
Functions of Bounded Variation and Rectifiable Curves
Functions of bounded variation

6.1 Determine which of the follwoing functions are of bounded variation on 0,1.
(a) fx  x2 sin1/x if x  0, f0  0.
(b) fx  x sin1/x if x  0, f0  0.

Proof: (a) Since
fx  2x sin1/x  cos1/x for x  0,1 and f0  0,

we know that fx is bounded on 0,1, in fact, |fx|  3 on 0,1. Hence, f is of
bounded variation on 0,1.
(b) First, we choose n  1 be an even integer so that 1


2 n1

 1, and thus consider a

partition P  0  x0, x1  1

2
, x2  1

2 2
, . . . , xn  1

n 2
, xn1  1

n1 2
, xn2  1 , then

we have


k1

n2

|fk |  2 2
 

k1

n

1/k .

Since 1/k diverges to , we know that f is not of bounded variation on 0,1.

6.2 A function f, defined on a,b, is said to satisfy a uniform Lipschitz condition of
order   0 on a,b if there exists a constant M  0 such that |fx  fy|  M|x  y| for
all x and y in a,b. (Compare with Exercise 5.1.)
(a) If f is such a function, show that   1 implies f is constant on a,b, whereas

  1 implies f is of bounded variation a,b.
Proof: As   1, we consider, for x  y, where x,y  a,b,

0  |fx  fy||x  y|  M|x  y|1.

Hence, fx exists on a,b, and we have fx  0 on a,b. So, we know that f is
constant.
As   1, consider any partition P  a  x0, x1, . . . , xn  b, we have


k1

n

|fk |  M
k1

n

|xk1  xk |  Mb  a.

That is, f is of bounded variation on a,b.

(b) Give an example of a function f satisfying a uniform Lipschitz condition of order
  1 on a,b such that f is not of bounded variation on a,b.
Proof: First, note that x satisfies uniform Lipschitz condition of order , where

0    1. Choosing   1 such that   1 and let M  k1
 1

k since the series
converges. So, we have 1  1

M k1
 1

k .
Define a function f as follows. We partition 0,1 into infinitely many subsintervals.

Consider
x0  0, x1  x0  1

M
1
1 , x2  x1 

1
M

1
2 , . . . , xn  xn1 

1
M

1
n , . . . .

And in every subinterval xi,xi1, where i  0,1, . . . . , we define



fx  x  xi  xi12

,

then f is a continuous function and is not bounded variation on 0,1 sincek1
 1

2M
1
k



diverges.
In order to show that f satisfies uniform Lipschitz condition of order , we consider

three cases.
(1) If x,y  xi,xi1, and x,y  xi, xixi12  or x,y   xixi12 ,xi1, then

|fx  fy|  |x  y |  |x  y|.
(2) If x,y  xi,xi1, and x  xi, xixi12  or y   xixi12 ,xi1, then there is a

z  xi, xixi12  such that fy  fz. So,
|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.

(3) If x  xi,xi1 and y  xj,xj1, where i  j.
If x  xi, xixi12 , then there is a z  xi, xixi12  such that fy  fz. So,

|fx  fy|  |fx  fz|  |x  z |  |x  z|  |x  y|.
Similarly for x   xixi12 ,xi1.

Remark: Here is another example. Since it will use Fourier Theory, we do not give a
proof. We just write it down as a reference.

ft 
k1

 cos3kt
3k

.

(c) Give an example of a function f which is of bounded variation on a,b but which
satisfies no uniform Lipschitz condition on a,b.
Proof: Since a function satisfies uniform Lipschitz condition of order   0, it must be

continuous. So, we consider

fx 
x if x  a,b
b  1 if x  b.

Trivially, f is not continuous but increasing. So, the function is desired.
Remark: Here is a good problem, we write it as follows. If f satisfies

|fx  fy|  K|x  y|1/2 for x  0,1, where f0  0.
define

gx 
fx
x1/3
if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order 1/6.
Proof: Note that if one of x, and y is zero, the result is trivial. So, we may consider

0  y  x  1 as follows. Consider

|gx  gy|  fx
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

 fx
x1/3

 fy
x1/3

 fy
x1/3

 fy
y1/3

.     *



For the part
fx
x1/3

 fy
x1/3

 1
x1/3 |

fx  fy|

 K
x1/3 |

x  y|1/2 by hypothesis

 K|x  y|1/2|x  y|1/3 since x  x  y  0
 K|x  y|1/6.     A

For another part fy
x1/3
 fy

y1/3
, we consider two cases.

