The Real And Complex Number Systems

Integers

11 Prove that there is no largest prime.

Proof: Suppose p is the largest prime. Then p!+ 1 is NOT a prime. So,
there exists a prime ¢ such that

glpl+1=¢q|1

which is impossible. So, there is no largest prime.

Remark: There are many and many proofs about it. The proof that we
give comes from Archimedes 287-212 B. C. In addition, Euler Leonhard
(1707-1783) find another method to show it. The method is important since
it develops to study the theory of numbers by analytic method. The reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 91-93. (Chinese Version)

12 If n is a positive integer, prove the algebraic identity

n—1
a"—b"=(a—Db) Z akprih
k=0
Proof: It suffices to show that
n—1
" —1=(zx—-1)) 2"
k=0



Consider the right hand side, we have

n—1 n—1 n—1
(.CL' . 1) xk — karl o $k
k=0 k=0 k=0
n n—1
::jg:itk-— $k
k=1 k=0
=z" -1

13 If 2" — 1 is a prime, prove that n is prime. A prime of the form
2P — 1, where p is prime, is called a Mersenne prime.

Proof: If n is not a prime, then say n = ab, where a > 1 and b > 1. So,
we have

S

-1
20 _1=(29—1)) (29"
0

=
Il

which is not a prime by Exercise 1.2. So, n must be a prime.

Remark: The study of Mersenne prime is important; it is related
with so called Perfect number. In addition, there are some OPEN prob-
lem about it. For example, is there infinitely many Mersenne nem-
bers? The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 13-15. (Chinese Version)

14 If 2" + 1 is a prime, prove that n is a power of 2. A prime of the

form 22" + 1 is called a Fermat prime. Hint. Use exercise 1.2.

Proof: If n is a not a power of 2, say n = ab, where b is an odd integer.
So,
20 +1[2%° + 1

and 2% +1 < 2% 4 1. It implies that 2" + 1 is not a prime. So, n must be a
power of 2.

Remark: (1) In the proof, we use the identity

2n—2
P L= (1) Y (-1 b
k=0



Proof: Consider

2n—2 2n—2 2n—2
r+1 —1)Fak = —1)F gkt 4 L
(
k=0 k=0 k=0
2n—1 2n—2
= (MR > (-t
k=1 k=0
— $2n+1 + 1

(2) The study of Fermat number is important; for the details the reader
can see the book, An Introduction To The Theory Of Numbers by
Loo-Keng Hua, pp 15. (Chinese Version)

15 The Fibonacci numbers 1,1, 2, 3,5, 8,13, ... are defined by the recur-
sion formula x,,; = x, + x,_1, with ; = 5 = 1. Prove that (x,,2,41) =1
and that x,, = (a™ — b") / (a — b) , where a and b are the roots of the quadratic
equation 2 —x — 1 = 0.

Proof: Let d = g.c.d. (x,,x,41), then
d|z, and d |z 11 = Ty + Tpq -
So,
d ’xn—l .

Continue the process, we finally have
djl.

So, d = 1 since d is positive.
Observe that
Tpt1 = Tn + Tp-1,

and thus we consider
xn—i—l — xn _'_xn—l’
i.e., consider

22 = x4+ 1 with two roots, a and b.

If we let
F,=@ -b)/(a—0),

3



then it is clear that
Fr=1 F,=1, and F,,y = F, + F,,_; for n > 1.

So, F,, = z,, for all n.

Remark: The study of the Fibonacci numbers is important; the reader
can see the book, Fibonacci and Lucas Numbers with Applications
by Koshy and Thomas.

].6 Prove that every nonempty set of positive integers contains a small-
est member. This is called the well-ordering Principle.

Proof: Given (¢ #)S(C N), we prove that if S contains an integer
k, then S contains the smallest member. We prove it by Mathematical
Induction of second form as follows.

As k = 1, it trivially holds. Assume that as k = 1,2, ..., m holds, consider
as k =m + 1 as follows. In order to show it, we consider two cases.

(1) If there is a member s € S such that s < m + 1, then by Induction
hypothesis, we have proved it.

(2) If every s € S, s > m+ 1, then m + 1 is the smallest member.

Hence, by Mathematical Induction, we complete it.

Remark: We give a fundamental result to help the reader get more. We
will prove the followings are equivalent:

(A. Well-ordering Principle) every nonempty set of positive integers
contains a smallest member.

(B. Mathematical Induction of first form) Suppose that S (C N),

it S satisfies that
(1). 1in S
(2). Aske S, thenk+1€S.

Then S = N.

(C. Mathematical Induction of second form) Suppose that S (C N),
it S satisfies that

(1). 1in S
(2). As1,....k €S, then k+ 1€ S.



Then S = N.

Proof: (A= B): If S # N, then N — S # ¢. So, by (A), there exists
the smallest integer w such that w € N — S. Note that w > 1 by (1), so we
consider w — 1 as follows.

Since w —1 ¢ N — S, we know that w — 1 € S. By (2), we know that
w € S which contadicts to w € N — S. Hence, S = N.

(B = C): It is obvious.

(C = A): We have proved it by this exercise.

Rational and irrational numbers

1.7 Find the rational number whose decimal expansion is 0.3344444444....
Proof: Let x = 0.3344444444..., then

3 3 4 4
:U:E+1—02+1—03+...+W+.., where n > 3
:§+i(1+i+...+i+..>
102 103 10 107
_ 33 4 1
_1_02+1_03(1—1i0)
_ 33 4
~ 107 " 900
~ 301
= 500"

1.8 Prove that the decimal expansion of x will end in zeros (or in nines)
if, and only if, x is a rational number whose denominator is of the form 2"5™,
where m and n are nonnegative integers.

Proof: (<)Suppose that z = 5%, if n > m, we have

kj5n7m B 5n7mk
ongn10n

So, the decimal expansion of z will end in zeros. Similarly for m > n.
(=)Suppose that the decimal expansion of z will end in zeros (or in

nines).




