
The Riemann-Stieltjes Integral
Riemann-Stieltjes integrals

7.1 Prove that 
a

b
d  b  a, directly from Definition 7.1.

Proof: Let f  1 on a,b, then given any partition P  a  x0, . . . ,xn  b, then we
have

SP, 1, 
k1

n

ftkk, where tk  xk1,xk


k1

n

k

 b  a.

So, we know that 
a

b
d  b  a.

7.2 If f  R on a,b and if 
a

b
fd  0 for every f which is monotonic on a,b,

prove that  must be constant on a,b.
Proof: Use integration by parts, and thus we have


a

b
df  fbb  faa

Given any point c  a,b, we may choose a monotonic function f defined as follows.

f 
0 if x  c
1 if x  c.

So, we have


a

b
df  c  b.

So, we know that  is constant on a,b.

7.3 The following definition of a Riemann-Stieltjes integral is often used in the
literature: We say that f is integrable with respect to  if there exists a real number A
having the property that for every   0, there exists a   0 such that for every partition
P of a,b with norm P   and for every choice of tk in xk1,xk, we have
|SP, f,  A|  .
(a) Show that if 

a

b
fd exists according to this definition, then it is also exists according

to Definition 7.1 and the two integrals are equal.
Proof: Since refinement will decrease the norm, we know that if there exists a real

number A having the property that for every   0, there exists a   0 such that for every
partition P of a,b with norm P   and for every choice of tk in xk1,xk, we have
|SP, f,  A|  . Then choosing a P with P  , then for P  P  P  . So,
we have

|SP, f,  A|  .

That is, 
a

b
fd exists according to this definition, then it is also exists according to

Definition 7.1 and the two integrals are equal.



(b) Let fx  x  0 for a  x  c, fx  x  1 for c  x  b,
fc  0,c  1. Show that 

a

b
fd exists according to Definition 7.1 but does not exist

by this second definition.

Proof: Note that 
a

b
fd exists and equals 0 according to Definition 7.1If 

a

b
fd exists

according to this definition, then given   1, there exists a   0 such that for every
partition P of a,b with norm P   and for every choice of tk in xk1,xk, we have
|SP, f,|  1. We may choose a partition P  a  x0, . . . ,xn  b with P   and
c  xj,xj1, where j  0, . . . ,n  1. Then

SP, f,  fxxj1  xj  1, where x  c,xj1
which contradicts to |SP, f,|  1.

7.4 If f  R according to Definition 7.1, prove that 
a

b
fxdx also exists according to

definition of Exercise 7.3. [Contrast with Exercise 7.3 (b).]
Hint: Let I  

a

b
fxdx, M  sup|fx| : x  a,b.  Given   0, choose P so that

UP, f  I  /2 (notation of section 7.11). Let N be the number of subdivision points in
P and let   /2MN. If P  , write

UP, f Mkfxk  S1  S2,

where S1 is the sum of terms arising from those subintervals of P containing no points of
P and S2 is the sum of remaining terms. Then

S1  UP, f  I  /2 and S2  NMP  NM  /2,
and hence UP, f  I  . Similarly,

LP, f  I   if P   for some .
Hence |SP, f  I|   if P  min,.
Proof: The hint has proved it.
Remark: There are some exercises related with Riemann integrals, we write thme as

references.
(1) Suppose that f  0 and f is continuous on a,b, and 

a

b
fxdx  0. Prove that

fx  0 on a,b.
Proof: Assume that there is a point c  a,b such that fc  0. Then by continuity of

f, we know that given   fc
2  0, there is a   0 such that as |x  c|  , x  a,b, we

have

|fx  fc|  fc
2

which implies that
fc
2  fx if x  c  ,c    a,b : I

So, we have

0  fc
2 |I|  

I
fxdx  

a

b
fxdx  0, where 0  |I|, the length of I

which is absurb. Hence, we obtain that fx  0 on a,b.
(2) Let f be a continuous function defined on a,b. Suppose that for every continuous

function g defined on a,b which satisfies that




a

b
gxdx  0,

we always have


a

b
fxgxdx  0.

