Functions of Bounded Variation and Rectifiable Curves

Functions of bounded variation

6.1 Determine which of the following functions are of bounded variation on [0, 1]. (a) $f(x) = x^2 \sin(1/x)$ if $x \neq 0$, f(0) = 0. (b) $f(x) = \sqrt{x} \sin(1/x)$ if $x \neq 0$, f(0) = 0.

Proof: (a) Since

 $f'(x) = 2x\sin(1/x) - \cos(1/x)$ for $x \in (0, 1]$ and f'(0) = 0,

we know that f'(x) is bounded on [0, 1], in fact, $|f'(x)| \le 3$ on [0, 1]. Hence, f is of bounded variation on [0, 1].

(b) First, we choose n + 1 be an even integer so that $\frac{1}{\frac{\pi}{2}(n+1)} < 1$, and thus consider a partition $P = \left\{ 0 = x_0, x_1 = \frac{1}{\frac{\pi}{2}}, x_2 = \frac{1}{2\frac{\pi}{2}}, \dots, x_n = \frac{1}{n\frac{\pi}{2}}, x_{n+1} = \frac{1}{(n+1)\frac{\pi}{2}}, x_{n+2} = 1 \right\}$, then we have

$$\sum_{k=1}^{n+2} |\Delta f_k| \ge 2\sqrt{\frac{2}{\pi}} \left(\sum_{k=1}^n \sqrt{1/k}\right).$$

Since $\sum \sqrt{1/k}$ diverges to $+\infty$, we know that f is not of bounded variation on [0, 1].

6.2 A function *f*, defined on [*a*, *b*], is said to satisfy a uniform Lipschitz condition of order $\alpha > 0$ on [*a*, *b*] if there exists a constant M > 0 such that $|f(x) - f(y)| < M|x - y|^{\alpha}$ for all *x* and *y* in [*a*, *b*]. (Compare with Exercise 5.1.)

(a) If *f* is such a function, show that $\alpha > 1$ implies *f* is constant on [a, b], whereas $\alpha = 1$ implies *f* is of bounded variation [a, b].

Proof: As $\alpha > 1$, we consider, for $x \neq y$, where $x, y \in [a, b]$,

$$0 \leq \frac{|f(x) - f(y)|}{|x - y|} < M|x - y|^{\alpha - 1}.$$

Hence, f'(x) exists on [a,b], and we have f'(x) = 0 on [a,b]. So, we know that f is constant.

As $\alpha = 1$, consider any partition $P = \{a = x_0, x_1, \dots, x_n = b\}$, we have

$$\sum_{k=1}^{n} |\Delta f_k| \le M \sum_{k=1}^{n} |x_{k+1} - x_k| = M(b-a).$$

That is, f is of bounded variation on [a, b].

(b) Give an example of a function f satisfying a uniform Lipschitz condition of order $\alpha < 1$ on [a, b] such that f is not of bounded variation on [a, b].

Proof: First, note that x^{α} satisfies uniform Lipschitz condition of order α , where $0 < \alpha < 1$. Choosing $\beta > 1$ such that $\alpha\beta < 1$ and let $M = \sum_{k=1}^{\infty} \frac{1}{k^{\beta}}$ since the series converges. So, we have $1 = \frac{1}{M} \sum_{k=1}^{\infty} \frac{1}{k^{\beta}}$.

Define a function f as follows. We partition [0, 1] into infinitely many subsintervals. Consider

$$x_0 = 0, x_1 - x_0 = \frac{1}{M} \frac{1}{1^{\beta}}, x_2 - x_1 = \frac{1}{M} \frac{1}{2^{\beta}}, \dots, x_n - x_{n-1} = \frac{1}{M} \frac{1}{n^{\beta}}, \dots$$

And in every subinterval $[x_i, x_{i+1}]$, where i = 0, 1, ..., we define

$$f(x) = \left(\left| x - \frac{x_i + x_{i+1}}{2} \right| \right)^{\alpha},$$

then *f* is a continuous function and is not bounded variation on [0, 1] since $\sum_{k=1}^{\infty} \left(\frac{1}{2M} \frac{1}{k^{\beta}}\right)^{\alpha}$ diverges.

In order to show that f satisfies uniform Lipschitz condition of order α , we consider three cases.

(1) If
$$x, y \in [x_i, x_{i+1}]$$
, and $x, y \in [x_i, \frac{x_i + x_{i+1}}{2}]$ or $x, y \in [\frac{x_i + x_{i+1}}{2}, x_{i+1}]$, then
 $|f(x) - f(y)| = |x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}$.
(2) If $x, y \in [x_i, x_{i+1}]$ and $x \in [x_i, \frac{x_i + x_{i+1}}{2}]$ or $y \in [\frac{x_i + x_{i+1}}{2}, x_{i+1}]$, then there

(2) If $x, y \in [x_i, x_{i+1}]$, and $x \in [x_i, \frac{x_i+x_{i+1}}{2}]$ or $y \in [\frac{x_i+x_{i+1}}{2}, x_{i+1}]$, then there is a $z \in [x_i, \frac{x_i+x_{i+1}}{2}]$ such that f(y) = f(z). So,

$$|f(x) - f(y)| = |f(x) - f(z)| \le |x^{\alpha} - z^{\alpha}| \le |x - z|^{\alpha} \le |x - y|^{\alpha}.$$

(3) If $x \in [x_i, x_{i+1}]$ and $y \in [x_j, x_{j+1}]$, where i > j. If $x \in [x_i, \frac{x_i + x_{i+1}}{2}]$, then there is a $z \in [x_i, \frac{x_i + x_{i+1}}{2}]$ such that f(y) = f(z). So, $|f(x) - f(y)| = |f(x) - f(z)| \le |x^{\alpha} - z^{\alpha}| \le |x - z|^{\alpha} \le |x - y|^{\alpha}$.

