
Functions of Bounded Variation and Rectifiable Curves
Functions of bounded variation

6.1 Determine which of the follwoing functions are of bounded variation on 0,1.
(a) fx  x2 sin1/x if x  0, f0  0.
(b) fx  x sin1/x if x  0, f0  0.

Proof: (a) Since
fx  2x sin1/x  cos1/x for x  0,1 and f0  0,

we know that fx is bounded on 0,1, in fact, |fx|  3 on 0,1. Hence, f is of
bounded variation on 0,1.
(b) First, we choose n  1 be an even integer so that 1
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Since 1/k diverges to , we know that f is not of bounded variation on 0,1.

6.2 A function f, defined on a,b, is said to satisfy a uniform Lipschitz condition of
order   0 on a,b if there exists a constant M  0 such that |fx  fy|  M|x  y| for
all x and y in a,b. (Compare with Exercise 5.1.)
(a) If f is such a function, show that   1 implies f is constant on a,b, whereas

  1 implies f is of bounded variation a,b.
Proof: As   1, we consider, for x  y, where x,y  a,b,

0  |fx  fy||x  y|  M|x  y|1.

Hence, fx exists on a,b, and we have fx  0 on a,b. So, we know that f is
constant.
As   1, consider any partition P  a  x0, x1, . . . , xn  b, we have


k1

n

|fk |  M
k1

n

|xk1  xk |  Mb  a.

That is, f is of bounded variation on a,b.

(b) Give an example of a function f satisfying a uniform Lipschitz condition of order
  1 on a,b such that f is not of bounded variation on a,b.
Proof: First, note that x satisfies uniform Lipschitz condition of order , where

0    1. Choosing   1 such that   1 and let M  k1
 1

k since the series
converges. So, we have 1  1

M k1
 1

k .
Define a function f as follows. We partition 0,1 into infinitely many subsintervals.

Consider
x0  0, x1  x0  1

M
1
1 , x2  x1 

1
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And in every subinterval xi,xi1, where i  0,1, . . . . , we define



fx  x  xi  xi12

,

then f is a continuous function and is not bounded variation on 0,1 sincek1
 1

2M
1
k



diverges.
In order to show that f satisfies uniform Lipschitz condition of order , we consider

three cases.
(1) If x,y  xi,xi1, and x,y  xi, xixi12  or x,y   xixi12 ,xi1, then

|fx  fy|  |x  y |  |x  y|.
(2) If x,y  xi,xi1, and x  xi, xixi12  or y   xixi12 ,xi1, then there is a

z  xi, xixi12  such that fy  fz. So,
|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.

(3) If x  xi,xi1 and y  xj,xj1, where i  j.
If x  xi, xixi12 , then there is a z  xi, xixi12  such that fy  fz. So,

|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.
Similarly for x   xixi12 ,xi1.

Remark: Here is another example. Since it will use Fourier Theory, we do not give a
proof. We just write it down as a reference.

ft 
k1

 cos3kt
3k

.

(c) Give an example of a function f which is of bounded variation on a,b but which
satisfies no uniform Lipschitz condition on a,b.
Proof: Since a function satisfies uniform Lipschitz condition of order   0, it must be

continuous. So, we consider

fx 
x if x  a,b
b  1 if x  b.

Trivially, f is not continuous but increasing. So, the function is desired.
Remark: Here is a good problem, we write it as follows. If f satisfies

|fx  fy|  K|x  y|1/2 for x  0,1, where f0  0.
define

gx 
fx
x1/3
if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order 1/6.
Proof: Note that if one of x, and y is zero, the result is trivial. So, we may consider

0  y  x  1 as follows. Consider

|gx  gy|  fx
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

.     *



For the part
fx
x1/3

 fy
x1/3

 1
x1/3 |

fx  fy|

 K
x1/3 |

x  y|1/2 by hypothesis

 K|x  y|1/2|x  y|1/3 since x  x  y  0
 K|x  y|1/6.     A

For another part fy
x1/3
 fy

y1/3
, we consider two cases.

