The Riemann-Stieltjes Integral
Written by Men-Gen Tsai
email: b89902089@ntu.edu.tw

1. Suppose « increases on [a, b], a < xy < b, v is continuous at xg, f(zg) =
1, and f(x) =0 if x # xo. Prove that f € R(«) and that [ fda = 0.

Proof: Note that L(P, f,a) = 0 for all partition P of [a,b]. Thus

/afda:O.
)

Take a partition P such that

1 k
P = —(b—a),.. —(b—a),..
fo.at(b=a).at " (b—a).a+

for all N 3n > 1. Thus

UP,fa) = Mda; < 20 =9

=1

for all N >n > 1. Thus

2(b—a)

0<infU(P,f, a)<
n

for all n € N. Thus inf U(P, f,a) = 0. Hence [, fda = 0; thus,
Jy fda = 0.

2. Suppose f >0, f is continuous on [a, b, and f; f(z)dz = 0. Prove that
f(z) =0 for all z € [a,b]. (Compare this with Exercise 1.)

Proof: Suppose not, then there is p € [a, b] such that f(p) > 0. Since
f is continuous at x = p, for e = f(p)/2, there exist § > 0 such that
|f(z) — f(p)| < € whenever x € (x — 0,2 + ) N[a, b], that is,

0< 31) < 1) < 2
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for x € B,(p) C [a,b] where r is small enough. Next, consider a
partition P of [a, b] such that

P = {a7p_ iap—i_ f7b}

2 2
Thus )
Py = v L) = LY
Thus
apL(P.f) = L(P ) > TP~

a contradition since [° f(x)dx = sup L(P, f) = 0. Hence f = 0 for all
x € [a,b].

Note: The above conclusion holds under the condition that f is con-
tinuous. If f is not necessary continuous, then we cannot get this

conclusion. (A counter-example is shown in Exercise 6.1).

. If f(x) = 0 for all irrational x, f(xz) = 1 for all rational x, prove that
f ¢ R on [a,b] for any a < b.

Proof: Take any partition P of [a, b], say
a=x9< 11 <. <xp 1 <y, =

By P we can construct the new partition P’ without repeated points,
and U(P, f)=U(P'f), L(P, f) = L(P', f). Say P’

a=1Yy <Y1 < .. <Yn1<Ym=>0.

Note that @) is dense in R, and R — @ is also dense in R. Hence

Mi = sup f(.T) = 17
Yi—1<x<y;
mn yi—llgxgyi f($)
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Hence

UPS) = UP.H=> MAy=b—a,

i=1

L) = L(P.f)=> mly =0,

i=1
for any partition of [a, b]. Hence

—=b

/fd:c — infU(P,f)=b—a,
fdx = supL(P, f)=0.

Thus f ¢ Ra,b].

. Suppose f is bounded real function on [a,b], and f* € R on |[a,b].
Does it follow that f € R? Does the answer change if we assume that
f2eR?

Proof: The first answer is NO. Define f(x) = —1 for all irrational
x € |a,b], f(x) =1 for all rational = € [a, b]. Similarly, by Exercise 6.4,

f¢R.

However, if we assume that f3 € R, the answer is YES. Let ® = z'/3,

we apply Theorem 6.11 and get the conclusion that f € R.

. Suppose f is a real funtion on (0, 1] and f € R on [c, 1] for every ¢ > 0.
Define

1 1
/ f(x)dx = liII(l)/ f(x)dx
0 c—=U Je
if this limit exists (and is finite).

(a) If f € R on [0,1], show that this definition of the integral agrees
with the old one.



(b) Construct a function f such that the above limit exists, although it
fails to exist with |f| in place of f.

Proof of (a): Take any ¢ > 0, and note that f is bounded, say |f| < M

for some M. Hence

[~Mar< i@ < [ M
0 0
—cM < Is flz)dx <cM
—cM < [l f(x)dx — [y f(x)de < cM.
Letting ¢ — 0 and thus [ f(z)dz—f) f(z)dz — 0, that is, [ f(z)dz —
Jy f(z)dz as ¢ — 0. Thus this definition of the integral agrees with the

old one.

Solution of (b): (Due to Shin-Yi Lee) Define

f(z) =n(=1)", where <x<

1
n+1 n’
(Due to Meng-Gen Tsai). Define
sin(1/x
) = )
x
. Suppose f € R on [a,b] for every b > a where a is fixed. Define
00 b
/ f(z)dx = blim / f(z)dz
if this limit exists (and is finite). In that case, we say that the integral
on the left converges. If it also converges after f has been replaced by

| f], it is said to converge absolutely.