Show that f is a constant function on a,b.

Proof: Let 
a

b
fxdx  I, and define gx  fx  I

ba , then we have


a

b
gxdx  0,

which implies that, by hypothesis,


a

b
fxgxdx  0

which implies that


a

b
fx  cgxdx  0 for any real c.

So, we have


a

b
gx2dx  0 if letting c  I

b  a
which implies that gx  0 forall x  a,b by (1). That is, fx  I

ba on a,b.

(3) Define

hx 
0 if x  0,1  Q

1
n if x is the rational number m/n (in lowest terms)

1 if x  0.

Then h  R0,1.
Proof: Note that we have shown that h is continuous only at irrational numbers on

0,1  Q. We use it to show that h is Riemann integrable, i.e., h  R0,1. Consider the
upper sum UP, f as follows.
Given   0, there exists finitely many points x such that fx  /2. Consider a

partition P  x0  a, . . . ,xn  b so that its subintervals Ij  xj1,xj for some j
containing those points and|Ij |  /2. So, we have

UP, f 
k1

n

Mkxk


1


2

 /2  /2
 

where1  1MjIj, and2, is the sum of others.
So, we have shown that f satisfies the Riemann condition with respect to x  x.
Note: (1) The reader can show this by Theorem 7.48 (Lebesgue’s Criterion for

Riemann Integrability). Also, compare Exercise 7.32 and Exercise 4.16 with this.
(2) In Theorem 7.19, if we can make sure that there is a partition P such that



UP, f,  LP, f,  ,
then we automatically have, for any finer P P,

UP, f,  LP, f,  
since the refinement makes U increase and L decrease.
(4) Assume that the function fx is differentiable on a,b, but not a constant and that

fa  fb  0. Then there exists at least one point  on a,b for which

|f|  4
b  a2


a

b
fxdx.

Proof: Consider supxa,b|fx| : M as follows.
(i) If M  , then it is clear.
(ii) We may assume that M  .
Let x  a, ab2 , then

fx  fx  fa  fyx  a  Mx  a, where y  a,x.     *
and let x   ab2 ,b, then

fx  fx  fb  fzx  b  Mb  x, where z  x,b.     **
So, by (*) and (**), we know that


a

b
fxdx  

a

ab
2 fxdx  

ab
2

b
fxdx

 M 
a

ab
2
x  adx  M 

ab
2

b
b  xdx

 M a  b
2

2

which implies that

M  4
b  a2


a

b
fxdx.

Note that by (*) and (**), the equality does NOT hold since if it was, then we had
fx  M on a,b which implies that f is a constant function. So, we have

M  4
b  a2


a

b
fxdx.

By definition of supremum, we know that there exists at least one point  on a,b for
which

|f|  4
b  a2


a

b
fxdx.

(5) Gronwall Lemma: Let f and g be continuous non-negative function defined on
a,b, and c  0. If

fx  c  
a

x
gtftdt for all x  a,b,

then

fx  cea
x
gtdt

.
In particular, as c  0, we have f  0 on a,b.
Proof: Let c  0 and define



Fx  c  
a

x
gtftdt,

then we have
(i). Fa  c  0.
(ii). Fx  gxfx  0  F is increasing on a,b byMean Value Theorem
(iii). Fx  fx on a,b  Fx  gxFx by (ii).

So, from (iii), we know that

Fx  Faea
x
gtdt

 cea
x
gtdt

by (i).
For c  0, we choose cn  1/n  0, then by preceding result,

fx  1n e

a

x
gtdt

 0 as n  .
So, we have proved all.
(6) Define

fx  
x

x1
sint2dt.