(1) x  2y which implies that x  x  y  y  0,
fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x1/3
xy1/3

since x  y1/3  x1/3

 |fy| 1
y1/3

 K |y|
1/2

|y|1/3
by hypothesis

 K|y|1/6

 K|x  y|1/6 since y  x  y.     B
(2) x  2y which implies that x  y  x  y  0,

fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x  y
1/3

y2/3
since x  y

 K|y|1/2 x  y1/3

y2/3
by hypothesis

 K|y|1/6|x  y|1/3

 K|x  y|1/6|x  y|1/3 since y  x  y
 K|x  y|1/6.     C

So, by (A)-(C), (*) tells that g satisfies uniform Lipschitz condition of order 1/6.
Note: Here is a general result. Let 0      2. If f satisfies

|fx  fy|  K|x  y| for x  0,1, where f0  0.
define



gx 
fx
x if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order   . The proof is similar, so we
omit it.

6.3 Show that a polynomial f is of bounded variation on every compact interval a,b.
Describe a method for finding the total variation of f on a,b if the zeros of the derivative
f are known.
Proof: If f is a constant, then the total variation of f on a,b is zero. So, we may

assume that f is a polynomial of degree n  1, and consider fx  0 by two cases as
follows.
(1) If there is no point such that fx  0, then by Intermediate Value Theorem of

Differentiability, we know that fx  0 on a,b, or fx  0 on a,b. So, it implies
that f is monotonic. Hence, the total variation of f on a,b is |fb  fa|.
(2) If there are m points such that fx  0, say

a  x0  x1  x2 . . . xm  b  xm1, where 1  m  n, then we know the monotone
property of function f. So, the total variation of f on a,b is


i1

m1

|fxi  fxi1|.

Remark: Here is another proof. Let f be a polynomial on a,b, then we know that f is
bounded on a,b since f is also polynomial which implies that it is continuous. Hence, we
know that f is of bounded variation on a,b.

6.4 A nonempty set S of real-valued functions defined on an interval a,b is called a
linear space of functions if it has the following two properties:
(a) If f  S, then cf  S for every real number c.
(b) If f  S and g  S, then f  g  S.
Theorem 6.9 shows that the set V of all functions of bounded variation on a,b is a

linear space. If S is any linear space which contains all monotonic functions on a,b,
prove that V  S. This can be described by saying that the functions of bounded
variation form the samllest linear space containing all monotonic functions.
Proof: It is directlt from Theorem 6.9 and some facts in Linear Algebra. We omit the

detail.

6.5 Let f be a real-valued function defined on 0,1 such that f0  0, fx  x for all
x, and fx  fy whenever x  y. Let A  x : fx  x. Prove that supA  A, and that
f1  1.
Proof: Note that since f0  0, A is not empty. Suppose that supA : a  A, i.e.,

fa  a since fx  x for all x. So, given any n  0, then there is a bn  A such that
a  n  bn.     *

In addition,
bn  fbn since bn  A.     **

So, by (*) and (**), we have ( let n  0),
a  fa  fa since f is monotonic increasing.

which contradicts to fa  a. Hence, we know that supA  A.



Claim that 1  supA. Suppose NOT, that is, a  1. Then we have
a  fa  f1  1.

Since a  supA, consider x  a, fa, then
fx  x

which implies that
fa  a

which contradicts to a  fa. So, we know that supA  1. Hence, we have proved that
f1  1.
Remark: The reader should keep the method in mind if we ask how to show that

f1  1 directly. The set A is helpful to do this. Or equivalently, let f be strictly increasing
on 0,1 with f0  0. If f1  1, then there exists a point x  0,1 such that fx  x.

6.6 If f is defined everywhere in R1, then f is said to be of bounded variation on
, if f is of bounded variation on every finite interval and if there exists a positive
number M such that Vfa,b  M for all compact interval a,b. The total variation of f on
, is then defined to be the sup of all numbers Vfa,b,   a  b  , and
denoted by Vf,. Similar definitions apply to half open infinite intervals a, and
,b.
(a) State and prove theorems for the inifnite interval , analogous to the

Theorems 6.7, 6.9, 6.10, 6.11, and 6.12.
(Theorem 6.7*) Let f : R  R be of bounded variaton, then f is bounded on R.
Proof: Given any x  R, then x  0,a or x  a, 0. If x  0,a, then f is bounded

on 0,a with
|fx|  |f0|  Vf0,a  |f0|  Vf,.