Similarly for $x \in \left[\frac{x_i+x_{i+1}}{2}, x_{i+1}\right]$.

Remark: Here is another example. Since it will use **Fourier Theory**, we do not give a proof. We just write it down as a reference.

$$f(t) = \sum_{k=1}^{\infty} \frac{\cos(3^k t)}{3^{k\alpha}}$$

(c) Give an example of a function f which is of bounded variation on [a,b] but which satisfies no uniform Lipschitz condition on [a,b].

Proof: Since a function satisfies uniform Lipschitz condition of order $\alpha > 0$, it must be continuous. So, we consider

$$f(x) = \begin{cases} x \text{ if } x \in [a,b) \\ b+1 \text{ if } x = b. \end{cases}$$

Trivially, f is not continuous but increasing. So, the function is desired.

Remark: Here is a good problem, we write it as follows. If f satisfies

$$|f(x) - f(y)| \le K|x - y|^{1/2}$$
 for $x \in [0, 1]$, where $f(0) = 0$.

define

$$g(x) = \begin{cases} \frac{f(x)}{x^{1/3}} & \text{if } x \in (0,1] \\ 0 & \text{if } x = 0. \end{cases}$$

Then g satisfies uniform Lipschitz condition of order 1/6.

Proof: Note that if one of *x*, and *y* is zero, the result is trivial. So, we may consider $0 < y < x \le 1$ as follows. Consider

$$\begin{aligned} |g(x) - g(y)| &= \left| \frac{f(x)}{x^{1/3}} - \frac{f(y)}{y^{1/3}} \right| \\ &= \left| \frac{f(x)}{x^{1/3}} - \frac{f(y)}{x^{1/3}} + \frac{f(y)}{x^{1/3}} - \frac{f(y)}{y^{1/3}} \right| \\ &\leq \left| \frac{f(x)}{x^{1/3}} - \frac{f(y)}{x^{1/3}} \right| + \left| \frac{f(y)}{x^{1/3}} - \frac{f(y)}{y^{1/3}} \right|. \end{aligned}$$

*

For the part

$$\left|\frac{f(x)}{x^{1/3}} - \frac{f(y)}{x^{1/3}}\right| = \frac{1}{x^{1/3}} |f(x) - f(y)|$$

$$\leq \frac{K}{x^{1/3}} |x - y|^{1/2} \text{ by hypothesis}$$

$$\leq K|x - y|^{1/2}|x - y|^{-1/3} \text{ since } x \geq x - y > 0$$

$$= K|x - y|^{1/6}.$$

В

С

For another part $\left|\frac{f(y)}{x^{1/3}} - \frac{f(y)}{y^{1/3}}\right|$, we consider two cases. (1) $x \ge 2y$ which implies that $x > x - y \ge y > 0$,

$$\left|\frac{f(y)}{x^{1/3}} - \frac{f(y)}{y^{1/3}}\right| = |f(y)| \left|\frac{x^{1/3} - y^{1/3}}{(xy)^{1/3}}\right|$$

$$\leq |f(y)| \left|\frac{(x - y)^{1/3}}{(xy)^{1/3}}\right| \text{ since } |x^{1/3} - y^{1/3}| \leq |x - y|^{1/3} \text{ for all } x, y \geq 0$$

$$\leq |f(y)| \left|\frac{x^{1/3}}{(xy)^{1/3}}\right| \text{ since } (x - y)^{1/3} \leq x^{1/3}$$

$$\leq |f(y)| \left|\frac{1}{y^{1/3}}\right|$$

$$\leq K \frac{|y|^{1/2}}{|y|^{1/3}} \text{ by hypothesis}$$

$$\leq K|y|^{1/6}$$

$$\leq K|x - y|^{1/6} \text{ since } y \leq x - y.$$

(2) x < 2y which implies that x > y > x - y > 0,

$$\left|\frac{f(y)}{x^{1/3}} - \frac{f(y)}{y^{1/3}}\right| = |f(y)| \left|\frac{x^{1/3} - y^{1/3}}{(xy)^{1/3}}\right|$$

$$\leq |f(y)| \left|\frac{(x - y)^{1/3}}{(xy)^{1/3}}\right| \text{ since } |x^{1/3} - y^{1/3}| \leq |x - y|^{1/3} \text{ for all } x, y \geq 0$$

$$\leq |f(y)| \left|\frac{(x - y)^{1/3}}{y^{2/3}}\right| \text{ since } x > y$$

$$\leq K|y|^{1/2} \left|\frac{(x - y)^{1/3}}{y^{2/3}}\right| \text{ by hypothesis}$$

$$\leq K|y|^{-1/6}|x - y|^{1/3}$$

$$\leq K|x - y|^{-1/6}|x - y|^{1/3} \text{ since } y > x - y$$

$$= K|x - y|^{1/6}.$$

So, by (A)-(C), (*) tells that g satisfies uniform Lipschitz condition of order 1/6.