(a) Prove that |fx|  1/x if x  0.
Proof: Let x  0, then we have, by change of variable(u  t2), and integration by

parts,

fx  1
2 x2

x12 sinu
u
du

 12 x2
x12 dcosu

u

 12
cosu
u x2

x12

 
x2

x12 cosu
2u3/2

du


cosx2
2x 

cos x  12

2x  1  
x2

x12 cosu
4u3/2

du

which implies that,

|fx|  cosx2
2x 

cos x  12

2x  1  
x2

x12 cosu
4u3/2

du

 1
2x  1

2x  1 
1
4 x2

x12 du
u3/2

 1
2x  1

2x  1 
1

2x  1 
1
2x

 1/x.
Note: There is another proof by Second Mean Value Theorem to show above as

follows. Since

fx  1
2 x2

x12 sinu
u
du by (a),

we know that, by Second Mean Value Theorem,



fx  1
2

1
x x2

y
sinudu  1

x  1 y
x12

sinudu

 1
2

1
x cosx2  cosy 

1
x  1 cosy  cos x  12

 1
2  1x  1

x  1 cosy  1x cosx2 
1
x  1 cos x  12

which implies that

|fx|  1
2  1x  1

x  1 |cosy|  cosx2
x 

cos x  12

x  1

 1
2

1
x 

1
x  1 

cosx2
x 

cos x  12

x  1

 1
2

1
x 

1
x  1  1x  1

x  1
since no x makes |cosx2|  cos x  12  1

 1/x.

(b) Prove that 2xfx  cosx2  cos x  12  rx, where |rx|  c/x and c is a
constant.
Proof: By (a), we have

fx  cosx2
2x 

cos x  12

2x  1  
x2

x12 cosu
4u3/2

du

which implies that

2xfx  cosx2  x
x  1 cos x  1

2  x 
x2

x12 cosu
2u3/2

du

 cosx2  cos x  12  1
x  1 cos x  1

2  x 
x2

x12 cosu
2u3/2

du

where

rx  1
x  1 cos x  1

2  x2 x2
x12 cosu

u3/2
du

which implies that

|rx|  1
x  1  x2 x2

x12 |cosu|
u3/2

du

 1
x  1  x2 x2

x12

u3/2du

 1
x  1  1

x  1
 2
x .

Note: Of course, we can use the note in (a) to show it. We write it as follows.
Proof: Since

fx  1
2  1x  1

x  1 cosy  1x cosx2 
1
x  1 cos x  12

which implies that



2xfx  x
x  1  1 cosy  cosx2  x

x  1 cos x  12

 cosx2  cos x  12  1
x  1 cos x  12  x

x  1  1 cosy

where
rx  1

x  1 cos x  12  x
x  1  1 cosy

which implies that
|rx|  1

x  1  1  x
x  1

 2
x  1

 2/x.

(c) Find the upper and lower limits of xfx, as x  .

Proof: Claim that lim supx cosx2  cos x  12  2 as follows. Taking
x  n 2 , where n  Z, then

cosx2  cos x  12  cos n 8  1 .     1

If we can show that n 8 is dense in 0,2 modulus 2. It is equivalent to show that
n 2

 is dense in 0,1 modulus 1. So, by lemma ar : a  Z, where r  Qc is dense
in 0,1 modulus 1, we have proved the claim. In other words, we have proved the claim.
Note: We use the lemma as follows. ar  b : a  Z,b  Z, where r  Qc is dense in

R. It is equivalent to ar : a  Z, where r  Qc is dense in 0,1 modulus 1.
Proof: Say ar  b : a  Z,b  Z  S, and since r  Qc, then by Exercise 1.16,

there are infinitely many rational numbers h/k with k  0 such that |kr  h|  1
k . Consider

x  ,x   : I, where   0, and thus choosing k0 large enough so that 1/k0  .
Define L  |k0r  h0 |, then we have sL  I for some s  Z. So,
sL  sk0r  sh0  S. That is, we have proved that S is dense in R.

(d) Does 
0


sint2dt converge?

Proof: Yes,


x

x

sin2tdt  1
2 x

x sinu
u
du by the process of (a)

 1
2

1
x x

y
sinudu  1

x y
x

sinudu by Second Mean Value Theorem

 1
2

2
x  2

x

 2
x

which implies that the integral exists.
Note: (i) We can show it without Second Mean Value Theorem by the method of (a).

