Differentiation
Written by Men-Gen Tsai
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1. Let f be defined for all real x, and suppose that

f(z) = fy)| < (xz —y)?

for all real x and y. Prove that f is constant.

Proof: |f(z)— f(y)| < (x—y)?* for all real x and y. Fix y, |%f;(y)| <

|z — y|. Let © — y, therefore,

O<hmM<hm\x—y\—0

T—Yy T —y Ty

It implies that (f(z) — f(y))/(x —y) — 0 as  — y. Hence f'(y) =0,

f = const.

2. Suppose f'(x) > 01in (a,b). Prove that f is strictly increasing in (a,b),

and let g be its inverse function. Prove that g is differentible, and that

g (f(x)) = (@ < <b).

Proof: For every pair z > y in (a,b), f(z) — f(y) = f'(
y < ¢ < x by Mean-Value Theorem. Note that ¢ € (a,b) and f'(z) >

n (a,b), hence f'(c) > 0. f(z) = f(y) >0, f(x) > fy) if 2 >y, f

Strictly increasing in (a, b).

¢)(x —y) where

Let Ag = g(xo + h) — g(xo). Note that xg = f(g(zo)), and thus,

(o + h) — o = f(g(zo + 1)) — f(g(0)),
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h = f(g(x0) + Ag) — f(9(z0)) = f(g + Ag) — f(9).

Thus we apply the fundamental lemma of differentiation,

h=[f"(9) +n(Ag)]Ag,
1 Ag

f9) +n(dg) b
Note that f'(g(z)) > 0 for all x € (a,b) and n(Ag) — 0 as h — 0, thus,

1 1
Iim Ag/h = 1i = .
i Ag/h = i e Ay~ Fle(@))

Thus ¢'(z) = 5y 9 (F(@) = 56

. Suppose ¢ is a real function on R', with bounded derivative (say
lg'| < M). Fix ¢ > 0, and define f(z) = = + eg(z). Prove that f
is one-to-one if € is small enough. (A set of admissible values of € can

be determined which depends only on M)

Proof: For every x < y, and z,y € R, we will show that f(z) # f(y).
By using Mean-Value Theorem:

g(x) = g(y) = g'(c)(x —y) where v <c<y,

(. —y) +e((z) = g(y)) = (eg'(c) + V)(z —y),
that is,
f(@) = f(y) = (eg'(c) + 1)@ —y). (%)
Since |¢'(x)| < M, =M < ¢'(x) < M for all x € R. Thus 1 —eM <
g’ (c)+1 < 1+eM, where v < ¢ < y. Take ¢ = 517, and €g/(c) +1 > 0
where x < ¢ < y for all 2, y. Take into equation (*), and f(z)—f(y) <0
since x —y < 0, that is, f(x) # f(y), that is, f is one-to-one (injective).



I

C’1 On—l On
Co+ —+ ...+ =0,
o+ 2 n + n+1
where Cy, ..., C,, are real constants, prove that the equation

Co+Cix+ ..+ Ch 12" '+ Cx" =0

has at least one real root between 0 and 1.

Proof: Let f(x) = Cox + ... + nc—fla:"*l. f is differentiable in R!

and f(0) = f(1) = 0. Thus, f(1) — f(0) = f'(c) where ¢ € (0,1) by
Mean-Value Theorem. Note that

fl(x) =Co+Crx+ ... + Cp_12™ ' + Cpra™.

Thus, ¢ € (0, 1) is one real root between 0 and 1 of that equation.

. Suppose f is defined and differentiable for every z > 0, and f'(x) — 0
as x — +o00. Put g(z) = f(x+ 1) — f(z). Prove that g(x) — 0 as

T — —+00.

Proof: f(x +1) — f(z) = f'(¢)(x +1 —x) where x < ¢ < 4+ 1
by Mean-Value Theorem. Thus, g(z) = f'(¢) where z < ¢ < z + 1,
that is,

lim g(z) = lim f'(c)= lim f'(c) =0.