For case x = ag.ajas - - - a,,. Then

_ ZZ:O 10”_kak _ ZZ:O 10""‘“%

v 10 ongn
For case x = ag.ajas - - - a,999999 - - - . Then
B ZZ:O 10"‘kak 9
B 2n5n 1onrt T e T
S o 10" Fay, 9
= — 1077
5 1o
7=0
B 2n5n 107
B 1+ ZZZO 10n_k(lk
B 2n5n '

So, in both case, we prove that x is a rational number whose denominator is
of the form 2"5™, where m and n are nonnegative integers.

1.9 Prove that /2 + v/3 is irrational.
Proof: If v2+ /3 is rational, then consider

(V3 v3) (V- v2) =1

which implies that V3 — /2 is rational. Hence, V3 would be rational. Tt is
impossible. So, v/2 + v/3 is irrational.

Remark: (1),/p is an irrational if p is a prime.
Proof: If \/p € Q, write \/p = {, where g.c.d. (a,b) = 1. Then
b2p:a2:>p‘a2:>p|a (*)
Write a = pq. So,
V’p=p*q* =V =pg® = p|b® = plb. (*)

By (*) and (*'), we get
plg.cd.(a,b) =1

which implies that p = 1, a contradiction. So, ,/p is an irrational if p is a
prime.



Note: There are many and many methods to prove it. For example, the
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 19-21. (Chinese Version)

(2) Suppose a,b € N. Prove that y/a+ /b is rational if and only if, a = k>
and b = h? for some h,k € N.

Proof: (<) It is clear.
(=) Consider

(Va+ Vo) (Va-vb) =a* =12,

then v/a € Q and Vb € Q. Then it is clear that a = h? and b = h? for some
hkeN.

1.10 If a, b, ¢, d are rational and if x is irrational, prove that (ax + ) / (cz + d)
is usually irrational. When do exceptions occur?

Proof: We claim that (ax + b) / (cz + d) is rational if and only if ad = bc.

(=)If (ax +b) / (cx +d) is rational, say (ax +b)/(cx+d) = q/p. We
consider two cases as follows.

(i) If ¢ = 0, then ax+b = 0. If a # 0, then x would be rational. So, a =0
and b = 0. Hence, we have

ad =0 = bc.

(ii) If ¢ # 0, then (pa — qc) x+ (pb — qd) = 0. If pa—qc # 0, then = would

be rational. So, pa — qc = 0 and pb — gd = 0. It implies that

qchb = qad = ad = be.
(«<)Suppose ad = be. If a =0, then b =0 or ¢ = 0. So,

ax+b_ Oifa=0and b=0
cr+d gifa:Oandc:O'

If @ # 0, then d = bc/a. So,

ct+d cr+bc/a  c(ax+b)

ar+b  ar+b alax+b) a

Hence, we proved that if ad = be, then (az + b) / (cx + d) is rational.



].].1 Given any real x > 0, prove that there is an irrational number
between 0 and x.

Proof: If z € Q°, we choose y = z/2 € Q°. Then 0 < y < z. If z € Q,
we choose y = 2/v/2 € Q, then 0 < y < .

Remark: (1) There are many and many proofs about it. We may prove
it by the concept of Perfect set. The reader can see the book, Principles
of Mathematical Analysis written by Walter Rudin, Theorem 2.43,
pp 41. Also see the textbook, Exercise 3.25.

(2) Given a and b € R with a < b, there exists r € Q°, and ¢ € @ such
that a <r <band a < q <b.

Proof: We show it by considering four cases. (i) a € @, b € Q. (ii)
aceQ,beQc (ili)aeQbe Q. (iv) a € Q° be Q"
i) (a€e@,beQ) Chooseq:%%andr:\/iia—i-(l—\%)b.

(
(ii) (a € Q, b € Q°) Choose r = “T“Lb and let ¢ = 2% < b—a, then a+c:=q.
(

iii) (a € Q¢ b € @) Similarly for (iii).
(iv) (a € Q° b € Q°) It suffices to show that there exists a rational
number g € (a,b) by (ii). Write

b=bo.biby---b, -
Choose n large enough so that
a<q:bo.blb2~~bn<b.

(It works since b — g = 0.000..000b,41... < 157)

1.12 If a/b < ¢/d with b > 0, d > 0, prove that (a+c¢)/(b+d) lies
bwtween the two fractions a/b and ¢/d

Proof: It only needs to conisder the substraction. So, we omit it.

Remark: The result of this exercise is often used, so we suggest the
reader keep it in mind.

]. . ].3 Let a and b be positive integers. Prove that /2 always lies between
the two fractions a/b and (a + 2b) / (a + b) . Which fraction is closer to v/2?

Proof: Suppose a/b < \/5, then a < v/20b. So,
2—-1 2b —
a+2b_\/§_(\/_ )(\/_b a)>

a+b a-+b -



In addition,

(\/_—§>_<a+2b_\/§) :2\/—_(g+a+2b)

b a-+b +b
o e
= v [(2VE-2)abs (2v2-2) 1 -]
>ab+b2 [<2f >\/§+<2‘/§_2> (%) —a2]

=0.

So, “fbb is closer to v/2.
Similarly, we also have if a/b > \/_ then ‘”21’ < V2. Also, ‘”zb is closer

0 v/2 in this case.
Remark: Note that

Qb 2b
a4 <V2< ot — by Exercise 12 and 13.
b a+b

And we know that 2£2 is closer to v/2. We can use it to approximate V2.
a+b

Similarly for the case

2 2
b a+b \/§ a

< < < -
a a+b b

1.14 Prove that v/n — 1+ /n + 1 is irrational for every integer n > 1.

Proof: Suppose that v/n — 1+ v/n + 1 is rational, and thus consider

<\/n+1+\/n—1> (\/n+1—\/n—1):

which implies that v/n + 1 — +/n — 1 is rational. Hence, v/n + 1 and v/n — 1
are rational. So, n —1 = k? and n + 1 = h?, where k and h are positive

integer. It implies that
3 1
h = 5 and k’ = 5

which is absurb. So, vn — 1+ /n + 1 is irrational for every integer n > 1.