Note: Here is a general result. Let $0 \le \beta < \alpha < 2\beta$. If *f* satisfies

$$|f(x) - f(y)| \le K|x - y|^{\alpha}$$
 for $x \in [0, 1]$, where $f(0) = 0$.

define

$$g(x) = \begin{cases} \frac{f(x)}{x^{\beta}} \text{ if } x \in (0,1] \\ 0 \text{ if } x = 0. \end{cases}$$

Then g satisfies uniform Lipschitz condition of order $\alpha - \beta$. The proof is similar, so we omit it.

6.3 Show that a polynomial f is of bounded variation on every compact interval [a, b]. Describe a method for finding the total variation of f on [a, b] if the zeros of the derivative f' are known.

Proof: If *f* is a constant, then the total variation of *f* on [a, b] is zero. So, we may assume that *f* is a polynomial of degree $n \ge 1$, and consider f'(x) = 0 by two cases as follows.

(1) If there is no point such that f'(x) = 0, then by **Intermediate Value Theorem of Differentiability**, we know that f'(x) > 0 on [a,b], or f'(x) < 0 on [a,b]. So, it implies that f is monotonic. Hence, the total variation of f on [a,b] is |f(b) - f(a)|.

(2) If there are *m* points such that f'(x) = 0, say $a = x_0 \le x_1 < x_2 < \ldots < x_m \le b = x_{m+1}$, where $1 \le m \le n$, then we know the monotone property of function *f*. So, the total variation of *f* on [a, b] is

$$\sum_{i=1}^{m+1} |f(x_i) - f(x_{i-1})|.$$

Remark: Here is another proof. Let f be a polynomial on [a, b], then we know that f' is bounded on [a, b] since f' is also polynomial which implies that it is continuous. Hence, we know that f is of bounded variation on [a, b].

6.4 A nonempty set *S* of real-valued functions defined on an interval [a, b] is called a linear space of functions if it has the following two properties:

(a) If $f \in S$, then $cf \in S$ for every real number c.

(b) If $f \in S$ and $g \in S$, then $f + g \in S$.

Theorem 6.9 shows that the set V of all functions of bounded variation on [a, b] is a linear space. If S is any linear space which contains all monotonic functions on [a, b], prove that $V \subseteq S$. This can be described by saying that the functions of bounded variation form the samllest linear space containing all monotonic functions.

Proof: It is directlt from Theorem 6.9 and some facts in Linear Algebra. We omit the detail.

6.5 Let *f* be a real-valued function defined on [0,1] such that f(0) > 0, $f(x) \neq x$ for all *x*, and $f(x) \leq f(y)$ whenever $x \leq y$. Let $A = \{x : f(x) > x\}$. Prove that sup $A \in A$, and that f(1) > 1.

Proof: Note that since f(0) > 0, A is not empty. Suppose that $\sup A := a \notin A$, i.e., f(a) < a since $f(x) \neq x$ for all x. So, given any $\varepsilon_n > 0$, then there is a $b_n \in A$ such that

$$a-\varepsilon_n < b_n$$
.

In addition,

$$b_n < f(b_n)$$
 since $b_n \in A$.

So, by (*) and (**), we have (let $\varepsilon_n \rightarrow 0^+$),

 $a \leq f(a^{-}) (\langle f(a) \rangle)$ since *f* is monotonic increasing.

which contradicts to f(a) < a. Hence, we know that $\sup A \in A$.

**

*

Claim that $1 = \sup A$. Suppose **NOT**, that is, a < 1. Then we have

$$a < f(a) < f(1) < 1.$$

Since $a = \sup A$, consider $x \in (a, f(a))$, then

which implies that

 $f(a^+) \leq a$

which contradicts to a < f(a). So, we know that $\sup A = 1$. Hence, we have proved that f(1) > 1.

Remark: The reader should keep the method in mind if we ask how to show that f(1) > 1 directly. The set *A* is helpful to do this. Or equivalently, let *f* be strictly increasing on [0,1] with f(0) > 0. If $f(1) \le 1$, then there exists a point $x \in [0,1]$ such that f(x) = x.

6.6 If *f* is defined everywhere in \mathbb{R}^1 , then *f* is said to be of bounded variation on $(-\infty, +\infty)$ if *f* is of bounded variation on every finite interval and if there exists a positive number *M* such that $V_f(a,b) < M$ for all compact interval [a,b]. The total variation of *f* on $(-\infty, +\infty)$ is then defined to be the sup of all numbers $V_f(a,b), -\infty < a < b < +\infty$, and denoted by $V_f(-\infty, +\infty)$. Similar definitions apply to half open infinite intervals $[a, +\infty)$ and $(-\infty, b]$.

(a) State and prove theorems for the inifiite interval $(-\infty, +\infty)$ analogous to the Theorems 6.7, 6.9, 6.10, 6.11, and 6.12.

(**Theorem 6.7***) Let $f : R \to R$ be of bounded variaton, then f is bounded on R.

