
Something around the number e
1. Show that the sequence 1  1
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n converges, and denote the limit by e.
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and by (1), we know that the sequence is increasing. Hence, the sequence is convergent.
We denote its limit e. That is,

limn 1  1n
n
 e.

Remark: 1. The sequence and e first appear in the mail that Euler wrote to Goldbach.
It is a beautiful formula involving

ei  1  0.

2. Use the exercise, we can show thatk0
 1

k!  e as follows.

Proof: Let xn  1  1
n 

n, and let k  n, we have

1  1  1
2! 1  1k . . 1n! 1  1k   1  n  1k  xk

which implies that ( let k   )
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On the other hand,
xn  yn     3

So, by (2) and (3), we finally have
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
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k!  e.     4

3. e is an irrational number.
Proof: Assume that e is a rational number, say e  p/q, where g.c.d. p,q  1. Note

that q  1. Consider
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and since q! k0
q 1

k! and q!e are integers, we have q! kq1
 1

k! is also an
integer. However,
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a contradiction. So, we know that e is not a rational number.
4. Here is an estimate about e  k0

n 1
k! 


nn! , where 0    1. ( In fact, we know

that e  2.71828 18284 59045 . . . . )
Proof: Since e  k0

 1
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
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So, we finally have

e 
k0

n
1
k! 


nn! , where 0    1.

Note:We can use the estimate dorectly to show e is an irrational number.
2. For continuous variables, we have the samae result as follows. That is,

lim
x

1  1x
x
 e.

Proof: (1) Since 1  1
n 

n  e as n  , we know that for any sequence an  N,
with an  , we have

limn 1  1
an

an
 e.     5

(2) Given a sequence xn with xn  , and define an  xn, then
an  xn  an  1, then we have

1  1
an  1

an
 1  1

xn
xn
 1  1

an
an1
.

Since

1  1
an  1

an
 e and 1  1

an
an1

 e as x   by (5)

we know that



limn 1 
1
xn

xn
 e.

Since xn is arbitrary chosen so that it goes infinity, we finally obtain that
limx 1 

1
x

x
 e.     6

(3) In order to show 1  1
x 

x  e as x  , we let x  y, then

1  1x
x
 1  1

y
y

 y
y  1

y

 1  1
y  1

y1
1  1

y  1 .

Note that x   y  , by (6), we have shown that

e  limy 1  1
y  1

y1
1  1

y  1

 limx 1 
1
x

x
.

3. Prove that as x  0, we have1  1
x 

x is strictly increasing, and 1  1
x 

x1 is
dstrictly ecreasing.
Proof: Since, byMean Value Theorem

1
x  1  log 1  1x  logx  1  logx  1

  1
x for all x  0,

we have

x log 1  1x

 log 1  1x  1

x  1  0 for all x  0

and

x  1 log 1  1x

 log 1  1x  1x  0 for all x  0.

Hence, we know that
x log 1  1x is strictly increasing on 0,

and
x  1 log 1  1x is strictly decreasing on 0,.

It implies that

1  1x
x
is strictly increasing 0,, and 1  1x

x1
is strictly decreasing on 0,.

Remark: By exercise 2, we know that

limx 1 
1
x

x
 e  limx 1 

1
x

x1
.

4. Follow the Exercise 3 to find the smallest a such that 1  1
x 

xa  e and strictly
decreasing for all x  0,.
Proof: Let fx  1  1

x 
xa, and consider

log fx  x  a log 1  1x : gx,

Let us consider



gx  log 1  1x  x  a
x2  x

  log1  y  y  1  ay2 1
1  y , where 0  y 

1
1  x  1


k1

 yk
k  y  1  ay2

k0



yk

 1
2  a y

2  1
3  a y

3 . . . 1
n  a yn . . .

It is clear that for a  1/2, we have gx  0 for all x  0,. Note that for a  1/2,
if there exists such a so that f is strictly decreasing for all x  0,. Then gx  0 for
all x  0,. However, it is impossible since

gx  1
2  a y

2  1
3  a y

3 . . . 1
n  a yn . . .

 1
2  a  0 as y  1

.

So, we have proved that the smallest value of a is 1/2.

Remark: There is another proof to show that 1  1
x 

x1/2 is strictly decreasing on
0,.
Proof: Consider ht  1/t, and two points 1,1 and 1  1

x , 1
1 1x

lying on the graph
From three areas, the idea is that

The area of lower rectangle  The area of the curve  The area of trapezoid
So, we have

1
1  x  1

x
1

1  1
x

 log 1  1x  1
2x 1  1

1  1
x

 x  12
1

xx  1 .     7

Consider

1  1x
x1/2 

 1  1x
x1/2

log 1  1x  x  12
1

xx  1
 0 by (7);

hence, we know that 1  1
x 

x1/2 is strictly decreasing on 0,.
Note: Use the method of remark, we know that 1  1

x 
x is strictly increasing on

0,.