However Second Mean Value Theorem is more powerful for this exercise.
(ii) Here is the famous Integral named Dirichlet Integral used widely in the STUDY

of Fourier Series. We write it as follows. Show that the Dirichlet Integral


0

 sinx
x dx



converges but not absolutely converges. In other words, the Dirichlet Integral converges
conditionally.
Proof: Consider


x

x sinx
x dx  1

x x
y
sinxdx  1

x y
x

sinxdx by Second Mean Value Theorem;

we have


x

x sinx
x dx  2x  2

x  4
x .

So, we know that Dirichlet Integral converges.
Define In   4  2n,


2  2n, then


0

 sinx
x dx  

In

sinx
x dx

 
In

2
2


4  2n

dx

 
n0

 2
2  4 


4  2n

 .

So, we know that Dirichlet Integral does NOT converges absolutely.
(7) Deal similarity with

fx  
x

x1
sinetdt.

Show that
ex|fx|  2

and that
exfx  cosex  e1 cosex1  rx,

where |rx|  min1,Cex, for all x and
Proof: Since

fx  
x

x1
sinetdt

 
ex

ex1 sinu
u du by Change of Variable (let u  et)

 cosex
ex  cose

x1

ex1  
ex

ex1 cosu
u2 du by Integration by parts     *

which implies that

|fx|  cosex
ex  cosex1

ex1  
ex

ex1 du
u2 since cosu is not constant 1

 1
ex 

1
ex1  1

ex 1  1e
which implies that

ex|fx|  2.
In addition, by (*), we have

exfx  cosex  e1 cosex1  rx,
where



rx  ex 
ex

ex1 cosu
u2 du

which implies that
|rx|  1  e1  1 for all x     **

or which implies that, by Integration by parts,

|rx|  ex 
ex

ex1 cosu
u2 du

 ex sine
x1

e2x1
 sine

x

ex  2 
ex

ex1 sinu
u3 du

 ex 1
e2x1

 1
e2x  2 ex

ex1 du
u3 since sinu is not constant 1

 2ex for all x.     ***
By (**) and (***), we have proved that |rx|  min1,Cex for all x, where C  2.
Note: We give another proof on (7) by Second Mean Value Theorem as follows.
Proof: Since

fx  
ex

ex1 sinu
u du

 1
ex ex

y
sinudu  1

ex1 y
ex1

sinudu by Second Mean Value Theorem

 1
ex cose

x  cosy  1
ex1 cosy  cose

x1     *

which implies that
ex|fx|  |cosex  cosy  e1cosy  cosex1|

 |cosex  e1 cosex1  cosy1  e1|
 |cosex  e1 cosex1 |  1  e1
 1  e1  1  e1 since no x makes |cosex |  |cosex1 |  1.
 2.

In addition, by (*), we know that
exfx  cosex  e1 cosex1  rx

where
rx  e1 cosy  cosy

which implies that
|rx|  1  e1  1 for all x.     **

In addition, from the proof of the process in (7), we know that



|rx|  ex 
ex

ex1 cosu
u2 du

 ex 1
e2x ex

y
cosudu  1

e2x1 y
ex1

cosudu

 ex|siny  sinex  e2sinex1  siny|
 ex|siny1  e2  e2 sinex1  sinex|
 ex1  e2  ex|e2 sinex1 |  ex|sinex |
 ex1  e2  ex1  e2 since no x makes |sinex1 |  |sinex |  1
 2ex for all x.     ***

So, by (**) and (***), we have proved that |rx|  min1,Cex, where C  2.
(8) Suppose that f is real, continuously differentiable function on a,b,

fa  fb  0, and


a

b
f2xdx  1.

Prove that


a

b
xfxfxdx  12

and that


a

b
fx2dx  

a

b
x2f2xdx  1

4 .