Assume that f(z) > 0 and that f decreases monotonically on [1,00).
Prove that

|ty

converges if and only if

ﬁ:ﬂm
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converges. (This is the so-called "integral test” for convergence of se-

ries.)

Proof: Since f is nonnegative and decreases monotonically on [1,00),

we have for n > 2,

k-1
> s < [ )iz < 3 gin)
We define

gla) = [ syt
If this integral converges, then g(x) is a nondecreasing function which
tends to a limit, and so g(k) is a bounded nondecreasing sequence.
Thus denote s, = >F_, f(n), we see that s, < g(k), and s;, tends to a
limit. The fact that >°°; f(n) converges if [ f(z)dz converges is now
established. If the integral diverges, then g(z) — +o0 as z — +o00.
Therefore g(k) — +4o0. Since g(k) < YFZ! f(n), we conclude that
the series diverges. Hence [7° f(x)dx converges if > 0°, f(n). Thus,
[7° f(x)dx converges if and only if >°° ; f(n) converges.

. Show that integration by parts can sometimes be applied to the ”im-
proper” integrals defined in Exercise 7 and 8. (State appropriate hy-
potheses, formulate a theorem, and prove it.) For instance show that
o0 cosw sin x
/0 1—1—7:15 B / 1 + x)?
Show that one of these integrals converges absolutely, but that the other

does not.

Proof: Recall Theorem 6.22 (integration by parts):

Suppose F' and G are differentiable functions on [a,b], F' =
f€R,and G'=g € R. Then



10.
11.
12.

13. Define »
fla) = / sin(t2)dt.
(a) Prove that |f(z)| < 1/z if x > 0.

Hint: Put t> = u and integrate by parts, to show that f(x) is equal to

cos(z?)  cos|(z + 1)?] /(IH)2 cos u
— — u.

2 2z +1) VTR

Replace cosu by —1.
(b) Prove that

22 f (x) = cos(x?) — cos[(x + 1)%] + r(x)

where |r(z)| < ¢/x and ¢ is a constant.
(c) Find the upper and lower bound limit of z f(z), as © — oc.
(d) Does [;°sin(t?) dt converges?

Proof of (a): Put t* = u,

f@) = [ 7 sin()dt

/(Hl)2 sin u
X

2 m U
— COSU e (4-41)? (z+1)* cosu
= g b T /xz 432
_cos(x?)  cos[(z +1)?] (@+1)? cosu
- 2w 2@+l /mz 232"



To get a bound of f (z+1)?

for z > 0. Hence

/()]

for z > 0.

Proof of (b): By (a),
flx) =

2z f(x) = cos(xQ)—cos[(x—i-l)Q]—i—x !

Let

r(x

Note that

<

<

cosu
Ay3/2

du, we replace cosu by —1:

(z+1)? cosu (x+1)?2 1 P
L S < V[
B 1
- 2z(x 1)
cos(z?),  cos|[( )? cosu
220 4 g [ o
2z 4u3/?
L, 1
20 2(x+1) 21’(1‘ +1)
1
x
cos(z?)  cos[(z + 1) @+1)? cosu
; e,
2 2(x +1) 22 4u3/?

)

+1

1 2
. cos[(z +1)7] — Qx/

cos|(z+1)2) —2z /

x

(z+1)* cosu

(z+1)?

2

Tz z? 132
1 1 1
1 < < —
el 1) < <
5 /(fﬂ+1) CcoS U <9 1 _ 1
x u rT— < —
x? 4u3/? 2z(x + 1)

CcCoS U
4u3/2

if > 0. Thus |r(z)| < 1/x+ 1/ = ¢/x and ¢ = 2 is a constant.

Note: Here, z > 0.

Proof of (c):

Proof of (d):

Uu.



14.

15.

16.

17.

18.

19.

For 1 < s < oo, define

(This is Riemann’s zeta function, of great importance in the study of

the distribution of prime numbers.) Prove that
(8) G(s) = s J° ;hrda

and that

(b) C(s) = 355 — s [i° 5,

s—1

where [z] denotes the greatest integer < x.

Prove that the integral in (b) converges for all s > 0.

Hint: To prove (a), compute the difference between the integral over
[1, N] and the Nth partial sum of the series that defines ((s).