(1) x  2y which implies that x  x  y  y  0,
fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x1/3
xy1/3

since x  y1/3  x1/3

 |fy| 1
y1/3

 K |y|
1/2

|y|1/3
by hypothesis

 K|y|1/6

 K|x  y|1/6 since y  x  y.     B
(2) x  2y which implies that x  y  x  y  0,

fy
x1/3

 fy
y1/3

 |fy| x
1/3  y1/3

xy1/3

 |fy| x  y
1/3

xy1/3
since |x1/3  y1/3 |  |x  y|1/3 for all x,y  0

 |fy| x  y
1/3

y2/3
since x  y

 K|y|1/2 x  y1/3

y2/3
by hypothesis

 K|y|1/6|x  y|1/3

 K|x  y|1/6|x  y|1/3 since y  x  y
 K|x  y|1/6.     C

So, by (A)-(C), (*) tells that g satisfies uniform Lipschitz condition of order 1/6.
Note: Here is a general result. Let 0      2. If f satisfies

|fx  fy|  K|x  y| for x  0,1, where f0  0.
define



gx 
fx
x if x  0,1

0 if x  0.

Then g satisfies uniform Lipschitz condition of order   . The proof is similar, so we
omit it.

6.3 Show that a polynomial f is of bounded variation on every compact interval a,b.
Describe a method for finding the total variation of f on a,b if the zeros of the derivative
f are known.
Proof: If f is a constant, then the total variation of f on a,b is zero. So, we may

assume that f is a polynomial of degree n  1, and consider fx  0 by two cases as
follows.
(1) If there is no point such that fx  0, then by Intermediate Value Theorem of

Differentiability, we know that fx  0 on a,b, or fx  0 on a,b. So, it implies
that f is monotonic. Hence, the total variation of f on a,b is |fb  fa|.
(2) If there are m points such that fx  0, say

a  x0  x1  x2 . . . xm  b  xm1, where 1  m  n, then we know the monotone
property of function f. So, the total variation of f on a,b is


i1

m1

|fxi  fxi1|.

Remark: Here is another proof. Let f be a polynomial on a,b, then we know that f is
bounded on a,b since f is also polynomial which implies that it is continuous. Hence, we
know that f is of bounded variation on a,b.

6.4 A nonempty set S of real-valued functions defined on an interval a,b is called a
linear space of functions if it has the following two properties:
(a) If f  S, then cf  S for every real number c.
(b) If f  S and g  S, then f  g  S.
Theorem 6.9 shows that the set V of all functions of bounded variation on a,b is a

linear space. If S is any linear space which contains all monotonic functions on a,b,
prove that V  S. This can be described by saying that the functions of bounded
variation form the samllest linear space containing all monotonic functions.
Proof: It is directlt from Theorem 6.9 and some facts in Linear Algebra. We omit the

detail.

6.5 Let f be a real-valued function defined on 0,1 such that f0  0, fx  x for all
x, and fx  fy whenever x  y. Let A  x : fx  x. Prove that supA  A, and that
f1  1.
Proof: Note that since f0  0, A is not empty. Suppose that supA : a  A, i.e.,

fa  a since fx  x for all x. So, given any n  0, then there is a bn  A such that
a  n  bn.     *

In addition,
bn  fbn since bn  A.     **

So, by (*) and (**), we have ( let n  0),
a  fa  fa since f is monotonic increasing.

which contradicts to fa  a. Hence, we know that supA  A.



Claim that 1  supA. Suppose NOT, that is, a  1. Then we have
a  fa  f1  1.

Since a  supA, consider x  a, fa, then
fx  x

which implies that
fa  a

which contradicts to a  fa. So, we know that supA  1. Hence, we have proved that
f1  1.
Remark: The reader should keep the method in mind if we ask how to show that

f1  1 directly. The set A is helpful to do this. Or equivalently, let f be strictly increasing
on 0,1 with f0  0. If f1  1, then there exists a point x  0,1 such that fx  x.