Proof: Consider


a

b
xfxfxdx  

a

b
xfxdfx

 xf2x|a
b  

a

b
fxdxfx

 
a

b
f2xdx  

a

b
xfxfxdx since fa  fb  0,

so we have


a

b
xfxfxdx  12 .

In addition, by Cauchy-Schwarz Inequality, we know that


a

b
fx2dx  

a

b
x2f2xdx  

a

b
xfxfxdx

2

 1
4 .

Note that the equality does NOT hold since if it was, then we have fx  kxfx. It
implies that

fx  kxfxe kx
2
2  0

which implies that

fe kx
2
2


 0

which implies that
fx  Ce kx

2
2 , a constant

which implies that



C  0 since fa  0.
That is, fx  0 on a,b which is absurb.
7.5 Let an be a sequence of real numbers. For x  0, define

Ax 
nx
an 

n1

x

an,

where x is the largest integer in x and empty sums are interpreted as zero. Let f have a
continuous derivative in the interval 1  x  a. Use Stieltjes integrals to derive the
following formula:


na
anfn  

1

a
Axfxdx  Aafa.

Proof: Since


1

a
Axfxdx  

1

a
Axdfx since f has a continous derivative on 1,a

 
1

a
fxdAx  Aafa  A1f1 by integration by parts

 
na
anfn  Aafa by 

1

a
fxdAx 

n2

a

anfn and A1  a1,

we know that


na
anfn  

1

a
Axfxdx  Aafa.

7.6 Use Euler’s summation formula, integration by parts in a Stieltjes integral, to
derive the following identities:
(a)k1

n 1
ks  1

ns1  s 1
n x
xs1 dx if s  1.

Proof:


k1

n
1
ks  

1

n
xsdx  1

 
1

n
xdxs  nsn  1s1  1

 s 
1

n x
xs1 dx  n

1s

 1
ns1  s 

1

n x
xs1 dx if s  1.

(b)k1
n 1

k  logn  
1

n xx
x2  1.

Proof:




k1

n
1
k  

1

n 1
x dx  1

 
1

n
xdx1  n1n  111  1

 
1

n
x1dx  

1

n
x1dx  

1

n x
x2 dx  1

 logn  
1

n x  x
x2  1.

7.7 Assume that f is continuous on 1,2n and use Euler’s summation formula or
integration by parts to prove that


k1

2n

1kfk  
1

2n
fxx  2x/2dx.

Proof:


k1

2n

1kfk  
k1

2n

fk  2
k1

n

f2k

  
1

2n
fxdx  f1  2 

1

2n
fxdx/2

  
1

2n
xdfx  2nf2n  2 

1

2n
x/2dfx  f2n2n/2  f11/2

since f is continuous on 1,2n

 
1

2n
fxxdx  2nf2n  

1

2n
fxx/2dx  2nf2n

 
1

2n
fxx  2x/2dx.

7.8 Let 1  x  x  1
2 if x  integer, and let 1  0 if x  integer. Also, let

2  0
x
1tdt. If f is continuous on 1,n prove that Euler’s summation formula implies

that


k1

n

fk  
1

n
fxdx  

1

n
2xfxdx 

f1  fn
2 .

Proof: Using Theorem 7.13, then we have


k1

n

fk  
1

n
fxdx  

1

n
fx1xdx 

f1  fn
2

 
1

n
fxdx  

1

n
fxd2x 

f1  fn
2

 
1

n
fxdx  

1

n
2xdfx  fn2n  f121  f1  fn2

 
1

n
fxdx  

1

n
2xdfx 

f1  fn
2

 
1

n
fxdx  

1

n
2xfxdx 

f1  fn
2 since f is continuous on 1,n.



7.9 Take fx  logx in Exercise 7.8 and prove that

logn!  n  12 logn  n  1  
1

n 2t
t2 dt.

Proof: Let fx  logx, then by Exercise 7.8, it is clear. So, we omit the proof.
Remark: By Euler’s summation formula, we can show that


1kn

logk  
1

n
logxdx  

1

n
x  x  12

dx
x  logn2 .     *

Since
x  x  12  1/2

and


a

a1
x  x  12 dx  0 for all real a,     **

we thus have the convergence of the improper integral


1


x  x  12 dx by Second Mean Value Theorem.