Proof: Given any $x \in R$, then $x \in [0,a]$ or $x \in [a,0]$. If $x \in [0,a]$, then *f* is bounded on [0,a] with

$$|f(x)| \le |f(0)| + V_f(0,a) \le |f(0)| + V_f(-\infty,+\infty).$$

Similarly for $x \in [a, 0]$.

(Theorem 6.9*) Assume that f, and g be of bounded variaton on R, then so are thier sum, difference, and product. Also, we have

$$V_{f\pm g}(-\infty, +\infty) \leq V_f(-\infty, +\infty) + V_g(-\infty, +\infty)$$

and

$$V_{fg}(-\infty, +\infty) \le AV_f(-\infty, +\infty) + BV_g(-\infty, +\infty),$$

where $A = \sup_{x \in R} |g(x)|$ and $B = \sup_{x \in R} |f(x)|$.

Proof: For sum and difference, given any compact interval [a, b], we have

$$V_{f \pm g}(a,b) \leq V_f(a,b) + V_g(a,b),$$

$$\leq V_f(-\infty, +\infty) + V_g(-\infty, +\infty)$$

which implies that

$$V_{f\pm g}(-\infty, +\infty) \leq V_f(-\infty, +\infty) + V_g(-\infty, +\infty)$$

For product, given any compact interval [a,b], we have $(\det A(a,b) = \sup_{x \in [a,b]} |g(x)|)$, and $B(a,b) = \sup_{x \in [a,b]} |f(x)|)$,

$$V_{fg}(a,b) \le A(a,b)V_f(a,b) + B(a,b)V_g(a,b)$$
$$\le AV_f(-\infty,+\infty) + BV_g(-\infty,+\infty)$$

which implies that

$$V_{fg}(-\infty, +\infty) \leq AV_f(-\infty, +\infty) + BV_g(-\infty, +\infty)$$

(**Theorem 6.10***) Let *f* be of bounded variation on *R*, and assume that *f* is bounded away from zero; that is, suppose that there exists a positive number *m* such that $0 < m \le |f(x)|$ for all $x \in R$. Then g = 1/f is also of bounded variation on *R*, and

$$V_g(-\infty,+\infty) \leq \frac{V_f(-\infty,+\infty)}{m^2}.$$

Proof: Given any compact interval [a, b], we have

$$V_g(a,b) \leq \frac{V_f(a,b)}{m^2} \leq \frac{V_f(-\infty,+\infty)}{m^2}$$

which implies that

$$V_g(-\infty,+\infty) \leq \frac{V_f(-\infty,+\infty)}{m^2}$$

(**Theorem 6.11***) Let *f* be of bounded variation on *R*, and assume that $c \in R$. Then *f* is of bounded variation on $(-\infty, c]$ and on $[c, +\infty)$ and we have

$$V_f(-\infty,+\infty) = V_f(-\infty,c) + V_f(c,+\infty).$$

Proof: Given any a compact interval [a, b] such that $c \in (a, b)$. Then we have

$$V_f(a,b) = V_f(a,c) + V_f(c,b).$$

Since

$$V_f(a,b) \leq V_f(-\infty,+\infty)$$

which implies that

$$V_f(a,c) \leq V_f(-\infty,+\infty)$$
 and $V_f(c,b) \leq V_f(-\infty,+\infty)$

we know that the existence of $V_f(-\infty, c)$ and $V_f(c, +\infty)$. That is, *f* is of bounded variation on $(-\infty, c]$ and on $[c, +\infty)$.

Since

$$V_f(a,c) + V_f(c,b) = V_f(a,b) \le V_f(-\infty,+\infty)$$

which implies that

$$V_f(-\infty,c) + V_f(c,+\infty) \le V_f(-\infty,+\infty),$$

and

$$V_f(a,b) = V_f(a,c) + V_f(c,b) \le V_f(-\infty,c) + V_f(c,+\infty)$$

which implies that

$$V_f(-\infty,+\infty) \leq V_f(-\infty,c) + V_f(c,+\infty),$$

*

**

we know that

 $V_f(-\infty, +\infty) = V_f(-\infty, c) + V_f(c, +\infty).$

(**Theorem 6.12***) Let *f* be of bounded variation on *R*. Let V(x) be defined on $(-\infty, x]$ as follows:

 $V(x) = V_f(-\infty, x)$ if $x \in R$, and $V(-\infty) = 0$.

Then (i) V is an increasing function on $(-\infty, +\infty)$ and (ii) V - f is an increasing function on $(-\infty, +\infty)$.

Proof: (i) Let x < y, then we have $V(y) - V(x) = V_f(x,y) \ge 0$. So, we know that V is an increasing function on $(-\infty, +\infty)$.

(ii) Let x < y, then we have $(V - f)(y) - (V - f)(x) = V_f(x, y) - (f(y) - f(x)) \ge 0$. So,

we know that V - f is an increasing function on $(-\infty, +\infty)$.

(b) Show that Theorem 6.5 is true for $(-\infty, +\infty)$ if "monotonic" is replaced by "bounded and monotonic." State and prove a similar modefication of Theorem 6.13.

(**Theorem 6.5***) If *f* is bounded and monotonic on $(-\infty, +\infty)$, then *f* is of bounded variation on $(-\infty, +\infty)$.