]. . ].5 Given areal x and an integer N > 1, prove that there exist integers
h and k with 0 < & < N such that |kz — h| < 1/N. Hint. Consider the N +1
numbers tx — [tz] for t = 0,1,2,..., N and show that some pair differs by at
most 1/N.

Proof: Given N > 1, and thus consider tz — [tz] for t = 0,1,2,..., N as
follows. Since
0 <tx—[tx] :=a; <1,

so there exists two numbers a; and a; where 7 # j such that

1 1
4 = 03] < - = (0= ) = p| < . where p = [jz] - [iz].

Hence, there exist integers h and k with 0 < £ < N such that |kx — h| < 1/N.

1 . 16 If x is irrational prove that there are infinitely many rational num-
bers h/k with k& > 0 such that |z — h/k| < 1/k? Hint. Assume there are
only a finite number hy/ky, ..., h./k,. and obtain a contradiction by apply-
ing Exercise 1.15 with N > 1/0, where § is the smallest of the numbers

Proof: Assume there are only a finite number hy/ky, ..., h,/k, and let
0 = min]_, |x — h;/k;] > 0 since z is irrational. Choose N > 1/4, then by
Exercise 1.15, we have

! <6< h < !
NSRS EN
which implies that
1 1
N kN

which is impossible. So, there are infinitely many rational numbers h/k with
k > 0 such that |z — h/k| < 1/k2.

Remark: (1) There is another proof by continued fractions. The
reader can see the book, An Introduction To The Theory Of Numbers
by Loo-Keng Hua, pp 270. (Chinese Version)

(2) The exercise is useful to help us show the following lemma. {ar +b:a € Z,b € Z},
where 7 € Q° is dense in R. It is equivalent to {ar : a € Z} , where r € Q¢ is
dense in [0, 1] modulus 1.

10



Proof: Say {ar+b:a€ Z,b€ Z} = S, and since r € Q°, then by Ex-
ercise 1.16, there are infinitely many rational numbers h/k with k& > 0 such
that |kr — k| < +. Consider (z — 6,z + §) := I, where § > 0, and thus choos-
ing ko large enough so that 1/kg < §. Define L = |kor — hg|, then we have
sL € I for some s € Z. So, sL = (£) [(sko) r — (shg)] € S. That is, we have
proved that S is dense in R.

1. 17 Let = be a positive rational number of the form

n
Qg

T = H,
k=1
where each ay is nonnegative integer with a; < k — 1 for £ > 2 and a,, > 0.
Let [z] denote the largest integer in z. Prove that a; = [z], that ap =
[klx] — k[(k — 1)lz] for k = 2,...,n, and that n is the smallest integer such
that n!z is an integer. Conversely, show that every positive rational number
x can be expressed in this form in one and only one way.

Proof: (=)First,

n ap,
“t )
k=2

7] =

n
ag

k!
k=2

=a; + since a; € N

n

o —~ap _x~k—1 1 11
_alsmce;ES QT_;W_E_1_5<1

Second, fixed k and consider

n n

k—1
k!x:k!Zi{:k!Z%Mﬁk! S U
=17

1
Jj=1 J: j:k+1]'
and
n k—1 n
a; s .
(b= Dle = (k=113 = (k= D13+ (b= DI
Jj=1 j=1 j=k

11



So,

k—1 n
[kla] = [klzi{mkw! 3 “—{]
Jj=1 J: j=k+1 J:

k—1 n
a; a;
:klg ﬁ+aksincek:! E 2 <1

1
j=1 j=k+1 J:

and

<

j=1 ij=k

k[(k - 1)l2] = k [(k—1)!zi{+(k—1)! Y %]

k— n
:k(k—l)!zaf?since (k—1)! a,—]‘<1
j=1 J: j=k 7
k—1

_ )
=k i
j=1
which implies that
ar, = [Klz] — k[(k — 1)lz] for k =2,...,n.

Last, in order to show that n is the smallest integer such that nlx is an
integer. It is clear that
n
Qg
lr = nl -
nle = n! Z I €.
k=1

In addition,

k!
k=1
n la a
k n
k=1

So, we have proved it.

12



(«<=)It is clear since every a,, is uniquely deermined.

Upper bounds

1.18 Show that the sup and the inf of a set are uniquely determined whenever
they exists.

Proof: Given a nonempty set S(C R), and assume supS = a and
supS = b, we show a = b as follows. Suppose that a > b, and thus choose
€= aT’b, then there exists a x € S such that

a-+b
2

b <

=a—e<r<a

which implies that
b<ux

which contradicts to b = sup S. Similarly for a < b. Hence, a = .
1.19 Find the sup and inf of each of the following sets of real numbers:

(a) All numbers of the form 277 + 3794 5", where p, ¢, and r take on all
positive integer values.

Proof: Define S = {2774+ 377457 : p,q,r € N}. Then it is clear that
supS:%—l—%jLé, and inf S = 0.

(b) S ={z:32* —10x + 3 < 0}

Proof: Since 322 — 10z +3 = (z — 3) (3z — 1), we know that S = (3,3) .
Hence, sup S = 3 and inf S = %

(c)S={z:(r—a)(x—0b)(x—c)(xr—d) <0}, wherea < b<c<d.
Proof: It is clear that S = (a,b)U(c,d) . Hence, sup S = d and inf S = a.
120 Prove the comparison property for suprema (Theorem 1.16)

Proof: Since s <t for every s € S and t € T, fixed ty € T, then s < t;
for all s € S. Hence, by Axiom 10, we know that sup S exists. In addition,
it is clear sup .S < supT.