6.6 If f is defined everywhere in R1, then f is said to be of bounded variation on
, if f is of bounded variation on every finite interval and if there exists a positive
number M such that Vfa,b  M for all compact interval a,b. The total variation of f on
, is then defined to be the sup of all numbers Vfa,b,   a  b  , and
denoted by Vf,. Similar definitions apply to half open infinite intervals a, and
,b.
(a) State and prove theorems for the inifnite interval , analogous to the

Theorems 6.7, 6.9, 6.10, 6.11, and 6.12.
(Theorem 6.7*) Let f : R  R be of bounded variaton, then f is bounded on R.
Proof: Given any x  R, then x  0,a or x  a, 0. If x  0,a, then f is bounded

on 0,a with
|fx|  |f0|  Vf0,a  |f0|  Vf,.

Similarly for x  a, 0.
(Theorem 6.9*) Assume that f, and g be of bounded variaton on R, then so are thier

sum, difference, and product. Also, we have
Vfg,  Vf,  Vg,

and
Vfg,  AVf,  BVg,,

where A  supxR|gx| and B  supxR|fx|.
Proof: For sum and difference, given any compact interval a,b, we have

Vfga,b  Vfa,b  Vga,b,
 Vf,  Vg,

which implies that
Vfg,  Vf,  Vg,.

For product, given any compact interval a,b, we have (let Aa,b  supxa,b|gx|,
and Ba,b  supxa,b|fx|),

Vfga,b  Aa,bVfa,b  Ba,bVga,b
 AVf,  BVg,

which implies that



Vfg,  AVf,  BVg,.

(Theorem 6.10*) Let f be of bounded variation on R, and assume that f is bounded
away from zero; that is, suppose that there exists a positive number m such that
0  m  |fx| for all x  R. Then g  1/f is also of bounded variation on R, and

Vg, 
Vf,

m2 .

Proof: Given any compacgt interval a,b, we have

Vga,b 
Vfa,b
m2 

Vf,
m2

which implies that

Vg, 
Vf,

m2 .

(Theorem 6.11*) Let f be of bounded variation on R, and assume that c  R. Then f is
of bounded variation on ,c and on c, and we have

Vf,  Vf,c  Vfc,.

Proof: Given any a compact interval a,b such that c  a,b. Then we have
Vfa,b  Vfa,c  Vfc,b.

Since
Vfa,b  Vf,

which implies that
Vfa,c  Vf, and Vfc,b  Vf,,

we know that the existence of Vf,c and Vfc,. That is, f is of bounded variation on
,c and on c,.
Since

Vfa,c  Vfc,b  Vfa,b  Vf,
which implies that

Vf,c  Vfc,  Vf,,     *
and

Vfa,b  Vfa,c  Vfc,b  Vf,c  Vfc,
which implies that

Vf,  Vf,c  Vfc,,     **
we know that

Vf,  Vf,c  Vfc,.

(Theorem 6.12*) Let f be of bounded variation on R. Let Vx be defined on ,x as
follows:

Vx  Vf,x if x  R, and V  0.
Then (i) V is an increasing function on , and (ii) V  f is an increasing function on
,.
Proof: (i) Let x  y, then we have Vy  Vx  Vfx,y  0. So, we know that V is

an increasing function on ,.
(ii) Let x  y, then we have V  fy  V  fx  Vfx,y  fy  fx  0. So,



we know that V  f is an increasing function on ,.
(b) Show that Theorem 6.5 is true for , if ”monotonic” is replaced by ”bounded

and monotonic.” State and prove a similar modefication of Theorem 6.13.
(Theorem 6.5*) If f is bounded and monotonic on ,, then f is of bounded

variation on ,.
Proof: Given any compact interval a,b, then we have Vfa,b exists, and we have

Vfa,b  |fb  fa|, since f is monotonic. In addition, since f is bounded on R, say
|fx|  M for all x, we know that 2M is a upper bounded of Vfa,b for all a,b. Hence,
Vf, exists. That is, f is of bounded variation on R.

(Theorem 6.13*) Let f be defined on ,, then f is of bounded variation on
, if, and only if, f can be expressed as the difference of two increasing and
bounded functions.
Proof: Suppose that f is of bounded variation on ,, then by Theorem 6.12*, we

know that
f  V  V  f,

where V and V  f are increasing on ,. In addition, since f is of bounded variation
on R, we know that V and f is bounded on R which implies that V  f is bounded on R. So,
we have proved that if f is of bounded variation on , then f can be expressed as the
difference of two increasing and bounded functions.
Suppose that f can be expressed as the difference of two increasing and bounded

functions, say f  f1  f2, Then by Theorem 6.9*, and Theorem 6.5*, we know that f is of
bounded variaton on R.
Remark: The representation of a function of bounded variation as a difference of two

increasing and bounded functions is by no mean unique. It is clear that Theorem 6.13*
also holds if ”increasing” is replaced by ”strictly increasing.” For example,
f  f1  g  f2  g, where g is any strictly increasing and bounded function on R. One
of such g is arctanx.