T——+400 T—400 c—+400

. Suppose
(a) f is continuous for x > 0,

(b) f'(x) exists for x > 0,
(¢) £(0) =0,



(d) f" is monotonically increasing.
Put
=——= (z>0)

and prove that ¢ is monotonically increasing.

Proof: Our goal is to show ¢'(z) > 0 for all z > 0

& gla) = LT 5 0 & fa) > ;

Since f'(x) exists, f(x) — f(0) = f'(¢)(z — 0) where 0 < ¢ < z by
Mean-Value Theorem. = f'(c) = % where 0 < ¢ < z. Since f' is

monotonically increasing, f'(z) > f'(c), that is, f'(x) > @ for all
x> 0.

. Suppose f'(z), ¢'(z) exist, ¢'(x) # 0, and f(x) = g(x) = 0. Prove that
t !
10 710)
i=rg(t)  g'(x)
(This holds also for complex functions.)

Proof:

f'(t) _ limg_,, f(ti f:( 2)  limy, f(2)
g’(t) hmt—>a: g)—g(z)

t—x

— lim 22

~—

Surely, this holds also for complex functions.

. Suppose f’(x) is continuous on [a, b] and € > 0. Prove that there exists
0 > 0 such that .

LOZIE) i < e
whenever 0 < [t — x| < 0, a <z < b, a <t <b (This could be
expressed by saying f is uniformly differentiable on |a, b if f’ is contin-

uous on [a, b].) Does this hold for vector-valued functions too?
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Proof: Since f'(x) is continuous on a compact set [a,b], f'(z) is uni-
formly continuous on [a,b]. Hence, for any € > 0 there exists 6 > 0
such that

[f1(8) = f(z)] <€

whenever 0 < |t —z| < 0, a <z <b,a <t <b Thus, f(c)=

w where ¢ between t and x by Mean-Value Theorem. Note that
0 < |c—z| < ¢ and thus |f'(c) — f'(x)] < €, thus,
t) —
OO iy <

whenever 0 < [t —z| < d,a <x<b a<t<b.

Note: It does not hold for vector-valued functions. If not, take
f(z) = (cosz,sinz),

la,b] = [0,27], and x = 0. Hence f'(x) = (—sinx,cosz). Take any
1> € > 0, there exists 6 > 0 such that

f&)—ro)
|W — J1'(0)] <e

whenever 0 < |t| < § by our hypothesis. With calculating,

cost —1 sint

—)—=(0,1)]| <
(LS o)) < c
cost —1 sint
(LM<
t—1 int
(Cost )2+(Sli1 1P <<
2 2(cost + sint)
t72+1_ / <e€
since 1 > € > 0. Note that
2 4 2 2(cost + sint)
S pl-- <41
t2+ t t2+ t

But t% +1— % — 400 as t — 0. It contradicts.



9.

10.

Let f be a continuous real function on R', of which it is known that
f'(x) exists for all  # 0 and that f'(x) — 0 as @ — 0. Dose it follow
that f/(0) exists?

Note: We prove a more general exercise as following.

Suppose that f is continuous on an open interval I containing g, sup-
pose that f’ is defined on I except possibly at xy, and suppose that
f'(x) — L as © — x¢. Prove that f'(x¢) = L.

Proof of the Note: Using L’Hospital’s rule:

lim f(xo +h) — f(x0)
h—0 h

_ 3 /
= lim f'(xo+h)
By our hypothesis: f'(z) — L as © — x,. Thus,

lim f(@o+h) — f(x0)

h—0 h

Thus f'(zg) exists and

=L,

f'(z0) = L.

Suppose f and g are complex differentiable functions on (0, 1), f(z) — 0,
g(x) =0, f'(x) = A, ¢(x) = Basz — 0, where A and B are complex
numbers, B # 0. Prove that

flz)

z—0 g(gj)
Compare with Example 5.18. Hint:

_A4
-2

i@ S L, x
oo - e VT

Apply Theorem 5.13 to the real and imaginary parts of % and %.



11.