Remark: There is a useful result, we write it as a reference. Let S and T’
be two nonempty subsets of R. If S C T and sup T exists, then sup .S exists
and sup S <supT.

13



Proof: Since sup T exists and S C T, we know that for every s € .S, we
have
s <supT.

Hence, by Axiom 10, we have proved the existence of sup S. In addition,
sup S < sup7 is trivial.

1.21 Let A and B be two sets of positive numbers bounded above, and
let a = sup A, b = sup B. Let C be the set of all products of the form xy,
where z € A and y € B. Prove that ab = supC.

Proof: Given ¢ > 0, we want to find an element ¢ € C' such that ab—e <
c. If we can show this, we have proved that sup C' exists and equals ab.

Since sup A = a > 0 and sup B = b > 0, we can choose n large enough
such that a —e/n > 0, b—¢/n > 0, and n > a + b. So, for this &' = ¢/n,
there exists a’ € A and ' € B such that

a—¢e <adandb—¢& <V
which implies that
ab—¢ (a+b—¢)<at sincea—e >0and b—& >0

which implies that

ab—%(a+b)<a’b’ =

which implies that
ab—¢ <c.

1.22 Given x > 0, and an integer k > 2. Let a¢ denote the largest integer
< x and, assumeing that ag, ay, ..., a,_1 have been defined, let a, denote the
largest integer such that

TR R
a — =+ ..+ —=<uz.
Ok T k2 kn =
Note: When k£ = 10 the integers ag, a,... are the digits in a decimal
representation of x. For general £ they provide a representation in
the scale of k.

(a) Prove that 0 <a; <k —1foreachi=1,2,..

14



Proof: Choose ag = [z], and thus consider
[kx — kag] := ay

then
0<k(z—a)<k=0<aq <k-1

and
_'_Cll <r<a +CL1+1
ag + — — 4+ —.
TR ST Tk
Continue the process, we then have
0<aq;<k—1foreachi=1,2,..

and

PO g By e Ly
ag + — + — —<zr<ag+—+—=+..+—+—.
Tk k2 o Ok R kn ' kn

(b) Let 7, = ap + a k™' + agk™2 + ... + a,k~™ and show that z is the sup
of the set of rational numbers rq, 79, ...

Proof: It is clear by (a)-(*).
Inequality

123 Prove Lagrange’s identity for real numbers:
n 2 n n
<Z akbk) = (Z ai) (Z bz) — Z (akbj — ajbk)Q .
k=1 k=1 k=1 1<k<j<n

Note that this identity implies that Cauchy-Schwarz inequality.

Proof: Consider

<i ai) (ibi) = Z apb? = Zaka—irZa%bQ Zakbz—l—Zakbz
h—1 k=1

1<k,j<n k#j k#j

15



and

(Z akbk> (Z akbk> = Z akbkajbj = Z aibi + Z akbkajbj
k=1 k=1

1<k,j<n k=1 k]
So,
n 2 n n
(Y] = (3oet) (o08) + Sowons - T
k=1 k=1 k=1 k] k]
. Z) (sz 2 Y abap - Y @+ a
k=1 k=1 1<k<j<n 1<k<j<n
= Z ai) (Z bi — Z (akbj — ajbk)2 .
k=1 k=1 1<k<j<n

Remark: (1) The reader may recall the relation with Cross Product
and Inner Product, we then have a fancy formula:

lz > ylI* + 1< 2,y >* = Jll* yll*,

where z,y € R3.
(2) We often write

n
<a,b>= Zakbk,

k=1

and the Cauchy-Schwarz inequality becomes

|<z,y>] < |[lz][ [yl by Remark (1).

1.24 Prove that for arbitrary real ay, b, ¢, we have
k=1 k=1 k=1 k=1

16
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Proof: Use Cauchy-Schwarz inequality twice, we then have

<Z akbkck> = <Z akbkck>
k=1 k=1

A
RS
ES
ngh

S}

E

(@)

o
~__—
(Y]
7~
o~
Il
A
>
o
N———
[\]

125 Prove that Minkowski’s inequality:
" 1/2 N 1/2 n 1/2
k=1 k=1 k=1

This is the triangle inequality ||a + b|| < ||a||+||b|| for n—dimensional vectors,
where a = (aq, ...,a,), b= (b1, ...,b,) and

Jall = (Z) N

k=1

Proof: Consider

(ay, + b)* = iai +ib§ +2iakbk
k=1 k=1

n

k=1 k=1
n n n /2 /., 1/2
< Z a; + Z bi + 2 (Z ai) (Z bi) by Cauchy-Schwarz inequality
k=1 k=1 k=1 k=1



So,

3
3

1/2 1/2 n 1/2
( (ax + bkz>2) < ( ai) + (Z bi) :
k=1 k=1 k=1

126 Ifag >...>a, and by > ... > b,, prove that

(3 (5e) (3]

Hint. Zl<]<k<n (ar, — a;) (b, — bj) = 0.

Proof: Consider

0 < Z ak - CLJ bk - b]> = Z akbk + ajbj — Z akbj + ajbk

1<j<k<n 1<5<k<n 1<5<k<n

which implies that

Z akbj + ajbk < Z akbk + ajbj~ <*>

1<j<k<n 1<j<k<n
Since
n
E akbj + ajbk = E &kbj + &jbk + 2 E akbk
1<j<k<n 1<j<k<n k=1
n n
= E akbj + ajbk + E CLkbk + E akbk
1<j<k<n k=1 k=1

we then have, by (*)

(Z ak> <Z bk> + Z agby < Z arby + a;b;. (**)
k=1 k=1

k=1 1<5<k<n

18



In addition,

Z akbk + ajbj

1<j<k<n

= Z apbr + na by + Z apby + (n — 1) aobs + ... + Z arbr + 2a,_1b,—1 + Z aiby,

- nZakbk + aiby + agby + ... + a,b,

k=1
n

k=1

which implies that, by (**),

(32e) (352) =+ ()

Complex numbers

1.27 Express the following complex numbers in the form a + b:.
(a) (1+1i)°

Solution: (1+4)>=1+3i+32+#=1+3i—3—i= -2+ 2i.
(b) (2+31) /(3 — 44)

243i _ (243)(3+40) _ —6+17i _ —6 | 17,
3—4i — (3—4i)(3+41) 25 25 1 25

Solution:
(c) i° + i'®
Solution: % + 6 =i + 1.