6.7 Assume that f is of bounded variation on a,b and let
P  x0,x1, . . . ,xn  þa,b.

As usual, write fk  fxk  fxk1, k  1,2, . . . ,n. Define
AP  k : fk  0, BP  k : fk  0.

The numbers

pfa,b  sup 
kAP

fk : P  þa,b

and

nfa,b  sup 
kBP

|fk | : P  þa,b

are called respectively, the positive and negative variations of f on a,b. For each x in
a,b. Let Vx  Vfa,x, px  pfa,x, nx  nfa,x, and let
Va  pa  na  0. Show that we have:
(a) Vx  px  nx.



Proof: Given a partition P on a,x, then we have


k1

n

|fk |  
kAP

|fk |  
kBP

|fk |

 
kAP

fk  
kBP

|fk |,

which implies that (taking supermum)
Vx  px  nx.     *

Remark: The existence of px and qx is clear, so we know that (*) holds by
Theorem 1.15.
(b) 0  px  Vx and 0  nx  Vx.
Proof: Consider a,x, and since

Vx  
k1

n

|fk |  
kAP

|fk |,

we know that 0  px  Vx. Similarly for 0  nx  Vx.
(c) p and n are increasing on a,b.
Proof: Let x,y in a,b with x  y, and consider py  px as follows. Since

py  
kAP, a,y

fk  
kAP, a,x

fk,

we know that
py  px.

That is, p is increasing on a,b. Similarly for n.
(d) fx  fa  px  nx. Part (d) gives an alternative proof of Theorem 6.13.
Proof: Consider a,x, and since

fx  fa 
k1

n

fk  
kAP

fk  
kBP

fk

which implies that
fx  fa  

kBP
|fk |  

kAP

fk

which implies that fx  fa  px  nx.
(e) 2px  Vx  fx  fa, 2nx  Vx  fx  fa.
Proof: By (d) and (a), the statement is obvious.
(f) Every point of continuity of f is also a point of continuity of p and of n.
Proof: By (e) and Theorem 6.14, the statement is obvious.

Curves
6.8 Let f and g be complex-valued functions defined as follows:

ft  e2it if t  0,1, gt  e2it if t  0,2.
(a) Prove that f and g have the same graph but are not equivalent according to defintion



in Section 6.12.
Proof: Since ft : t  0,1  gt : t  0,2  the circle of unit disk, we know

that f and g have the same graph.
If f and g are equivalent, then there is an 1-1 and onto function  : 0,2  0,1 such

that
ft  gt.

That is,
e2it  cos2t  i sin2t  e2it  cos2t  i sin2t.

In paticular, 1 : c  0,1. However,
fc  cos2c  i sin2c  g1  1

which implies that c  Z, a contradiction.
(b) Prove that the length of g is twice that of f.
Proof: Since

the length of g  
0

2
|gt|dt  4

and

the length of f  
0

1
|ft|dt  2,

we know that the length of g is twice that of f.

6.9 Let f be rectifiable path of length L defined on a,b, and assume that f is not
constant on any subinterval of a,b. Let s denote the arc length function given by
sx  fa,x if a  x  b, sa  0.

(a) Prove that s1 exists and is continuous on 0,L.
Proof: By Theorem 6.19, we know that sx is continuous and strictly increasing on

0,L. So, the inverse function s1 exists since s is an 1-1 and onto function, and by
Theorem 4.29, we know that s1 is continuous on 0,L.
(b) Define gt  fs1t if t  0,L and show that g is equivalent to f. Since

ft  gst, the function g is said to provide a representation of the graph of f with arc
length as parameter.
Proof: t is clear by Theorem 6.20.
6.10 Let f and g be two real-valued continuous functions of bounded variation defined

on a,b, with 0  fx  gx for each x in a,b, fa  ga, fb  gb. Let h be the
complex-valued function defined on the interval a, 2b  a as follows:

ht  t  ift, if a  t  b
 2b  t  ig2b  t, if b  t  2b  a.