Proof: Write f(x) = fi(z) +ifa(z), where fi(x), fa(z) are real-valued

functions. Thus,

() _dhla) | i)

dx dx dv
Apply L’Hospital’s rule to @ and @, we have
. filz) .
T T imAe)
. falz) .
Iy~ i)
Combine fi(x) and fo(z), we have
tim )y 208 g, S8R (@)
z—0 x x—0 x x—0 x x z—0 I
or
lim === 4 i lim === = lim f1 () + i lim fy(«) = lim f'(z)
Thus, lim,_, @ = lim, .o f'(x). Similarly, lim,_.o @ = lim, o ¢'(x).
Note that B # 0. Thus,
lim J@) = lim <Lx) - A)i A
20 g() a=0" g(@)  g(x)
1 A A
- A-A) g2l
A=-Ap+5-5

Note: In Theorem 5.13, we know g(z) — 400 as x — 0. (f(z) = z,
and g(z) = z 4 22e:?).

Suppose f is defined in a neighborhood of x, and suppose f”(z) exists.
Show that

. fle+h)+ fle—h)=2f(x)
i B2 = [
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12.

Show by an example that the limit may exist even if f”(z) dose not.
Hint: Use Theorem 5.13.

Proof: By using I.’Hospital’s rule: (respect to h.)
fl@+h)+ flz—h)—2f(z) fl@+h)— f'(z—h)

i h2 = 2h
Note that
1
fila) = (@) + (@)
1 / h) — f "y —h) — f
VS (LR G I (SRS ()
L [t - Pla—h)
2 h—0 h
o S = = h)
h—0 2h

Thus,

as h — 0. Counter-example: f(z) = z|z| for all real z.

If f(x) = |z|?, compute f'(x), f"(x) for all real z, and show that f©)(0)

does not exist.

Proof: f'(z) = 3|z|? if z # 0. Consider
Fh) = £O) AP

h h
Note that |h|/h is bounded and |h|> — 0 as h — 0. Thus,
. f(h) = f(0)
/ g p—
f10) = Jim == 0.

Hence, f'(z) = 3|z|? for all z. Similarly,
f'(x) = 6lz|.
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13.

Thus,
()~ 1) _ Jh]
h h
Since % =1ifh>0and = —1if h <0, f”(0) does not exist.

Suppose a and ¢ are real numbers, ¢ > 0, and f is defined on [—1, 1] by

| atsin(z7¢) (if x #0),
fm{o (if z = 0).

Prove the following statements:

(a) f is continuous if and only if a > 0.

(b) f(0) exists if and only if @ > 1.

(c) f"is bounded if and only if a > 1 + c.

(d) f’ is continuous if and only if a > 1 + c.
(e) f”(0) exists if and only if a > 2 + c.

(f) f” is bounded if and only if a > 2 + 2¢.
(g) f” is continuous if and only if @ > 2 + 2¢.

Proof: For (a): (=) f is continuous iff for any sequence {z,} — 0

¢ — (0 as n — oo. In particular, take

! )e >0
onm + /20

. P
with z,, # 0, 2% sinz,,
Ty, = (

and thus x¢ — 0 as n — oo. Hence a > 0. (If not, then a = 0 or a < 0.
When a =0, 22 = 1. When a < 0, 2% = 1/z,* — o0 as n — oo. It

contradicts.)

<) f is continuous on [—1,1] — {0} clearly. Note that
(=) f [ y
—lz?| < a%sin (27°) < |29,

and |z*| — 0 as © — 0 since @ > 0. Thus f is continuous at z = 0.

Hence f is continuous.



14.

15.

For (b): f(0) exists iff 2% 'sin (z7¢) — 0 as * — 0. In the previous
proof we know that f’(0) exists if and only if a—1 > 0. Also, f’(0) = 0.

Let f be a differentiable real function defined in (a,b). Prove that f is
convex if and only if f’ is monotonically increasing. Assume next that

f"(x) exist for every x € (a,b), and prove that f is convex if and only
if f”(x) >0 for all x € (a,b).