(d) 2 (1+4)(1+i®)

Solution: 3 (1+14)(1+i %) =1+

1.28 In each case, determine all real z and y which satisfy the given
relation.

19



(a) x4 iy = | — iy|

Proof: Since |z —iy| > 0, we have
x> 0and y =0.

(b) z + iy = (z — iy)?

Proof: Since (z —iy)® = 2% — (2zy) i — 32, we have
r=2"—y®and y = —2zy.

We consider tow cases: (i) y = 0 and (ii) y # 0.
(i) Asy=0:xz=0or 1.
(i) Asy #0: 2= —1/2, and y = +¥.

(c) ilgozoo i* =+ iy

Proof: Since Y, i* = % =1 =1, wehave z =1 and y = 0.
1.29 If z = x4y, x and y real, the complex conjugate of z is the complex
number zZ = x — iy. Prove that:

(a) Conjugate of (z1 + 22) = Z; + 2o
Proof: Write z; = x1 + iy, and 2y = x5 + 1ys, then

21+ 22 = (X1 + x2) + 1 (Y1 + y2)
= (z1+22) — i (Y1 + 12)
= (21 —iy1) + (22 — iy2)

(b) zZ122 = 2129

Proof: Write z; = x1 + iy; and zo = 29 + iys, then

122 = (T129 — Y1y2) + @ (21y2 + T2y1)
= (1122 — Y1y2) — 1 (T1Y2 + T2y1)

and
Z1Zy = (1 — 1) (22 — iyo)

= (z172 — Y1y2) — @ (T1Y2 + T2Y1) -
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SO, Z1R9 = 2122
(c) 22 = |z

Proof: Write z = z 4 iy and thus

(d) z + z =twice the real part of z
Proof: Write z = = + iy, then

z+ZzZ =2z,

twice the real part of z.
(e) (z — z) /i =twice the imaginary part of z

Proof: Write z = x + iy, then

Z—Z
— =2y,
1

twice the imaginary part of z.

1.30 Describe geometrically the set of complex numbers z which satisfies
each of the following conditions:

(a) [2] =1

Solution: The unit circle centered at zero.

(b) |z| <1

Solution: The open unit disk centered at zero.
(c) [z <1

Solution: The closed unit disk centered at zero.
(d) z+z=1

Solution: Write z = = + iy, then z + Z = 1 means that x = 1/2. So, the
set is the line x = 1/2.

() z—z=1
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Proof: Write z = x + iy, then z — Z = ¢ means that y = 1/2. So, the set
is the line y = 1/2.

() z+2 = |2

Proof: Write z = 2 + iy, then 2z = 22 +y® < (z — 1)* + 12 = 1. So, the
set is the unit circle centered at (1,0).

1.31 Given three complex numbers 21, 29, 23 such that |z;| = |za] = |23| =
1 and z; + 29 + 23 = 0. Show that these numbers are vertices of an equilateral
triangle inscribed in the unit circle with center at the origin.

Proof: It is clear that three numbers are vertices of triangle inscribed in
the unit circle with center at the origin. It remains to show that |z; — 23| =
|z9 — 23| = |23 — 21| . In addition, it suffices to show that

|Zl — 22| = |ZQ — Zg’ .

Note that
|221 +23| = |223 +Zl| by 21+ 29 + 23 = 0

which is equivalent to
1221 4 23|° = |223 + 21 °
which is equivalent to
(221 + 23) (221 + 23) = (223 + 21) (223 + 21)

which is equivalent to
21| = |zs] -

1.32 If @ and b are complex numbers, prove that:
(a) la —b)* < (1+ |a\2) (1+ \b|2)
Proof: Consider
(L+Jal®) (1+[b]%) = |a = b = (1 +aa) (1 +bb) — (a —b) (a — b)
= (1 +ab) (1+ ab)
=1 +ab]* >0,
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so, la—b* < (1+|af*) (1+ [b]?)

(b) If @ # 0, then |a+b| = |a| + |b] if, and only if, b/a is real and
nonnegative.

Proof: (=)Since |a + b| = |a| + |b|, we have
ja+ 0" = (la| + [b])*

which implies that
Re (ab) = [a] [b] = [a] [b]

which implies that

ab = |al |b|
which implies that
b ab |a||b|
- = —— = ) 2 O
a aa ]a|

(<) Suppose that

ézk, where k£ > 0.
a

Then
la+b] = |a+ ka| = (1 + k) |a| = |a|] + Kk |a| = |a| + |b] .

1.33 If @ and b are complex numbers, prove that
la —b| = |1 — ab|
if, and only if, |a| = 1 or |b|] = 1. For which @ and b is the inequality
la —b] < |1 — ab| valid?
Proof: (<) Since
la —b] = |1 — ab
& (a—1b) (a—b)=(1—ab) (1— ab)
& laf* + |0 =1 + |a|” [b]"
& ('~ 1) (b~ 1) =0
e laf’=1or [b*=1.
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By the preceding, it is easy to know that
la—b| < |l—abl <0< (Ja*—1) (]p]* - 1).

So, |a —b| < |1 —ab| if, and only if, |a| > 1 and |b] > 1. (Or |a| < 1 and
b < 1).

1.34 If a and ¢ are real constant, b complex, show that the equation
azZ +bz+bz+c=0 (a#0,z =2+ iy)

represents a circle in the x — y plane.

Proof: Consider

b b b [( b) —ac + |b]?
22— —Z— —2Z+ — — = 3 )
—a —a —a |\ —a a
so, we have
( b ) > —ac+ b
z—|— )| = .
—a a2

2
Hence, as \b|2 —ac > 0, it is a circle. As % = 0, it is a point. As
2
_“ca# < 0, it is not a circle.
Remark: The idea is easy from the fact
|z —q|=r.

We square both sides and thus

22— qZ—qz+qq=r1>

1.35 Recall the definition of the inverse tangent: given a real number ¢,
tan~! (¢) is the unique real number 6 which satisfies the two conditions

—g<9<—|—g, tanf = t.

If 2 = x + iy, show that
(a) arg (z) = tan™ (£),if 2 > 0
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Proof: Note that in this text book, we say arg (z) is the principal argu-
ment of z, denoted by # = arg z, where —7w < 0 < 7.

So, as x > 0, argz = tan"* (£) .

(b) arg (z) = tan™' (¥) + 7, if 2 < 0,y > 0

Proof: Asz < 0,and y > 0. The point (z,y) islyingon S = {(x,y) : x <0, y > 0}.
Note that —7 < argz < 7, so we have arg (z) = tan* () + 7.

(c) arg (z) =tan™' (%) — 7, if 2 <0,y <0
Proof: Similarly for (b). So, we omit it.

(d) arg(z) = Fifx =0,y > 0; arg(z) = -5 if x =0, y <0.

Proof: It is obvious.

1.36 Define the folowing ”pseudo-ordering” of the complex numbers:
we say 21 < 2z if we have either

(i) |21] < |z2f or (ii) |21 = 22| and arg (21) < arg(22).

Which of Axioms 6,7,8,9 are satisfied by this relation?

Proof: (1) For axiom 6, we prove that it holds as follows. Given z; =
ret@8() and ree'®8(22) then if 2, = 2o, there is nothing to prove it. If
21 # 23, there are two possibilities: (a) r; # ry, or (b) r; = ry and arg (z1) #
arg (z2) . So, it is clear that axiom 6 holds.

(2) For axiom 7, we prove that it does not hold as follows. Given z; =1

and zp = —1, then it is clear that z; < z3 since |2z1] = |22] = 1 and arg (z1) =

0 < arg (z2) = m. However, let z3 = —i, we have
nt+zm=1—i>2+2z3=—-1—1

since

‘21+Z3| = ‘22+23| :\/§

and
s 3m
arg (21 + 23) = Ty T T Ae (22 + 23) .

(3) For axiom 8, we prove that it holds as follows. If z; > 0 and 2z, > 0,
then |z;| > 0 and |22| > 0. Hence, 2122 > 0 by |z122| = |21] |22| > 0.

(4) For axiom 9, we prove that it holds as follows. If z; > 25 and z5 > z3,
we consider the following cases. Since z; > z2, we may have (a) |z1| > |z2] or
(b) [21] = |2] and arg (21) < arg (z).

As |z1]| > |22], it is clear that |2z;| > |z3|. So, 21 > z3.
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As |z1| = |22| and arg(z;1) < arg(z2), we have arg(z;) > arg(z3). So,
21 > Z3.

1.37 Which of Axioms 6,7,8,9 are satisfied if the pseudo-ordering is
defined as follows? We say (x1,y1) < (x2,y2) if we have either (i) x; < x or
(i) x1 = 22 and y; < Y.

Proof: (1) For axiom 6, we prove that it holds as follows. Given z =
(x1,91) and y = (x9,y9) . If x = y, there is nothing to prove it. We consider
x £y As x # y, we have x1 # x5 or y; # ys. Both cases imply x < y or
y < .

(2) For axiom 7, we prove that it holds as follows. Given = = (z1,11),
y = (z2,92) and z = (21, 23) . If 2 < y, then there are two possibilities: (a)
x1 < xg or (b) x1 = x9 and y; < yo.

For case (a), it is clear that z1 + 21 < y; + 21. So, x + 2 < y + 2.

For case (b), it is clear that z1 + z; = y; + 21 and z3 + 29 < ya + 22. So,
rT+z<y+z.

(3) For axiom 8, we prove that it does not hold as follows. Consider
x = (1,0) and y = (0,1), then it is clear that > 0 and y > 0. However,
xy = (0,0) = 0.

(4) For axiom 9, we prove that it holds as follows. Given x = (x1,),
y = (x9,y2) and z = (21,23). If x > y and y > 2, then we consider the
following cases. (a) x1 > y1, or (b) x; = y.

For case (a), it is clear that z1 > 2z;. So, z > 2.

For case (b), it is clear that x5 > y5. So, z > z.

1.38 State and prove a theorem analogous to Theorem 1.48, expressing
arg (z1/z2) in terms of arg (z1) and arg (zz) .

Proof: Write z; = r1e'®2() and zy = r9e?®8(*2)  then

A1 Eei[arg(zl)—arg(zz)]‘
) )
Hence,
z
arg <2_1> = arg (1) — arg (22) + 27 (21, 22),
2
where

0if —7m <arg(z)—arg(z) <7
n(z1,20) =4 1if =27 <arg(z) —arg(z) < —7 .
—lif T < arg(z) —arg(z2) < 27
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1.39 State and prove a theorem analogous to Theorem 1.54, expressing
Log (z1/z2) in terms of Log (z1) and Log (z3) .

Proof: Write z; = r1e'®2() and zy = r9e®8(*2)  then

A Eei[arg(zl)—arg(w)]_
Z2 )
Hence,
Log (z1/z) = log ‘é‘ +iarg (ﬂ)
Z9 Z9

= log |z1| — log|2a| + @ [arg (z1) — arg (z2) + 27n (21, 22)] by xercise 1.38
= Log (z1) — Log (z2) +i2mn (21, 22) .

