution.