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1. Suppose α increases on [a, b], a ≤ x0 ≤ b, α is continuous at x0, f(x0) =

1, and f(x) = 0 if x 6= x0. Prove that f ∈ R(α) and that
∫

fdα = 0.

Proof: Note that L(P, f, α) = 0 for all partition P of [a, b]. Thus∫ a

b

fdα = 0.

Take a partition P such that

P = {a, a +
1

n
(b− a), ..., a +

k

n
(b− a), ..., a +

n− 1

n
(b− a), b}

for all N 3 n > 1. Thus

U(P, f, α) =
n∑

i=1

Mi∆αi ≤
2(b− a)

n

for all N 3 n > 1. Thus

0 ≤ inf U(P, f, α) ≤ 2(b− a)

n

for all n ∈ N . Thus inf U(P, f, α) = 0. Hence
∫ a

bfdα = 0; thus,∫ a
b fdα = 0.

2. Suppose f ≥ 0, f is continuous on [a, b], and
∫ b
a f(x)dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b]. (Compare this with Exercise 1.)

Proof: Suppose not, then there is p ∈ [a, b] such that f(p) > 0. Since

f is continuous at x = p, for ε = f(p)/2, there exist δ > 0 such that

|f(x)− f(p)| < ε whenever x ∈ (x− δ, x + δ)
⋂

[a, b], that is,

0 <
1

2
f(p) < f(x) <

3

2
f(p)
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for x ∈ Br(p) ⊂ [a, b] where r is small enough. Next, consider a

partition P of [a, b] such that

P = {a, p− r

2
, p +

r

2
, b}.

Thus

L(P, f) ≥ r · 1

2
f(p) =

rf(p)

2
.

Thus

sup L(P, f) ≥ L(P, f) ≥ rf(p)

2
> 0,

a contradition since
∫ b
a f(x)dx = sup L(P, f) = 0. Hence f = 0 for all

x ∈ [a, b].

Note: The above conclusion holds under the condition that f is con-

tinuous. If f is not necessary continuous, then we cannot get this

conclusion. (A counter-example is shown in Exercise 6.1).

3.

4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that

f /∈ R on [a, b] for any a < b.

Proof: Take any partition P of [a, b], say

a = x0 ≤ x1 ≤ .. ≤ xn−1 ≤ xn = b.

By P we can construct the new partition P ′ without repeated points,

and U(P, f) = U(P ′f), L(P, f) = L(P ′, f). Say P ′

a = y0 < y1 < ... < ym−1 < ym = b.

Note that Q is dense in R, and R−Q is also dense in R. Hence

Mi = sup
yi−1≤x≤yi

f(x) = 1,

mi = inf
yi−1≤x≤yi

f(x) = 0.
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Hence

U(P, f) = U(P ′, f) =
m∑

i=1

Mi∆yi = b− a,

L(P, f) = L(P ′, f) =
m∑

i=1

mi∆yi = 0.

for any partition of [a, b]. Hence∫ b

a
fdx = inf U(P, f) = b− a,∫ b

a

fdx = sup L(P, f) = 0.

Thus f /∈ R[a, b].

5. Suppose f is bounded real function on [a, b], and f 2 ∈ R on [a, b].

Does it follow that f ∈ R? Does the answer change if we assume that

f 3 ∈ R?

Proof: The first answer is NO. Define f(x) = −1 for all irrational

x ∈ [a, b], f(x) = 1 for all rational x ∈ [a, b]. Similarly, by Exercise 6.4,

f /∈ R.

However, if we assume that f 3 ∈ R, the answer is YES. Let Φ = x1/3,

we apply Theorem 6.11 and get the conclusion that f ∈ R.

6.

7. Suppose f is a real funtion on (0, 1] and f ∈ R on [c, 1] for every c > 0.

Define ∫ 1

0
f(x)dx = lim

c→0

∫ 1

c
f(x)dx

if this limit exists (and is finite).

(a) If f ∈ R on [0, 1], show that this definition of the integral agrees

with the old one.
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(b) Construct a function f such that the above limit exists, although it

fails to exist with |f | in place of f .

Proof of (a): Take any c > 0, and note that f is bounded, say |f | ≤ M

for some M . Hence∫ c

0
−Mdx ≤

∫ c
0 f(x)dx ≤

∫ c

0
Mdx

−cM ≤
∫ c
0 f(x)dx ≤ cM

−cM ≤
∫ 1
c f(x)dx−

∫ 1
0 f(x)dx ≤ cM.

Letting c → 0 and thus
∫ 1
c f(x)dx−

∫ 1
0 f(x)dx → 0, that is,

∫ 1
c f(x)dx →∫ 1

0 f(x)dx as c → 0. Thus this definition of the integral agrees with the

old one.

Solution of (b): (Due to Shin-Yi Lee) Define

f(x) = n(−1)n, where
1

n + 1
< x ≤ 1

n
.

(Due to Meng-Gen Tsai). Define

f(x) =
sin(1/x)

x
.

8. Suppose f ∈ R on [a, b] for every b > a where a is fixed. Define∫ ∞

a
f(x)dx = lim

b→∞

∫ b

a
f(x)dx

if this limit exists (and is finite). In that case, we say that the integral

on the left converges. If it also converges after f has been replaced by

|f |, it is said to converge absolutely.