1.40 Prove that the nth roots of 1 (also called the nth roots of unity)

are given by a,a?,...,a", where a = €™/, and show that the roots # 1

satisfy the equation
l+z+22+.. +2" =0

Proof: By Theorem 1.51, we know that the roots of 1 are given by

a,a?, ..., a", where a = €2/ In addition, since

" =1= (-1 (1+z+”+..+2"") =0
which implies that
l+o+22+. 42" =0ifx #1.
So, all roots except 1 satisfy the equation

l+x+22+... +2" =0

1.41 (a) Prove that |2*| < e for all complex z # 0.

Proof: Since

S — 67,Log(z) — e arg(z)+7,log|z|’
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we have '
|Z1‘ _ 6—arg(z) < e
by —m < arg (z) < .

(b) Prove that there is no constant M > 0 such that |cosz| < M for all
complex z.

Proof: Write z = x + iy and thus,
cos z = cosx coshy — isinzsinh y
which implies that

|cos z cosh y| < |cos z|.

Let x = 0 and y be real, then

voo1
% < 5 le¥ +e7¥| < |cosz].

So, there is no constant M > 0 such that |cos z| < M for all complex z.

Remark: There is an important theorem related with this exercise. We
state it as a reference. (Liouville’s Theorem) A bounded entire function
is constant. The reader can see the book, Complex Analysis by Joseph
Bak, and Donald J. Newman, pp 62-63. Liouville’s Theorem can

be used to prove the much important theorem, Fundamental Theorem of
Algebra.

1.42 If w = u +4v (u,v real), show that

LW — ot log|z|—v arg(z) e’L[U log|z|+u arg(z)] .

Proof: Write 2 = ¢“£29(2) and thus

wlLog (z) = (u+ ) (log |z| +iarg (z))
= [ulog |z| —varg (2)] +i[vlog|z| + uwarg(z)].

So,

LW — ol log|z|—v arg(z) e’L[U log|z|+u arg(z)] .
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1.43 (a) Prove that Log (") = wLog z +2min.

Proof: Write w = u + iv, where u and v are real. Then

Log (2*) =log |2*| +iarg (2*)
= log [e“log|z|*varg(z)} +i[vlog|z| + uwarg (z)] + 2min by Exercisel.42
=ulog|z| —varg(z) + i [vlog|z| + varg (z)] + 2min.

On the other hand,

wLogz + 2min = (u + iv) (log |z| + i arg (2)) + 2win

=ulog|z| —varg (z) +i[vlog|z| + uarg (z)] + 2min.

Hence, Log (z*) = wLog z +2min.

Remark: There is another proof by considering

eLog(z“’) — LW — 6wLog(z)
which implies that
Log (2) = wLogz + 2min

for some n € Z.

(b) Prove that (z%)” = z%%e?™" where n is an integer.
Proof: By (a), we have

w ) ) .
(Zw)oc _ eaLog(z ) — 6a(wLogz+27rzn) _ eawL092627r2na — Zaw€2mna’

where n is an integer.

1.44 (i) If # and a are real numbers, —7 < § < 7, prove that

(cosf + isinf)* = cos (af) + isin (af) .

Proof: Write cosf + isinf = z, we then have

eiG

+iarg(ei‘9)] _ piab

(cos@ + isinf)® = 2% = e*L97 = ellos e

= cos (afl) + isin (ad) .
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Remark: Compare with the Exercise 1.43-(b).

(ii) Show that, in general, the restriction —m < 6 < 7 is necessary in (i)

by taking § = —m, a = 3.

Proof: As § = —m, and a = %, we have

(_1)% = e2lool-1) = 30 # —1 = cos (?) + 2sIn <_77T) .

(iii) If a is an integer, show that the formula in (i) holds without any
restriction on . In this case it is known as DeMorvre’s theorem.

Proof: By Exercise 1.43, as a is an integer we have
(Zw)a — Zwa’
where 2% = ¢, Then

(e)" = e = cos (af) + isin (af) .

1.45 Use DeMorvre’s theorem (Exercise 1.44) to derive the trigino-
metric identities
sin 30 = 3 cos® fsin § — sin® §

cos 30 = cos®  — 3 cos O sin? 4,
valid for real 6. Are these valid when 6 is complex?

Proof: By Exercise 1.44-(iii), we have for any real 6,
(cosf +isin ) = cos (30) +isin (36) .
By Binomial Theorem, we have
sin 30 = 3 cos? @ sin§ — sin® 4

and
cos 360 = cos®H — 3cosfsin? 6.
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For complex 0, we show that it holds as follows. Note that sinz = %
eiz+€7iz
2

) ) eiz + e—iz 2 eiz - e—iz eiz _ 6—7Lz 3
2 3
3cos“ zsinz —sin® z = 3 - -\

2 21 21

and cos z = , we have

6—322

_ 3 6221' + 6—222' + 2 eiz _ e—iz N 6321' _ Beiz + Be—iz _
B 4 2i 8i
— % [3 (€2zz’ + 6—221' + 2) (ezi _ e—zi) + (6321' _ 361',2 + 36—1'2 _
= l 3% 4 3¢ — 3¢ — 37 + (€3 — 3¢ + 3¢ —
81
4 24 —3zi
T G )
— % 6322 673&')
= sin 3z

Similarly, we also have

cos® z — 3cos zsin? z = cos 3z.