(a) Show that h describes a rectifiable curve .
Proof: It is clear that h is continuous on a, 2b  a. Note that t, f and g are of bounded

variation on a,b, so ha, 2b  a exists. That is, h is rectifiable on a, 2b  a.
(b) Explain, by means of a sketch, the geometric relationship between f, g, and h.
Solution: The reader can give it a draw and see the graph lying on x  y plane is a



closed region.
(c) Show that the set of points

S  x,y : a  x  b, fx  y  gx
in a region in R2 whose boundary is the curve .
Proof: It can be answered by (b), so we omit it.
(d) Let H be the complex-valued function defined on a, 2b  a as follows:

Ht  t  12 igt  ft, if a  t  b

 2b  t  12 ig2b  t  f2b  t, if b  t  2b  a.

Show that H describes a rectifiable curve 0 which is the boundary of the region
S0  x,y : a  x  b, fx  gx  2y  gx  fx.

Proof: Let Ft  1
2 gt  ft and Gt 

1
2 gt  ft defined on a,b. It is

clear that Ft and Gt are of bounded variation and continuous on a,b with
0  Fx  Gx for each x  a,b, Fb  Gb  0, and Fb  Gb  0. In
addition, we have

Ht  t  iFt, if a  t  b
 2b  t  iG2b  t, if b  t  2b  a.

So, by preceding (a)-(c), we have prove it.
(e) Show that, S0 has the x axis as a line of symmetry. (The region S0 is called the

symmetrization of S with respect to x axis.)
Proof: It is clear since x,y  S0  x,y  S0 by the fact

fx  gx  2y  gx  fx.

(f) Show that the length of 0 does not exceed the length of .
Proof: By (e), the symmetrization of S with respect to x axis tells that

Ha,b  Hb, 2b  a. So, it suffices to show that ha, 2b  a  2Ha,b.
Choosing a partition P1  x0  a, . . . ,xn  b on a,b such that

2Ha,b    2HP1

 2
i1

n

xi  xi12  1
2 f  gxi 

1
2 f  gxi1

2 1/2


i1

n

4xi  xi12  f  gxi  f  gxi12
1/2

    *

and note that b  a  2b  a  b, we use this P1 to produce a partition
P2  P1  xn  b, xn1  b  xn  xn1, . . . ,x2n  2b  a on a, 2b  a. Then we have



hP2 
i1

2n

hxi  hxi1


i1

n

hxi  hxi1 
in1

2n

hxi  hxi1


i1

n

xi  xi12  fxi  fxi12
1/2

in1

2n

xi  xi12  gxi  gxi12
1/2


i1

n

xi  xi12  fxi  fxi12
1/2
 xi  xi12  gxi  gxi12

1/2
    **

From (*) and (**), we know that
2Ha,b    2HP1  hP2     ***

which implies that
Ha, 2b  a  2Ha,b  ha, 2b  a.

So, we know that the length of 0 does not exceed the length of .
Remark: Define xi  xi1  ai, fxi  fxi1  bi, and gxi  gxi1  ci, then we

have

4ai2  bi  ci
2 1/2

 ai2  bi2
1/2  ai2  ci2

1/2.
Hence we have the result (***).
Proof: It suffices to square both side. We leave it to the reader.
Absolutely continuous functions

A real-valued function f defined on a,b is said to be absolutely continuous on a,b
if for every   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than .

Absolutely continuous functions occur in the Lebesgue theory of integration and
differentiation. The following exercises give some of their elementary properties.

6.11 Prove that every absolutely continuous function on a,b is continuous and of
bounded variation on a,b.
Proof: Let f be absolutely continuous on a,b. Then   0, there is a   0 such that


k1

n

|fbk  fak|  

for every n disjoint open subintervals ak,bk of a,b, n  1,2, . . . , the sum of whose
lengthsk1

n bk  ak is less than . So, as |x  y|  , where x,y  a,b, we have
|fx  fy|  .

That is, f is uniformly continuous on a,b. So, f is continuous on a,b.
In addition, given any   1, there exists a   0 such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals in a,b, we have




k1

n

|fbk  fak|  1.