Assume that f(x) ≥ 0 and that f decreases monotonically on [1,∞).

Prove that ∫ ∞

1
f(x)dx

converges if and only if
∞∑

n=1

f(n)
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converges. (This is the so-called ”integral test” for convergence of se-

ries.)

Proof: Since f is nonnegative and decreases monotonically on [1,∞),

we have for n ≥ 2,

k∑
n=2

f(n) ≤
∫ k

1
f(x)dx ≤

k−1∑
n=1

f(n).

We define

g(x) =
∫ y

1
f(t)dt.

If this integral converges, then g(x) is a nondecreasing function which

tends to a limit, and so g(k) is a bounded nondecreasing sequence.

Thus denote sk =
∑k

n=2 f(n), we see that sk ≤ g(k), and sk tends to a

limit. The fact that
∑∞

n=1 f(n) converges if
∫∞
1 f(x)dx converges is now

established. If the integral diverges, then g(x) → +∞ as x → +∞.

Therefore g(k) → +∞. Since g(k) ≤ ∑k−1
n=1 f(n), we conclude that

the series diverges. Hence
∫∞
1 f(x)dx converges if

∑∞
n=1 f(n). Thus,∫∞

1 f(x)dx converges if and only if
∑∞

n=1 f(n) converges.

9. Show that integration by parts can sometimes be applied to the ”im-

proper” integrals defined in Exercise 7 and 8. (State appropriate hy-

potheses, formulate a theorem, and prove it.) For instance show that∫ ∞

0

cos x

1 + x
dx =

∫ ∞

0

sin x

(1 + x)2
dx.

Show that one of these integrals converges absolutely, but that the other

does not.

Proof: Recall Theorem 6.22 (integration by parts):

Suppose F and G are differentiable functions on [a, b], F ′ =

f ∈ R, and G′ = g ∈ R. Then∫ b

a
F (x)g(x)dx = F (b)G(b)− F (a)G(a)−

∫ b

a
f(x)G(x)dx.
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10.

11.

12.

13. Define

f(x) =
∫ x+1

x
sin(t2)dt.

(a) Prove that |f(x)| < 1/x if x > 0.

Hint: Put t2 = u and integrate by parts, to show that f(x) is equal to

cos(x2)

2x
− cos[(x + 1)2]

2(x + 1)
−

∫ (x+1)2

x2

cos u

4u3/2
du.

Replace cos u by −1.

(b) Prove that

2xf(x) = cos(x2)− cos[(x + 1)2] + r(x)

where |r(x)| < c/x and c is a constant.

(c) Find the upper and lower bound limit of xf(x), as x →∞.

(d) Does
∫∞
0 sin(t2) dt converges?

Proof of (a): Put t2 = u,

f(x) =
∫ x+1

x
sin(t2)dt

=
∫ (x+1)2

x2

sin u

2u1/2
du

=
− cos u

2u1/2
|u=(x+1)2

u=x2 −
∫ (x+1)2

x2

cos u

4u3/2
du

=
cos(x2)

2x
− cos[(x + 1)2]

2(x + 1)
−

∫ (x+1)2

x2

cos u

4u3/2
du.
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To get a bound of
∫ (x+1)2

x2
cos u
4u3/2 du, we replace cos u by −1:

|
∫ (x+1)2

x2

cos u

4u3/2
du| < |

∫ (x+1)2

x2

−1

4u3/2
du|

=
1

2x(x + 1)

for x > 0. Hence

|f(x)| ≤ |cos(x2)

2x
|+ |cos[(x + 1)2]

2(x + 1)
|+ |

∫ (x+1)2

x2

cos u

4u3/2
du|

<
1

2x
+

1

2(x + 1)
+

1

2x(x + 1)

=
1

x

for x > 0.

Proof of (b): By (a),

f(x) =
cos(x2)

2x
− cos[(x + 1)2]

2(x + 1)
−

∫ (x+1)2

x2

cos u

4u3/2
du.

2xf(x) = cos(x2)−cos[(x+1)2]+
1

x + 1
cos[(x+1)2]−2x

∫ (x+1)2

x2

cos u

4u3/2
du.

Let

r(x) =
1

x + 1
cos[(x + 1)2]− 2x

∫ (x+1)2

x2

cos u

4u3/2
du.

Note that

| 1

x + 1
cos[(x + 1)2]| ≤ 1

x + 1
<

1

x
,

2x
∫ (x+1)2

x2

cos u

4u3/2
du < 2x

1

2x(x + 1)
<

1

x

if x > 0. Thus |r(x)| < 1/x + 1/x = c/x and c = 2 is a constant.

Note: Here, x > 0.

Proof of (c):

Proof of (d):
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14.

15.

16. For 1 < s < ∞, define

ζ(s) =
∞∑

n=1

1

ns
.

(This is Riemann’s zeta function, of great importance in the study of

the distribution of prime numbers.) Prove that

(a) ζ(s) = s
∫∞
1

[x]
xs−1 dx

and that

(b) ζ(s) = s
s−1

− s
∫∞
1

x−[x]
xs−1 dx,

where [x] denotes the greatest integer ≤ x.

Prove that the integral in (b) converges for all s > 0.

Hint: To prove (a), compute the difference between the integral over

[1, N ] and the Nth partial sum of the series that defines ζ(s).

17.

18.

19.
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