1.46 Define tan z = sin z/ cos z and show that for z = x + iy, we have

sin 2z + 4 sinh 2y

tanz = .
cos 2x + cosh 2y
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Proof: Since

; sinz  sin(x +1dy) sinxzcoshy + icosxzsinhy
anzg = = =
cosz  cos(x+iy) coszcoshy —isinxsinhy

_ (sinxcoshy + i cosxsinhy) (cos x coshy + isin x sinh y)

~ (cos x coshy — isin x sinh y) (cos x cosh y + i sin x sinh y)

(sin x cos x cosh? y — sin x cos z sinh? y) +1 (sin2 x cosh y sinh y + cos? o cosh y sinh y)

(cos  coshy)? — (isinz sinh y)?

sinz cos (cosh2 y — sinh? y) +i(coshysinhy) Ly ,
= 5 — % since sin“x + cos®x =1
cos? x cosh” y + sin” x sinh” y
sinx cosx) + ¢ (cosh y sinh
= ( )+ ( 2y v) since cosh?y = 1 + sinh?y
cos?z + sinh” y

%sin2x+%sinh2y i _ . . )
= — since 2 cosh y sinh y = sinh 2y and 2sin x cos x = sin 2x
cos? x + sinh” y

sin 2z + i sinh 2y

2cos? x + 2sinh?y
sin 2z + 4 sinh 2y

2cos2x — 1+ 2sinh?y + 1
sin 2x + ¢ sinh 2y

= c0s 22 + cosh 2y since cos2x = 2cos’x — 1 and 2sinh? y + 1 = cosh2y.

1.47 Let w be a given complex number. If w # 41, show that there exists
two values of z = x + iy satisfying the conditions cosz = w and —7 < z < 7.
Find these values when w = 7 and when w = 2.

1z —1iz . . . .
e rte +2€ , if we let €”* = wu, then cosz = w implies

Proof: Since cosz =
that
u? +1

= —2uwu+1=0
2u

w =
which implies that
(u—w)* =w?—1%#0 since w # +1.
So, by Theorem 1.51,
arg (w?—1) 27k
1/2 g ( )

i h —
e'?*, where ¢y, 5 5

e”:u:w%—‘wz—l‘

(== w21)>
:wﬂ:|w2—1}1/26< ’

32



So,

‘arg(wzfl

wi‘w2—1’1/2e’ 2

ir—y =i (x +1y) =iz = log

Hence, there exists two values of 2z = x+iy satisfying the conditions cos z = w
and

2

[ arg w21)>
—7 < x = arg wi‘wz—l‘lme( <.

For w = i, we have
z’z:log‘(li\/i)i
which implies that

z:arg(<1i\/§>i>—ilog‘(liﬂ)i‘.

+iarg((1j:\/§)i)

For w = 2, we have
1z = log’?ﬂ: \/3‘ +rarg <2j: \/§>
which implies that

z:arg<2:|:\/§>—ilog‘2:|:\/§’.

1.48 Prove Lagrange’s identity for complex numbers:

n 2 n n
Zakbk = Z|ak|22|bk|2 — Z (akBj —ajbk)2.
k=1 k=1

k=1 1<k<j<n
Use this to deduce a Cauchy-Schwarz ineqality for complex numbers.

Proof: It is the same as the Exercise 1.23; we omit the details.

1.49 (a) By eqating imaginary parts in DeMoivre’s formula prove that

sinng = sin” 6 { (}) cot” " 6 — (§) cot™ > 0 + (2) cot" 0 — +...}

33

+iarg | w+ |w2 — 1}1/26i<

arg(w27l

>>

2



Proof: By Exercise 1.44 (i), we have
(4]
sinnf = Z (5_1) sin?*~1 9 cos"~(F1) g
k=1
2]

= sin" (%_1) cot" (k=D g

+

N

T
I

=sin" 6 {(}) cot” "6 — (§) cot™ 0 + (2) cot" 0 — +...} .

(b) If 0 < 6 < /2, prove that
sin (2m + 1) 0 = sin”**' 0P, (cot® 6)
where P, is the polynomial of degree m given by

Pm (.CL’) — (%erl) T (ngrl) xmfl + (ngrl) xmf2 — 4

Use this to show that P, has zeros at the m distinct points 2y = cot? {7k/ (2m + 1)}
for k=1,2,....m.

Proof: By (a),
sin (2m + 1) 6

—sin2" 19 { (741 (cot20)" — (3*1) (cot?0) "+ (274 (cot2 )" — .}
m+1

= sin®"*! 9P, (cot® ), where P, (z) = Z (GrAl) am ok, (*)

2k—1
k=1

In addition, by (*), sin (2m + 1) 6 = 0 if, and only if, P, (cot? #) = 0. Hence,
P,, has zeros at the m distinct points x, = cot? {wk/(2m + 1)} for k =
1,2,....m.

(c) Show that the sum of the zeros of P, is given by

i 2 Tk m(2m — 1)
co =
— 2m +1

3 Y
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and the sum of their squares is given by

Zm: ok ~ m(2m —1) (4m® + 10m — 9)
O om1 T 45 '

Note. There identities can be used to prove that > °- n~? = 72/6 and
S0 n~t =7%/90. (See Exercises 8.46 and 8.47.)
Proof: By (b), we know that sum of the zeros of P,, is given by

-\ -GE")) _mEem-1)
> _; 2m+1 _<(§m+1)>_ 3 '

k=1

And the sum of their squares is given by

—_ (2{;Ik) —-2 (1;2:; auxj>
m(2m — 1) 2 B (2m+1)

(") -2 ((%m“))
m (2m — 1) (4m? + 10m — 9)
45 '

1.50 Prove that 2 — 1 = | ( 27”’“/”) for all complex z. Use this

to derive the formula .
—~ . krm n
H sin — = )
n 2n—1

k=1

Proof: Since 2" = 1 has exactly n distinct roots e?™*/" where k =

0,..,n — 1 by Theorem 1.51. Hence, 2" — 1 = [[,_, (z —e*™*/") It
implies that

n—1

Il 41 = H (z — 62”““/”) .
k=1
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So, let z = 1, we obtain that

i) )

k=1 k=1

n—1
H <2 sin —) (2 sin — cos —)
k=
IT ( 7) 7)
= sin — sm — —1COS —
n
k=
I ( )( (545 v (T 7))
=2 sm— +2sin| — + —
n 2 n

k=1
n—1
. 7Tk n—1 3w | 7k
[2" ! H (sm —) eXk=1 2 T%
n
k=1
n—1
_ . 7k
= o1 H (sm —)
n
k=1
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