Suppose a € R, f is a twice-differentiable real function on (a,o0),
and My, My, My are the least upper bounds of |f(z)|, |f'(z)],|f"(x)|,

respectively, on (a,00). Prove that
M? < 4MyMs,.

Hint: If A > 0, Taylor’s theorem shows that

1

fa) = 5 [f (@ +2h) = f(2)] = hf"(€)

for some € € (x,x + 2h). Hence
M,
|F'(2)] < hMy + =,

To show that M7 = 4MyM, can actually happen, take a = —1, define

2

;ﬁ (0 <z < 0),

f(x):{ 202 —1 (—1<xz<0),

and show that My = 1, M} = 4, My, = 4. Does M} < 4MyM, hold for

vector-valued functions too?
Proof: Suppose h > 0. By using Taylor’s theorem:
! h2 "
flaz+h) = flz) +hf(x) + 5 ()
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for some x < £ < x + 2h. Thus
h2
WF @ < @+ )]+ @)+ 1 ()]
h2
R*My — 2h|f'(x)| +4My > 0 (%)

Since equation (*) holds for all h > 0, its determinant must be non-
positive.

Al f' ()P — 4My(4Mo) < 0
|f ()P < 4Mo M,

(M)* < 2MyM,

Note: There is a similar exercise:
Suppose f(z)(—oo < & < +00) is a twice-differentiable real function,
and

M,= sup |fP(z)| < +oo (k=0,1,2).

—oo<x<+00

Prove that M} < 2MqMs,.

Proof of Note:

Flo+h) = Fa) + fah+ D0

(@ <€ STt ROTT>EL > TAR) coeeeee oo ()
Flo =) = f(a) — Fpn+ T2

(@ h <€ ST Or T —h>Es>T) eeeemreeeee e, (+%)

(*) minus (**):

2

flath)— Fa—h) =2 (@)h + 2 (7'(6) — 17(6)).

11



16.

17.

20| f'(z)] < 2R f(z)]

h2
20" (@)] < [f (@ + 1)+ 1f (z = )]+ (1€ + (&)
2h|f/(l‘)| S 2M0 + h2M2
Myh? = 2|f'(x)|h +2My > 0

Since this equation holds for all h, its determinant must be non-positive:
4| f'(x)] — 4M2(2M,) < 0,

|f'(2)]? < 2Mo M,

Thus
M12 < 2My M,

Suppose f is twice-differentiable on (0,00), f” is bounded on (0, ),
and f(z) — 0 as © — oo. Prove that f'(x) — 0 as + — oo. Hint: Let

a — oo in Exercise 15.

Proof: Suppose a € (0,00), and My, My, My are the least upper
bounds of |f(z)|,|f (z)|,|f"(x)| on (a,00). Hence, M? < 4MyM,. Let
a — 00, My =sup|f(z)| — 0. Since M, is bounded, therefore M — 0

as a — oo. It implies that sup |f'(z)] — 0 as x — oo.

Suppose f is a real, three times differentiable function on [—1, 1], such
that

f(=1)=0,f(0) =0, f(1) =1, f'(0) = 0.
Prove that f®)(x) > 3 for some x € (—1,1).
Note that equality holds for (2% + 2?).
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Hint: Use Theorem 5.15, with « = 0 and g = 1, —1, to show that
there exist s € (0,1) and t € (—1,0) such that

fOs)+ ) =6

Proof: By Theorem 5.15, we take a = 0,6 =1,

IHONRIO)
2 * 6

where s € (0,1). Take a = 0,andf = —1,

f(Q) = f(0) + f(0) +

2 6
where ¢t € (—1,0). Thus
" 3)
=1 2(0) 41 6<S),s € (0,1) (¥)
_ [0 fOs)
0= 9 - 6 S € (_17()) (**)

Equation (*) - equation (**):

(3) ()
f 36(3) i 36@’8 € (0,1),t € (—1,0).

f(3)(s) - f(3)(t) =6, s, te(—1,1).

f®(x) >3 for some x e (—1,1).