Similarly for x  a, 0.
(Theorem 6.9*) Assume that f, and g be of bounded variaton on R, then so are thier

sum, difference, and product. Also, we have
Vfg,  Vf,  Vg,

and
Vfg,  AVf,  BVg,,

where A  supxR|gx| and B  supxR|fx|.
Proof: For sum and difference, given any compact interval a,b, we have

Vfga,b  Vfa,b  Vga,b,
 Vf,  Vg,

which implies that
Vfg,  Vf,  Vg,.

For product, given any compact interval a,b, we have (let Aa,b  supxa,b|gx|,
and Ba,b  supxa,b|fx|),

Vfga,b  Aa,bVfa,b  Ba,bVga,b
 AVf,  BVg,

which implies that



Vfg,  AVf,  BVg,.

(Theorem 6.10*) Let f be of bounded variation on R, and assume that f is bounded
away from zero; that is, suppose that there exists a positive number m such that
0  m  |fx| for all x  R. Then g  1/f is also of bounded variation on R, and

Vg, 
Vf,

m2 .

Proof: Given any compacgt interval a,b, we have

Vga,b 
Vfa,b
m2 

Vf,
m2

which implies that

Vg, 
Vf,

m2 .

(Theorem 6.11*) Let f be of bounded variation on R, and assume that c  R. Then f is
of bounded variation on ,c and on c, and we have

Vf,  Vf,c  Vfc,.

Proof: Given any a compact interval a,b such that c  a,b. Then we have
Vfa,b  Vfa,c  Vfc,b.

Since
Vfa,b  Vf,

which implies that
Vfa,c  Vf, and Vfc,b  Vf,,

we know that the existence of Vf,c and Vfc,. That is, f is of bounded variation on
,c and on c,.
Since

Vfa,c  Vfc,b  Vfa,b  Vf,
which implies that

Vf,c  Vfc,  Vf,,     *
and

Vfa,b  Vfa,c  Vfc,b  Vf,c  Vfc,
which implies that

Vf,  Vf,c  Vfc,,     **
we know that

Vf,  Vf,c  Vfc,.

(Theorem 6.12*) Let f be of bounded variation on R. Let Vx be defined on ,x as
follows:

Vx  Vf,x if x  R, and V  0.
Then (i) V is an increasing function on , and (ii) V  f is an increasing function on
,.
Proof: (i) Let x  y, then we have Vy  Vx  Vfx,y  0. So, we know that V is

an increasing function on ,.
(ii) Let x  y, then we have V  fy  V  fx  Vfx,y  fy  fx  0. So,



we know that V  f is an increasing function on ,.
(b) Show that Theorem 6.5 is true for , if ”monotonic” is replaced by ”bounded

and monotonic.” State and prove a similar modefication of Theorem 6.13.
(Theorem 6.5*) If f is bounded and monotonic on ,, then f is of bounded

variation on ,.
Proof: Given any compact interval a,b, then we have Vfa,b exists, and we have

Vfa,b  |fb  fa|, since f is monotonic. In addition, since f is bounded on R, say
|fx|  M for all x, we know that 2M is a upper bounded of Vfa,b for all a,b. Hence,
Vf, exists. That is, f is of bounded variation on R.