Proof: Given any compact interval [a,b], then we have $V_f(a,b)$ exists, and we have $V_f(a,b) = |f(b) - f(a)|$, since *f* is monotonic. In addition, since *f* is bounded on *R*, say $|f(x)| \le M$ for all *x*, we know that 2*M* is a upper bounded of $V_f(a,b)$ for all *a*, *b*. Hence, $V_f(-\infty, +\infty)$ exists. That is, *f* is of bounded variation on *R*.

(Theorem 6.13*) Let f be defined on $(-\infty, +\infty)$, then f is of bounded variation on $(-\infty, +\infty)$ if, and only if, f can be expressed as the difference of two increasing and bounded functions.

Proof: Suppose that *f* is of bounded variation on $(-\infty, +\infty)$, then by **Theorem 6.12***, we know that

$$f = V - (V - f),$$

where V and V - f are increasing on $(-\infty, +\infty)$. In addition, since f is of bounded variation on R, we know that V and f is bounded on R which implies that V - f is bounded on R. So, we have proved that if f is of bounded variation on $(-\infty, +\infty)$ then f can be expressed as the difference of two increasing and bounded functions.

Suppose that *f* can be expressed as the difference of two increasing and bounded functions, say $f = f_1 - f_2$, Then by **Theorem 6.9***, and **Theorem 6.5***, we know that *f* is of bounded variaton on *R*.

Remark: The representation of a function of bounded variation as a difference of two increasing and bounded functions is by no mean unique. It is clear that **Theorem 6.13*** also holds if "increasing" is replaced by "strictly increasing." For example, $f = (f_1 + g) - (f_2 + g)$, where g is any strictly increasing and bounded function on R. One of such g is arctan x.

6.7 Assume that *f* is of bounded variation on [a, b] and let

$$P = \{x_0, x_1, \dots, x_n\} \in p[a, b].$$

As usual, write $\Delta f_k = f(x_k) - f(x_{k-1}), k = 1, 2, \dots, n$. Define

$$A(P) = \{k : \Delta f_k > 0\}, B(P) = \{k : \Delta f_k < 0\}.$$

The numbers

$$p_f(a,b) = \sup\left\{\sum_{k\in A(P)} \Delta f_k : P \in p[a,b]\right\}$$

and

$$n_f(a,b) = \sup\left\{\sum_{k\in B(P)} |\Delta f_k| : P \in p[a,b]\right\}$$

are called respectively, the positive and negative variations of f on [a,b]. For each x in (a,b]. Let $V(x) = V_f(a,x)$, $p(x) = p_f(a,x)$, $n(x) = n_f(a,x)$, and let V(a) = p(a) = n(a) = 0. Show that we have:

(a) V(x) = p(x) + n(x).

Proof: Given a partition P on [a,x], then we have

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k \in A(P)} |\Delta f_k| + \sum_{k \in B(P)} |\Delta f_k|$$
$$= \sum_{k \in A(P)} \Delta f_k + \sum_{k \in B(P)} |\Delta f_k|,$$

which implies that (taking supermum)

$$V(x) = p(x) + n(x)$$

Remark: The existence of p(x) and q(x) is clear, so we know that (*) holds by **Theorem 1.15**.

(b) $0 \le p(x) \le V(x)$ and $0 \le n(x) \le V(x)$.

Proof: Consider [a, x], and since

$$V(x) \geq \sum_{k=1}^{n} |\Delta f_k| \geq \sum_{k \in A(P)} |\Delta f_k|,$$

we know that $0 \le p(x) \le V(x)$. Similarly for $0 \le n(x) \le V(x)$.

(c) p and n are increasing on [a, b].

Proof: Let x, y in [a, b] with x < y, and consider p(y) - p(x) as follows. Since

$$p(y) \geq \sum_{k \in A(P), [a,y]} \Delta f_k \geq \sum_{k \in A(P), [a,x]} \Delta f_k,$$

we know that

$$p(y) \ge p(x).$$

That is, p is increasing on [a, b]. Similarly for n.

(d) f(x) = f(a) + p(x) - n(x). Part (d) gives an alternative proof of Theorem 6.13. **Proof**: Consider [a,x], and since

$$f(x) - f(a) = \sum_{k=1}^{n} \Delta f_k = \sum_{k \in A(P)} \Delta f_k + \sum_{k \in B(P)} \Delta f_k$$

which implies that

$$f(x) - f(a) + \sum_{k \in B(P)} |\Delta f_k| = \sum_{k \in A(P)} \Delta f_k$$

which implies that f(x) = f(a) + p(x) - n(x).

(e)
$$2p(x) = V(x) + f(x) - f(a), \ 2n(x) = V(x) - f(x) + f(a).$$

Proof: By (d) and (a), the statement is obvious.

(f) Every point of continuity of f is also a point of continuity of p and of n.

Proof: By (e) and **Theorem 6.14**, the statement is obvious.

Curves

6.8 Let *f* and *g* be complex-valued functions defined as follows:

 $f(t) = e^{2\pi i t}$ if $t \in [0, 1]$, $g(t) = e^{2\pi i t}$ if $t \in [0, 2]$.

(a) Prove that f and g have the same graph but are not equivalent according to definition

*

in Section 6.12.

Proof: Since $\{f(t) : t \in [0,1]\} = \{g(t) : t \in [0,2]\}$ = the circle of unit disk, we know that *f* and *g* have the same graph.