Theorem 5.15: Suppose f is a real function on [a,b], n is a positive

n—1)

integer, f( is continuous on [a, b], f™(t) exists for every t € (a,b).

Let o, 8 be distinct points of [a, b], and define

n=1 £(k)(,,
P(t)zzf ( )(t—a)k.

= K
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18.

19.

Then there exists a point x between a and 3 such that

F()

n!

f(B) = P(B) + (6 —a)".

Suppose f is a real function on [a, b], n is a positive integer, and f™~1
exists for every t € [a,b]. Let a, 3, and P be as in Taylor’s theorem

(5.15). Define

for t € [a,b], t # (3, differentiate

f@) = f(B) = (t = B)Q(t)

n — 1 times at t = «, and derive the following version of Taylor’s

theorem:
Q" V(a)

f(B)=P(B)+ W(ﬁ —a)".

Suppose f is defined in (—1,1) and f’(0) exists. Suppose —1 < «a,, <
G, <1, a, — 0,and 8, — 0 as n — oco. Define the difference quotients

f(Bn) = flan)

ﬁn_an

D, =

Prove the following statements:

(a) If a, < 0 < B, then lim D,, = f(0).
(b) If 0 < av, < B, and {8,/ (B — )} is bounded, then lim D,, = f/(0).
(c) If f"is continuous in (—1, 1), then lim D,, = f’(0).

Give an example in which f is differentiable in (—1,1) (but f’ is not

continuous at 0) and in which «,, 3, tend to 0 in such a way that
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lim D,, exists but is different from f’(0).

Proof: For (a):

f(Bn) = f(O) B flan) = f(0) —an

Dn - ﬁn Bn — Qp * Qp ﬁn — Qp
Note that
n—oo a, n—oo ﬁn
Thus for any € > 0, there exists N such that
L—e< M < L+,
Qp
L—e< JC(ﬁn)ﬁ_f(O) < L +e,

whenever n > N where L = f/(0) respectively. Note that 3, /(5, — o)

and —a,,/(B, — a,) are positive. Hence,

ﬁn_an(L_ )< ﬂn ﬁn_an<ﬁn_an<L+€)
—Op f(an) - f(O) —Qp — O
ﬁn_an(L_€>< (07% ﬁn_an<ﬁn_an(L+€)

Combine two inequations,
L—e<D,<L+ce¢

Hence, lim D,, = L = f'(0).

For (b): We process as above prove, but note that —a,/(5, —a,,) < 0.

Thus we only have the following inequations:

5n — Qi ﬁn ﬁn — Qp 511 — Qp

(L—¢) <

15



_an

flan) = f(0) —an —ay,
ﬁn_Qn<L+E)< Qn 5n_an<ﬁn_an

Combine them:

L — 6n+an6<Dn<L+ﬁn+ane
ﬂn_an 6n — Oy
Note that {3,/(8, — a,)} is bounded, ie,
ﬁn_an
for some constant M. Thus
n n 2 n
Ootan 20 g oprig
ﬁn_an ﬁn_an

Hence,
L—-2M+1)e<D, <L+ (2M +1)e

Hence, lim D,, = L = f'(0).

For (c): By using Mean-Value Theorem,
D, =f /<tn)
where t,, is between «,, and (3,. Note that

min{a,, 5,} < t, < max{ay,, 6.}

and

max{ay,, B} = ;(an + B + o, — Bnl)

min{an, ﬁn} = ;(Oén + 671 - |an - BnD

Thus, max{a,, 3,} — 0 and min{a,, 3,} — 0 as a,, — 0 and 3, — 0.
By squeezing principle for limits, ¢, — 0. With the continuity of f’,
we have

lim D,, = lim f'(t,) = f'(limt,) = f'(0).
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20.

21.

22.

Example: Let f be defined by

) #?sin(l/z) (x#0),
fe) = { 0 (x =0).