(Theorem 6.13*) Let f be defined on ,, then f is of bounded variation on
, if, and only if, f can be expressed as the difference of two increasing and
bounded functions.
Proof: Suppose that f is of bounded variation on ,, then by Theorem 6.12*, we

know that
f  V  V  f,

where V and V  f are increasing on ,. In addition, since f is of bounded variation
on R, we know that V and f is bounded on R which implies that V  f is bounded on R. So,
we have proved that if f is of bounded variation on , then f can be expressed as the
difference of two increasing and bounded functions.
Suppose that f can be expressed as the difference of two increasing and bounded

functions, say f  f1  f2, Then by Theorem 6.9*, and Theorem 6.5*, we know that f is of
bounded variaton on R.
Remark: The representation of a function of bounded variation as a difference of two

increasing and bounded functions is by no mean unique. It is clear that Theorem 6.13*
also holds if ”increasing” is replaced by ”strictly increasing.” For example,
f  f1  g  f2  g, where g is any strictly increasing and bounded function on R. One
of such g is arctanx.

6.7 Assume that f is of bounded variation on a,b and let
P  x0,x1, . . . ,xn  þa,b.

As usual, write fk  fxk  fxk1, k  1,2, . . . ,n. Define
AP  k : fk  0, BP  k : fk  0.

The numbers

pfa,b  sup 
kAP

fk : P  þa,b

and

nfa,b  sup 
kBP

|fk | : P  þa,b

are called respectively, the positive and negative variations of f on a,b. For each x in
a,b. Let Vx  Vfa,x, px  pfa,x, nx  nfa,x, and let
Va  pa  na  0. Show that we have:
(a) Vx  px  nx.



Proof: Given a partition P on a,x, then we have


k1

n

|fk |  
kAP

|fk |  
kBP

|fk |

 
kAP

fk  
kBP

|fk |,

which implies that (taking supermum)
Vx  px  nx.     *

Remark: The existence of px and qx is clear, so we know that (*) holds by
Theorem 1.15.
(b) 0  px  Vx and 0  nx  Vx.
Proof: Consider a,x, and since

Vx  
k1

n

|fk |  
kAP

|fk |,

we know that 0  px  Vx. Similarly for 0  nx  Vx.
(c) p and n are increasing on a,b.
Proof: Let x,y in a,b with x  y, and consider py  px as follows. Since

py  
kAP, a,y

fk  
kAP, a,x

fk,

we know that
py  px.

That is, p is increasing on a,b. Similarly for n.
(d) fx  fa  px  nx. Part (d) gives an alternative proof of Theorem 6.13.
Proof: Consider a,x, and since

fx  fa 
k1

n

fk  
kAP

fk  
kBP

fk

which implies that
fx  fa  

kBP
|fk |  

kAP

fk

which implies that fx  fa  px  nx.
(e) 2px  Vx  fx  fa, 2nx  Vx  fx  fa.
Proof: By (d) and (a), the statement is obvious.
(f) Every point of continuity of f is also a point of continuity of p and of n.
Proof: By (e) and Theorem 6.14, the statement is obvious.

Curves
6.8 Let f and g be complex-valued functions defined as follows:

ft  e2it if t  0,1, gt  e2it if t  0,2.
(a) Prove that f and g have the same graph but are not equivalent according to defintion



in Section 6.12.
Proof: Since ft : t  0,1  gt : t  0,2  the circle of unit disk, we know

that f and g have the same graph.
If f and g are equivalent, then there is an 1-1 and onto function  : 0,2  0,1 such

that
ft  gt.

That is,
e2it  cos2t  i sin2t  e2it  cos2t  i sin2t.

In paticular, 1 : c  0,1. However,
fc  cos2c  i sin2c  g1  1

which implies that c  Z, a contradiction.
(b) Prove that the length of g is twice that of f.
Proof: Since

the length of g  
0

2
|gt|dt  4

and

the length of f  
0

1
|ft|dt  2,

we know that the length of g is twice that of f.

6.9 Let f be rectifiable path of length L defined on a,b, and assume that f is not
constant on any subinterval of a,b. Let s denote the arc length function given by
sx  fa,x if a  x  b, sa  0.