If f and g are equivalent, then there is an 1-1 and onto function $\phi : [0,2] \rightarrow [0,1]$ such that

$$f(\phi(t)) = g(t)$$

That is,

$$e^{2\pi i\phi(t)} = \cos 2\pi (\phi(t)) + i \sin 2\pi (\phi(t)) = e^{2\pi i t} = \cos 2\pi t + i \sin 2\pi t.$$

In paticular, $\phi(1) := c \in (0, 1)$. However,

$$f(c) = \cos 2\pi c + i \sin 2\pi c = g(1) = 1$$

which implies that $c \in Z$, a contradiction.

(b) Prove that the length of g is twice that of f.

Proof: Since

the length of
$$g = \int_0^2 |g'(t)| dt = 4\pi$$

and

the length of
$$f = \int_0^1 |f'(t)| dt = 2\pi$$

we know that the length of g is twice that of f.

6.9 Let *f* be rectifiable path of length *L* defined on [a, b], and assume that *f* is not constant on any subinterval of [a, b]. Let *s* denote the arc length function given by $s(x) = \Lambda_f(a, x)$ if $a < x \le b$, s(a) = 0.

(a) Prove that s^{-1} exists and is continuous on [0, L].

Proof: By **Theorem 6.19**, we know that s(x) is continuous and strictly increasing on [0, L]. So, the inverse function s^{-1} exists since *s* is an 1-1 and onto function, and by **Theorem 4.29**, we know that s^{-1} is continuous on [0, L].

(b) Define $g(t) = f[s^{-1}(t)]$ if $t \in [0, L]$ and show that g is equivalent to f. Since f(t) = g[s(t)], the function g is said to provide a representation of the graph of f with arc length as parameter.

Proof: t is clear by **Theorem 6.20**.

6.10 Let *f* and *g* be two real-valued continuous functions of bounded variation defined on [*a*,*b*], with 0 < f(x) < g(x) for each *x* in (*a*,*b*), f(a) = g(a), f(b) = g(b). Let *h* be the complex-valued function defined on the interval [*a*,2*b* - *a*] as follows:

$$h(t) = t + if(t), \text{ if } a \le t \le b$$

= $2b - t + ig(2b - t), \text{ if } b \le t \le 2b - a.$

(a) Show that *h* describes a rectifiable curve Γ .

Proof: It is clear that *h* is continuous on [a, 2b - a]. Note that *t*, *f* and *g* are of bounded variation on [a, b], so $\Lambda_h(a, 2b - a)$ exists. That is, *h* is rectifiable on [a, 2b - a].

(b) Explain, by means of a sketch, the geometric relationship between f, g, and h.

Solution: The reader can give it a draw and see the graph lying on x - y plane is a

closed region.

(c) Show that the set of points

$$S = \{(x,y) : a \le x \le b, f(x) \le y \le g(x)\}$$

in a region in R^2 whose boundary is the curve Γ .

Proof: It can be answered by (b), so we omit it.

(d) Let *H* be the complex-valued function defined on [a, 2b - a] as follows:

$$H(t) = t - \frac{1}{2}i[g(t) - f(t)], \text{ if } a \le t \le b$$

= $2b - t + \frac{1}{2}i[g(2b - t) - f(2b - t)], \text{ if } b \le t \le 2b - a$

Show that *H* describes a rectifiable curve Γ_0 which is the boundary of the region

$$S_0 = \{(x,y) : a \le x \le b, f(x) - g(x) \le 2y \le g(x) - f(x)\}.$$

Proof: Let $F(t) = \frac{-1}{2}[g(t) - f(t)]$ and $G(t) = \frac{1}{2}[g(t) - f(t)]$ defined on [a,b]. It is clear that F(t) and G(t) are of bounded variation and continuous on [a,b] with 0 < F(x) < G(x) for each $x \in (a,b)$, F(b) = G(b) = 0, and F(b) = G(b) = 0. In addition, we have

$$H(t) = t + iF(t), \text{ if } a \le t \le b$$

= $2b - t + iG(2b - t), \text{ if } b \le t \le 2b - a.$

So, by preceding (a)-(c), we have prove it.

(e) Show that, S_0 has the x –axis as a line of symmetry. (The region S_0 is called the symmetrization of S with respect to x –axis.)

Proof: It is clear since $(x, y) \in S_0 \Leftrightarrow (x, -y) \in S_0$ by the fact $f(x) - g(x) \le 2y \le g(x) - f(x)$.

(f) Show that the length of Γ_0 does not exceed the length of Γ .