Thus f'(x) is not continuous at = = 0, and f’(0) = 0. Take «a,, =

—1— and 3, = ﬁ It is clear that a,, — 0, and 3, — 0 as n — oo.

w/242nmT
Also,
—Anm 2
Dy=——7——+— —=
m(m/2 + 2nm) B
as n — oo. Thus, lim D,, = —2/7 exists and is different from 0 = f7(0).

Suppose f is a real function on (—o0,00). Call z a fized point of f if
flx) ==z
(a) If f is differentiable and f'(t) # 1 for every real ¢, prove that f has

at most one fixed point.

(b) Show that the function f defined by
f#)=t+ 1+t

has no fixed point, although 0 < f’(t) < 1 for all real ¢.

(c) However, if there is a constant A < 1 such that |f'(t)] < A for all
real ¢, prove that a fixed point = of f exists, and that = lim x,,, where

27 is an arbitrary real number and

Tny1 = f(Tn)

forn=1,2,3,...

17



(d) Show that the process describe in (c) can be visualized by the zig-
zag path

(331,552) - (562,55'2) - (552,953) - (33'3,9173) - (953,954) — ...

Proof: For (a): If not, then there exists two distinct fixed points, say
x and y, of f. Thus f(x) = z and f(y) = y. Since f is differeniable,
by applying Mean-Value Theorem we know that

f@) = fly) = f )@ —y)
where t is between x and y. Since x # y, f'(t) = 1. It contradicts.
For (b): We show that 0 < f’(t) < 1 for all real ¢ first:

€t

ft) =14+ (=1)(1+e) % =1- 1t ep

Since
et >0
14+ =0+ 4+e)>1(1+e)=1+e" > >0
for all real t, thus
(1+e) 2 >0
(1+e)2ef <1
for all real t. Hence 0 < f/(¢) < 1 for all real ¢t.

Next, since f(t) —t = (1 —¢e')™! > 0 for all real ¢, f(¢) has no fixed

point.

For (c): Suppose z,, 41 # x, for all n. (If ;.41 = @, then z,, =z, =

.. and z,, is a fixed point of f).

By Mean-Value Theorem,

f@ni1) = f(@n) = f(tn)(@ng1 — 20)

18



23.

24.

where t,, is betweem x,, and x,, 1. Thus,

|f(@ni1) = f@a)] = [ () [(@ns1 — 20)]

Note that |f(t,)| is bounded by A < 1, f(z,) = Tpy1, and f(zp41) =
ZTnio. Thus

|[Zpt2 = Tnsi| < AlTnir — Tn|
|xn+1 - xn‘ S CAn_l
where C' = |25 — x1|. For two positive integers p > g,

[Tp — 24| < zp — Zpal o+ |21 — 7

C(AT! + A7+ .. + AP7?)

CAT!
< .
- 1-A
Hence
C A1
|Tp — 4| < 11
Hence, for any ¢ > 0, there exists N = [log, @] + 2 such that

|z, — x4] < € whenever p > ¢ > N. By Cauchy criterion we know that

{z,} converges to x. Thus,
A a1 = S 1 20)
since f is continuous. Thus,
z = f(z).

x is a fixed point of f.

For (d): Since x,.1 = f(z,), it is trivial.
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25. Suppose f is twice differentiable on [a,b], f(a) < 0, f(b) > 0, f'(x) >
d>0,and 0 < f"(x) < M for all z € [a,b]. Let £ be the unique point
in (a,b) at which f(£) = 0.
Complete the details in the following outline of Newton’s method for

computing &.
(a) Choose x; € (£,b), and define {z,,} by

n

Interpret this geometrically, in terms of a tangent to the graph of f.

(b) Prove that x,,1 < z, and that

lim x, =¢.
n—>o00

(c) Use Taylor’s theorem to show that

1" (tn)
2]“(5571)

(Tn — 5)2

Tn+1 —f:

for some t,, € (§,x,).