For this , and let K be the smallest positive integer such that K/2  b  a. So, we
partition a,b into K closed subintervals, i.e.,
P  y0  a, y1  a  /2, . . . . ,yK1  a  K  1/2, yK  b. So, it is clear that f is
of bounded variation yi,yi1, where i  0,1, . . . ,K. It implies that f is of bounded
variation on a,b.
Note: There exists functions which are continuous and of bounded variation but

not absolutely continuous.
Remark: 1. The standard example is called Cantor-Lebesgue function. The reader

can see this in the book,Measure and Integral, An Introduction to Real Analysis by
Richard L. Wheeden and Antoni Zygmund, pp 35 and pp 115.
2. If we wrtie ”absolutely continuous” by ABC, ”continuous” by C, and ”bounded

variation” by B, then it is clear that by preceding result, ABC implies B and C, and B and
C do NOT imply ABC.

6.12 Prove that f is absolutely continuous if it satisfies a uniform Lipschitz condition
of order 1 on a,b. (See Exercise 6.2)
Proof: Let f satisfy a uniform Lipschitz condition of order 1 on a,b, i.e.,

|fx  fy|  M|x  y| where x,y  a,b. Then given   0, there is a   /M such that
ask1

n bk  ak  , where ak,bks are disjoint open subintervals on a,b, k  1, . . ,n,
we have


k1

n

|fbk  fak|  
k1

n

M|bk  ak |


k1

n

Mbk  ak

 M
 .

Hence, f is absolutely continuous on a,b.

6.13 If f and g are absolutely continunous on a,b, prove that each of the following
is also: |f|, cf (c constant), f  g, f  g; also f/g if g is bounded away from zero.
Proof: (1) (|f| is absolutely continuous on a,b): Given   0, we want to find a

  0, such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on

a,b, we have


k1

n

||fbk|  |fak||  .     1*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  

which implies that (1*) holds by the following




k1

n

||fbk|  |fak||  
k1

n

|fbk  fak|  .

So, we know that |f| is absolutely continuous on a,b.
(2) (cf is absolutely continuous on a,b): If c  0, it is clear. So, we may assume that

c  0. Given   0, we want to find a   0, such that ask1
n bk  ak  , where

ak,bks are disjoint open intervals on a,b, we have


k1

n

|cfbk  cfak|  .     2*

Since f is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /|c|

which implies that (2*) holds by the following


k1

n

|cfbk  cfak|  |c|
k1

n

|fbk  fak|  .

So, we know that cf is absolutely continuous on a,b.
(3) (f  g is absolutely continuous on a,b): Given   0, we want to find a   0,

such that ask1
n bk  ak  , where ak,bks are disjoint open intervals on a,b, we

have


k1

n

|f  gbk  f  gak|  .     3*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  /2 and 
k1

n

|gbk  gak|  /2

which implies that (3*) holds by the following


k1

n

|f  gbk  f  gak|


k1

n

|fbk  fak  gbk  gak|

 
k1

n

|fbk  fak| 
k1

n

|gbk  gak|

 .
So, we know that f  g is absolutely continuous on a,b.
(4) (f  g is absolutely continuous on a,b. ): Let Mf  supxa,b|fx| and

Mg  supxa,b|gx|. Given   0, we want to find a   0, such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have




k1

n

|f  gbk  f  gak|  .     4*

Since f and g are absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|fbk  fak|  
2Mg  1

and 
k1

n

|gbk  gak|  
2Mf  1

which implies that (4*) holds by the following


k1

n

|f  gbk  f  gak|


k1

n

|fbkgbk  gak  gakfbk  fak|

 Mf
k1

n

|gbk  gak|  Mg
k1

n

|fbk  fak|


Mf

2Mf  1


Mg

2Mg  1
 .

Remark: The part shows that fn is absolutely continuous on a,b, where n  N, if f is
absolutely continuous on a,b.
(5) (f/g is absolutely continuous on a,b): By (4) it suffices to show that 1/g is

absolutely continuous on a,b. Since g is bounded away from zero, say 0  m  gx for
all x  a,b. Given   0, we want to find a   0, such that ask1

n bk  ak  ,
where ak,bks are disjoint open intervals on a,b, we have


k1

n

|1/gbk  1/gak|  .     5*

Since g is absolutely continunous on a,b, for this , there is a   0 such that as
k1

n bk  ak  , where ak,bks are disjoint open intervals on a,b, we have


k1

n

|gbk  gak|  m2

which implies that (4*) holds by the following


k1

n

|1/gbk  1/gak|


k1

n gbk  gak
gbkgak

 1
m2 k1

n

|gbk  gak|

 .