(a) Prove that s1 exists and is continuous on 0,L.
Proof: By Theorem 6.19, we know that sx is continuous and strictly increasing on

0,L. So, the inverse function s1 exists since s is an 1-1 and onto function, and by
Theorem 4.29, we know that s1 is continuous on 0,L.
(b) Define gt  fs1t if t  0,L and show that g is equivalent to f. Since

ft  gst, the function g is said to provide a representation of the graph of f with arc
length as parameter.
Proof: t is clear by Theorem 6.20.
6.10 Let f and g be two real-valued continuous functions of bounded variation defined

on a,b, with 0  fx  gx for each x in a,b, fa  ga, fb  gb. Let h be the
complex-valued function defined on the interval a, 2b  a as follows:

ht  t  ift, if a  t  b
 2b  t  ig2b  t, if b  t  2b  a.

(a) Show that h describes a rectifiable curve .
Proof: It is clear that h is continuous on a, 2b  a. Note that t, f and g are of bounded

variation on a,b, so ha, 2b  a exists. That is, h is rectifiable on a, 2b  a.
(b) Explain, by means of a sketch, the geometric relationship between f, g, and h.
Solution: The reader can give it a draw and see the graph lying on x  y plane is a



closed region.
(c) Show that the set of points

S  x,y : a  x  b, fx  y  gx
in a region in R2 whose boundary is the curve .
Proof: It can be answered by (b), so we omit it.
(d) Let H be the complex-valued function defined on a, 2b  a as follows:

Ht  t  12 igt  ft, if a  t  b

 2b  t  12 ig2b  t  f2b  t, if b  t  2b  a.

Show that H describes a rectifiable curve 0 which is the boundary of the region
S0  x,y : a  x  b, fx  gx  2y  gx  fx.

Proof: Let Ft  1
2 gt  ft and Gt 

1
2 gt  ft defined on a,b. It is

clear that Ft and Gt are of bounded variation and continuous on a,b with
0  Fx  Gx for each x  a,b, Fb  Gb  0, and Fb  Gb  0. In
addition, we have

Ht  t  iFt, if a  t  b
 2b  t  iG2b  t, if b  t  2b  a.

So, by preceding (a)-(c), we have prove it.
(e) Show that, S0 has the x axis as a line of symmetry. (The region S0 is called the

symmetrization of S with respect to x axis.)
Proof: It is clear since x,y  S0  x,y  S0 by the fact

fx  gx  2y  gx  fx.

(f) Show that the length of 0 does not exceed the length of .
Proof: By (e), the symmetrization of S with respect to x axis tells that

Ha,b  Hb, 2b  a. So, it suffices to show that ha, 2b  a  2Ha,b.
Choosing a partition P1  x0  a, . . . ,xn  b on a,b such that

2Ha,b    2HP1

 2
i1

n

xi  xi12  1
2 f  gxi 

1
2 f  gxi1

2 1/2


i1

n

4xi  xi12  f  gxi  f  gxi12
1/2

    *

and note that b  a  2b  a  b, we use this P1 to produce a partition
P2  P1  xn  b, xn1  b  xn  xn1, . . . ,x2n  2b  a on a, 2b  a. Then we have



hP2 
i1

2n

hxi  hxi1


i1

n

hxi  hxi1 
in1

2n

hxi  hxi1


i1

n

xi  xi12  fxi  fxi12
1/2

in1

2n

xi  xi12  gxi  gxi12
1/2


i1

n

xi  xi12  fxi  fxi12
1/2
 xi  xi12  gxi  gxi12

1/2
    **

From (*) and (**), we know that
2Ha,b    2HP1  hP2     ***

which implies that
Ha, 2b  a  2Ha,b  ha, 2b  a.

So, we know that the length of 0 does not exceed the length of .
Remark: Define xi  xi1  ai, fxi  fxi1  bi, and gxi  gxi1  ci, then we

have

4ai2  bi  ci
2 1/2

 ai2  bi2
1/2  ai2  ci2

1/2.
Hence we have the result (***).
Proof: It suffices to square both side. We leave it to the reader.
Absolutely continuous functions

A real-valued function f defined on a,b is said to be absolutely continuous on a,b
if for every   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than .

Absolutely continuous functions occur in the Lebesgue theory of integration and
differentiation. The following exercises give some of their elementary properties.

6.11 Prove that every absolutely continuous function on a,b is continuous and of
bounded variation on a,b.
Proof: Let f be absolutely continuous on a,b. Then   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than . So, as |x  y|  , where x,y  a,b, we have
|fx  fy|  .