(d) If A =2 deduce that

250
0 < — € < S (A — "

(Compare with Exercise 16 and 18, Chap. 3)

(e) Show that Newton’s method amounts to finding a fixed point of the

function g defined by (2)
_
g(z) =z — f(x)

How does ¢'(x) behave for x near £7

(f) Put f(z) = z'/3 on (—o0,00) and try Newton’s method. What
happens?
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Proof: For (a): You can see the picture in the following URL:
http://archives.math.utk.edu/visual. calculus /3 /newton.5/1.html.
For (b): We show that x, > x,11 > . (induction). By Mean-Value

Theorem, f(z,) — f(&) = f'(cn)(x, — &) where ¢, € (&, x,). Since
f" >0, f’is increasing and thus

f(zn) Y / - f(z,)
g 1 ) < flan) = Tp — Tl
f(@n)(@n — &) < fzn)(Tn — Tppa)
Note that f(x,) > f(£) = Osince f* > § > 0 and f is strictly increasing.
Thus,

$n—§§$n—$n+1
€§$n+1

Note that f(x,) > 0 and f’(z,) > 0. Thus z,4; < x,. Hence,
Tp > Tpy1 > 6§,

Thus, {x,} converges to a real number (. Suppose ¢ # &, then

f(xn)
(7n)

-5
Note that % > @. Let a = @ > 0, be a constant. Thus,

Tn4+1 = T

Tpt1 < Ty —

for all n. Thus, z,, < x; — (n — 1), that is, z, — —oo as n — oo. It

contradicts. Thus, {z,} converges to &.

For (c): By using Taylor’s theorem,

1O = flan) + Fon)s — o) + 5 0
0= flaw)+ £an)(e =)+ 5
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_ ) f"(tn)

=) iy
)
Tpy1 — &= 2F/ () (Tn — 5)2

where t,, € (§,x,).
For (d): By (b) we know that 0 < z,,41 — £ for all n. Next by (c) we
know that ()
— n _ )2
Note that f” < M and f’ > § > 0. Thus

Tpt1 — 5

Pt — € < Alay — € < (Al - &)

n

by the induction. Thus,

N (L)

For (e): If z is a fixed point of g(z), then g(zy) = ¢, that is,

A
e

It implies that xqg = £ and xy is unique since f is strictly increasing.

Thus, we choose x; € (£,b) and apply Newton’s method, we can find

out £&. Hence we can find out xg.

Next, by calculating

o f@O)
T ="y
0< ¢(@) < f2) 55

As x near ¢ from right hand side, ¢'(z) near f(£) = 0.
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26.

f(@n)
I'(xn)

For (f): z,.1 =z, — = —2x, by calculating. Thus,
T, = (=2)" 12y

for all n, thus {z,} does not converges for any choice of z;, and we
cannot find & such that f(£) = 0 in this case.

Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number
A such that |f'(x)] < A|f(x)| on [a,b]. Prove that f(z) = 0 for all
x € [a,b]. Hint: Fix zq € [a,b], let

My = sup |f(x)], My = sup | f(z)]
for a < x < xy. For any such z,
|f(z)] < Mi(zo — a) < A(zo — a) M.

Hence My =0 if A(zg —a) < 1. That is, f = 0 on [a, zo]. Proceed.

Proof: Suppose A > 0. (If not, then f = 0 on [a,b] clearly.) Fix
xo € [a,b], let
My = sup | f(x)], My = sup | f'(z)]

for a < x < xy. For any such z,
f(@) = f(a) = f'(c)(z —a)
where ¢ is between x and a by using Mean-Value Theorem. Thus
|f(z)] < Mi(x —a) < Mi(xg —a) < A(xg — a) My

Hence My = 0 if A(zg —a) < 1. That is, f = 0 on [a,xg] by taking
To=a+ i. Repeat the above argument by replacing a with x,, and

note that 55 is a constant. Hence, f =0 on [a, b].
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27. Let ¢ be a real function defined on a rectangle R in the plane, given

by a<z<b a<y<pf. A solution of the initial-value problem

y, = (b(xay)a y(a) =c (Ck <c< 6)

is, by definition, a differentiable function f on [a, b] such that f(a) = ¢,
a < f(z) <3, and

f'(w) = o(x, f(x)) (a<z<b)

Prove that such a problem has at most one solution if there is a constant
A such that

|0(2,y2) — o2, 91)| < Alya — u1]
whenever (z,y;) € R and (z,y2) € R.