Proof: By (e), the symmetrization of *S* with respect to *x* –axis tells that $\Lambda_H(a,b) = \Lambda_H(b,2b-a)$. So, it suffices to show that $\Lambda_h(a,2b-a) \ge 2\Lambda_H(a,b)$. Choosing a partition $P_1 = \{x_0 = a, \dots, x_n = b\}$ on [a,b] such that

$$2\Lambda_{H}(a,b) - \varepsilon < 2\Lambda_{H}(P_{1})$$

$$= 2\sum_{i=1}^{n} \left\{ (x_{i} - x_{i-1})^{2} + \left[\frac{1}{2} (f - g)(x_{i}) - \frac{1}{2} (f - g)(x_{i-1}) \right]^{2} \right\}^{1/2}$$

$$= \sum_{i=1}^{n} \left\{ 4 (x_{i} - x_{i-1})^{2} + \left[(f - g)(x_{i}) - (f - g)(x_{i-1}) \right]^{2} \right\}^{1/2}$$

*

and note that b - a = (2b - a) - b, we use this P_1 to produce a partition $P_2 = P_1 \cup \{x_n = b, x_{n+1} = b + (x_n - x_{n-1}), \dots, x_{2n} = 2b - a\}$ on [a, 2b - a]. Then we have

$$\begin{split} \Lambda_{h}(P_{2}) &= \sum_{i=1}^{2n} \|h(x_{i}) - h(x_{i-1})\| \\ &= \sum_{i=1}^{n} \|h(x_{i}) - h(x_{i-1})\| + \sum_{i=n+1}^{2n} \|h(x_{i}) - h(x_{i-1})\| \\ &= \sum_{i=1}^{n} \left[(x_{i} - x_{i-1})^{2} + (f(x_{i}) - f(x_{i-1}))^{2} \right]^{1/2} + \sum_{i=n+1}^{2n} \left[(x_{i} - x_{i-1})^{2} + (g(x_{i}) - g(x_{i-1}))^{2} \right]^{1/2} \\ &= \sum_{i=1}^{n} \left\{ \left[(x_{i} - x_{i-1})^{2} + (f(x_{i}) - f(x_{i-1}))^{2} \right]^{1/2} + \left[(x_{i} - x_{i-1})^{2} + (g(x_{i}) - g(x_{i-1}))^{2} \right]^{1/2} \right\} \end{split}$$

From (*) and (**), we know that

$$2\Lambda_H(a,b) - \varepsilon < 2\Lambda_H(P_1) \le \Lambda_h(P_2)$$

**

which implies that

$$\Lambda_H(a,2b-a)=2\Lambda_H(a,b)\leq \Lambda_h(a,2b-a).$$

So, we know that the length of Γ_0 does not exceed the length of Γ .

Remark: Define $x_i - x_{i-1} = a_i$, $f(x_i) - f(x_{i-1}) = b_i$, and $g(x_i) - g(x_{i-1}) = c_i$, then we have

$$(4a_i^2 + (b_i - c_i)^2)^{1/2} \le (a_i^2 + b_i^2)^{1/2} + (a_i^2 + c_i^2)^{1/2}.$$

Hence we have the result (***).

Proof: It suffices to square both side. We leave it to the reader.

Absolutely continuous functions

A real-valued function f defined on [a, b] is said to be **absolutely continuous** on [a, b]if for every $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$$

for every n **disjoint** open subintervals (a_k, b_k) of [a, b], n = 1, 2, ..., the sum of whose lengths $\sum_{k=1}^{n} (b_k - a_k)$ is less than δ .

Absolutely continuous functions occur in the Lebesgue theory of integration and differentiation. The following exercises give some of their elementary properties.

6.11 Prove that every absolutely continuous function on [a, b] is continuous and of bounded variation on [a, b].

Proof: Let f be absolutely continuous on [a, b]. Then $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$$

for every n **disjoint** open subintervals (a_k, b_k) of [a, b], n = 1, 2, ..., the sum of whose lengths $\sum_{k=1}^{n} (b_k - a_k)$ is less than δ . So, as $|x - y| < \delta$, where $x, y \in [a, b]$, we have

$$|f(x)-f(y)|<\varepsilon$$

That is, *f* is uniformly continuous on [a, b]. So, *f* is continuous on [a, b]. In addition, given any $\varepsilon = 1$, there exists a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals in [a, b], we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < 1.$$

For this δ , and let *K* be the smallest positive integer such that $K(\delta/2) \ge b - a$. So, we partition [a, b] into *K* closed subintervals, i.e.,

 $P = \{y_0 = a, y_1 = a + \delta/2, \dots, y_{K-1} = a + (K-1)(\delta/2), y_K = b\}$. So, it is clear that *f* is of bounded variation $[y_i, y_{i+1}]$, where $i = 0, 1, \dots, K$. It implies that *f* is of bounded variation on [a, b].

Note: There exists functions which are continuous and of bounded variation but not absolutely continuous.

Remark: 1. The standard example is called **Cantor-Lebesgue function**. The reader can see this in the book, **Measure and Integral**, **An Introduction to Real Analysis by Richard L. Wheeden and Antoni Zygmund**, pp 35 and pp 115.

2. If we wrtie "absolutely continuous" by **ABC**, "continuous" by **C**, and "bounded variation" by **B**, then it is clear that by preceding result, **ABC** implies **B** and **C**, and **B** and **C** do **NOT** imply **ABC**.

6.12 Prove that f is absolutely continuous if it satisfies a uniform Lipschitz condition of order 1 on [a, b]. (See Exercise 6.2)

Proof: Let *f* satisfy a uniform Lipschitz condition of order 1 on [a,b], i.e., $|f(x) - f(y)| \le M|x - y|$ where $x, y \in [a,b]$. Then given $\varepsilon > 0$, there is a $\delta = \varepsilon/M$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open subintervals on [a,b], k = 1, ..., n, we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| \le \sum_{k=1}^{n} M |b_k - a_k|$$

= $\sum_{k=1}^{n} M (b_k - a_k)$
< $M\delta$
= ε .