That is, f is uniformly continuous on a,b. So, f is continuous on a,b.
In addition, given any   1, there exists a   0 such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals in a,b, we have




k1

n

|fbk  fak|  1.

For this , and let K be the smallest positive integer such that K/2  b  a. So, we
partition a,b into K closed subintervals, i.e.,
P  y0  a, y1  a  /2, . . . . ,yK1  a  K  1/2, yK  b. So, it is clear that f is
of bounded variation yi,yi1, where i  0,1, . . . ,K. It implies that f is of bounded
variation on a,b.
Note: There exists functions which are continuous and of bounded variation but

not absolutely continuous.
Remark: 1. The standard example is called Cantor-Lebesgue function. The reader

can see this in the book,Measure and Integral, An Introduction to Real Analysis by
Richard L. Wheeden and Antoni Zygmund, pp 35 and pp 115.
2. If we wrtie ”absolutely continuous” by ABC, ”continuous” by C, and ”bounded

variation” by B, then it is clear that by preceding result, ABC implies B and C, and B and
C do NOT imply ABC.

6.12 Prove that f is absolutely continuous if it satisfies a uniform Lipschitz condition
of order 1 on a,b. (See Exercise 6.2)
Proof: Let f satisfy a uniform Lipschitz condition of order 1 on a,b, i.e.,

|fx  fy|  M|x  y| where x,y  a,b. Then given   0, there is a   /M such that
ask1

n bk  ak  , where ak,bks are disjoint open subintervals on a,b, k  1, . . ,n,
we have


k1

n

|fbk  fak|  
k1

n

M|bk  ak |


k1

n

Mbk  ak

 M
 .

Hence, f is absolutely continuous on a,b.

6.13 If f and g are absolutely continunous on a,b, prove that each of the following
is also: |f|, cf (c constant), f  g, f  g; also f/g if g is bounded away from zero.
Proof: (1) (|f| is absolutely continuous on a,b): Given   0, we want to find a

  0, such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on

a,b, we have


k1

n

||fbk|  |fak||  .     1*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  

which implies that (1*) holds by the following




k1

n

||fbk|  |fak||  
k1

n

|fbk  fak|  .

So, we know that |f| is absolutely continuous on a,b.
(2) (cf is absolutely continuous on a,b): If c  0, it is clear. So, we may assume that

c  0. Given   0, we want to find a   0, such that ask1
n bk  ak  , where

ak,bks are disjoint open intervals on a,b, we have


k1

n

|cfbk  cfak|  .     2*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /|c|

which implies that (2*) holds by the following
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n

|cfbk  cfak|  |c|
k1

n

|fbk  fak|  .

So, we know that cf is absolutely continuous on a,b.
(3) (f  g is absolutely continuous on a,b): Given   0, we want to find a   0,

such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on a,b, we

have


k1

n

|f  gbk  f  gak|  .     3*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /2 and 
k1

n

|gbk  gak|  /2

which implies that (3*) holds by the following
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|fbk  fak| 
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n
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 .
So, we know that f  g is absolutely continuous on a,b.
(4) (f  g is absolutely continuous on a,b. ): Let Mf  supxa,b|fx| and

Mg  supxa,b|gx|. Given   0, we want to find a   0, such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have




k1

n

|f  gbk  f  gak|  .     4*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  
2Mg  1

and 
k1

n

|gbk  gak|  
2Mf  1

which implies that (4*) holds by the following
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 Mf
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 .

Remark: The part shows that fn is absolutely continuous on a,b, where n  N, if f is
absolutely continuous on a,b.
(5) (f/g is absolutely continuous on a,b): By (4) it suffices to show that 1/g is

absolutely continuous on a,b. Since g is bounded away from zero, say 0  m  gx for
all x  a,b. Given   0, we want to find a   0, such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals on a,b, we have


k1

n

|1/gbk  1/gak|  .     5*

Since g is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|gbk  gak|  m2

which implies that (4*) holds by the following
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 1
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 .