Hint: Apply Exercise 26 to the difference of two solutions. Note that

this uniqueness theorem does not hold for the initial-value problem

which has two solutions: f(z) = 0 and f(x) = 2?/4. Find all other

solutions.

Proof: Suppose y; and y, are solutions of that problem. Since

|d(x, y2) — oz, y1)| < Alys — 1],

y(a) =c, ¥y = ¢(z,y1), and y5 = ¢(z,y2), by Exercise 26 we know that

11 — Y2 = 0, y1 = yo. Hence, such a problem has at most one solution.

Note: Suppose there is initial-value problem
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28.

If 41/2 £ 0, then y'/2dy = dx. By integrating each side and noting that
y(0) = 0, we know that f(z) = 22/4. With y/2 = 0, or y = 0. All

solutions of that problem are
f(x)=0 and f(z)=2%/4

Why the uniqueness theorem does not hold for this problem? One

reason is that there does not exist a constant A satisfying

ly1 — vl < Alyr — vo|

if y; and y, are solutions of that problem. (since 2/z — oo as z — 0

and thus A does not exist).

Formulate and prove an analogous uniqueness theorem for systems of
differential equations of the form

y; - ¢j(x7y17 "'7yk>7 y](a) = Cj (j - ]-7 ceey k)
Note that this can be rewritten in the form

/

y :¢($ay)7 Y(a) =c

where y = (y1, ..., yx) ranges over a k-cell, ¢ is the mapping of a (k+1)-
cell into the Euclidean k-space whose components are the function
é1, ..., O, and c is the vector (cq,...,cx). Use Exercise 26, for vector-

valued functions.

Theorem: Let ¢;(j = 1,..., k) be real functions defined on a rectangle

R; in the plane given by a <z < b, a; < y; < 5;.

A solution of the initial-value problem

y; = o(x,y;), yi(a) =c; (5 <c¢; <Bj)
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29.

is, by definition, a differentiable function f; on [a,b] such that f;(a) =
¢j, o < fi(x) < B, and

fi(w) = ¢j(x, fi(x)) (a <z <b)

Then this problem has at most one solution if there is a constant A
such that

D5 (2, 5,) — &5(2,y5)| < Alyj, — Y3,

whenever (z,y;,) € R; and (z,y;,) € R;.

Proof: Suppose y; and ys are solutions of that problem. For each
components of y; and yg, say y1; and yo; respectively, y1; = y2; by

using Exercise 26. Thus, y1 = y2

Specialize Exercise 28 by considering the system

y; - ?/j+1 (.] = ]-7 7k - 1)a

k
Ve = fz) =D gi(2)y;
j=1
where f, g1, ..., gx are continuous real functions on [a,b], and derive a

uniqueness theorem for solutions of the equation

(k) (k—=1)

Yy + () gV + L+ g ()Y + gi(2)y = f(2),

subject to initial conditions

y(a) = Chy,(a) = (1, -'-,y(k_l)(a) = Ck-

Theorem: Let R; be a rectangle in the plain, given by a < z < b,

miny; < y; < maxy;. (since y; is continuous on the compact set, say
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la,b], we know that y; attains minimal and maximal.) If there is a

constant A such that

Yjt11 = Yirral < Alyja — ;2] (J <k)
| 3251 95(2) (Win = yi2)] < Alyka — Yrol

whenever (z,y;1) € R; and (z,y;2) € R;.

Proof: Since the system y, ..., y;, with initial conditions satisfies a fact
that there is a constant A such that |y} —y5| < Aly1 —y2/|, that system

has at most one solution. Hence,
v + 9@y Y + L+ ga(@)y + g1 (2)y = f(2),

with initial conditions has at most one solution.
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