Hence, f is absolutely continuous on [a, b].

6.13 If f and g are absolutely continuous on [a, b], prove that each of the following is also: |f|, $cf(c \text{ constant}), f+g, f \cdot g$; also f/g if g is bounded away from zero.

Proof: (1) (|f| is absolutely continuous on [a,b]): Given $\varepsilon > 0$, we want to find a $\delta > 0$, such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a,b], we have

$$\sum_{k=1}^{n} ||f(b_k)| - |f(a_k)|| < \varepsilon.$$
1*

Since *f* is absolutely continuous on [a, b], for this ε , there is a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$$

which implies that (1^*) holds by the following

$$\sum_{k=1}^{n} ||f(b_k)| - |f(a_k)|| \le \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon$$

So, we know that |f| is absolutely continuous on [a, b].

(2) (*cf* is absolutely continuous on [a, b]): If c = 0, it is clear. So, we may assume that $c \neq 0$. Given $\varepsilon > 0$, we want to find a $\delta > 0$, such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |cf(b_k) - cf(a_k)| < \varepsilon.$$
^{2*}

Since *f* is absolutely continuous on [a, b], for this ε , there is a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon/|c|$$

which implies that (2^*) holds by the following

$$\sum_{k=1}^{n} |cf(b_k) - cf(a_k)| = |c| \sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon.$$

So, we know that cf is absolutely continuous on [a, b].

(3) (f + g is absolutely continuous on [a, b]): Given $\varepsilon > 0$, we want to find a $\delta > 0$, such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |(f+g)(b_k) - (f+g)(a_k)| < \varepsilon.$$
 3*

Since *f* and *g* are absolutely continuous on [a, b], for this ε , there is a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon/2 \text{ and } \sum_{k=1}^{n} |g(b_k) - g(a_k)| < \varepsilon/2$$

which implies that (3^*) holds by the following

$$\sum_{k=1}^{n} |(f+g)(b_{k}) - (f+g)(a_{k})|$$

$$= \sum_{k=1}^{n} |f(b_{k}) - f(a_{k}) + g(b_{k}) - g(a_{k})|$$

$$\leq \sum_{k=1}^{n} |f(b_{k}) - f(a_{k})| + \sum_{k=1}^{n} |g(b_{k}) - g(a_{k})|$$

$$< \varepsilon.$$

So, we know that f + g is absolutely continuous on [a, b].

(4) $(f \cdot g \text{ is absolutely continuous on } [a, b]$.): Let $M_f = \sup_{x \in [a,b]} |f(x)|$ and $M_g = \sup_{x \in [a,b]} |g(x)|$. Given $\varepsilon > 0$, we want to find a $\delta > 0$, such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |(f+g)(b_k) - (f+g)(a_k)| < \varepsilon.$$

$$4*$$

Since *f* and *g* are absolutely continuous on [a, b], for this ε , there is a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \frac{\varepsilon}{2(M_g + 1)} \text{ and } \sum_{k=1}^{n} |g(b_k) - g(a_k)| < \frac{\varepsilon}{2(M_f + 1)}$$

which implies that (4^*) holds by the following

$$\sum_{k=1}^{n} |(f \cdot g)(b_{k}) - (f \cdot g)(a_{k})|$$

$$= \sum_{k=1}^{n} |f(b_{k})(g(b_{k}) - g(a_{k})) + g(a_{k})(f(b_{k}) - f(a_{k}))|$$

$$\leq M_{f} \sum_{k=1}^{n} |g(b_{k}) - g(a_{k})| + M_{g} \sum_{k=1}^{n} |f(b_{k}) - f(a_{k})|$$

$$< \frac{\varepsilon M_{f}}{2(M_{f} + 1)} + \frac{\varepsilon M_{g}}{2(M_{g} + 1)}$$

$$< \varepsilon.$$

Remark: The part shows that f^n is absolutely continuous on [a,b], where $n \in N$, if f is absolutely continuous on [a,b].

(5) (*f*/*g* is absolutely continuous on [*a*,*b*]): By (4) it suffices to show that 1/*g* is absolutely continuous on [*a*,*b*]. Since *g* is bounded away from zero, say $0 < m \le g(x)$ for all $x \in [a,b]$. Given $\varepsilon > 0$, we want to find a $\delta > 0$, such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [*a*,*b*], we have

$$\sum_{k=1}^{n} |(1/g)(b_k) - (1/g)(a_k)| < \varepsilon.$$
 5*

Since g is absolutely continuous on [a, b], for this ε , there is a $\delta > 0$ such that as $\sum_{k=1}^{n} (b_k - a_k) < \delta$, where $(a_k, b_k)'s$ are disjoint open intervals on [a, b], we have

$$\sum_{k=1}^{n} |g(b_k) - g(a_k)| < m^2 \varepsilon$$

which implies that (4^*) holds by the following

$$\sum_{k=1}^{n} |(1/g)(b_{k}) - (1/g)(a_{k})|$$

$$= \sum_{k=1}^{n} \left| \frac{g(b_{k}) - g(a_{k})}{g(b_{k})g(a_{k})} \right|$$

$$\leq \frac{1}{m^{2}} \sum_{k=1}^{n} |g(b_{k}) - g(a_{k})|$$

$$< \varepsilon.$$