So, by (*), we have
logn!  n  12 logn  n  C  n

where

C  1  
1


x  x  12

dx
x ,

and

n  
n


x  x  12

dx
x .

So,
limn

n!
ennn1/2

 eC : C1.     ***

Now, usingWallis formula, we have

limn
2  2  4  4   2n2n

1  3  3  5  5   2n  12n  1  /2

which implies that
2nn!4

2n!22n  1
1  o1  /2

which implies that, by (***),
C142nnn1/2en

4

C12 2n2n1/2e2n 2n  1
1  o1  /2

which implies that
C12n

22n  1 1  o1  /2.

Let n  , we have C1  2 , and 
1


x  x  1

2 dx 
1
2 log2  1.

Note: In (***), the formula is called Stirling formula. The reader should be noted that
Wallis formula is equivalent to Stirling formula.



7.10 If x  1, let x denote the number of primes p  x, that is,
x 

px
1,

where the sum is extended over all primes p  x. The prime number theorem states that

limx x
logx
x  1.

This is usually proved by studying a related function  given by
x 

px
logp,

where again the sum is extended over all primes p  x. Both function  and  are step
functions with jumps at the primes. This exercise shows how the Riemann-Stieltjes integral
can be used to relate these two functions.
(a) If x  2, prove that x and x can be expressed as the following

Riemann-Stieltjes integrals:

x  
3/2

x
log tdt, x  

3/2

x 1
log t dt.

Note. The lower limit can be replaced by any number in the open interval 1,2.
Proof: Since x  px logp, we know that by Theorem 7.9,

x  
3/2

x
log tdt,

and x  px 1, we know that by Theorem 7.9,

x  
3/2

x 1
log t dt.

(b) If x  2, use integration by parts to show that

x  x logx  
2

x t
t dt,

x  x
logx  

2

x t
t log2t

dt.

These equations can be used to prove that the prime number theorem is equivalent to
the relation limx x

x  1.
Proof: Use integration by parts, we know that

x  
3/2

x
log tdt  

3/2

x t
t dt  logxx  log3/23/2

 
3/2

x t
t dt  logxx since 3/2  0

 x logx  
2

x t
t dt since 

3/2

2 t
t dt  0 by x  0 on 0,2,

and



x  
3/2

x 1
log t dt  3/2

x t
t log2t

dt  x
logx 

3/2
log3/2

 
3/2

x t
t log2t

dt  x
logx since 3/2  0

 x
logx  

2

x t
t log2t

dt since 
3/2

2 t
t log2t

dt  0 by x  0 on 0,2.

7.11 If   on a,b, prove that
(a) 

a

b
fd  

a

c
fd  

c

b
fd, (a  c  b)

Proof: Given   0, there is a partition P such that
UP, f,  Ia,b  .     1

Let P  c  P  P1  P2, where P1  a  x0, . . . ,xn1  c and
P2  xn1  c, . . . ,xn2  bthen we have

Ia,c  Ic,b  UP1, f,  UP2, f,  UP, f,  UP, f,.     2
So, by (1) and (2), we have

Ia,c  Ic,b  Ia,b     *
since  is arbitrary.
On the other hand, given   0, there is a partition P1 and P2 such that

UP1, f,  UP2, f,  Ia,c  Ic,b  
which implies that, let P  P1  P2

UP, f,  UP1, f,  UP2, f,  Ia,c  Ic,b  .     3
Also,

Ia,b  UP, f,.     4
By (3) and (4), we have

Ia,b  Ia,c  Ic,b     **
since  is arbitrary.
So, by (*) and (**), we have proved it.

(b) 
a

b
f  gd  

a

b
fd  

a

b
gd.

Proof: In any compact interval J, we have
sup
xJ
f  g  sup

xJ
f  sup

xJ
g.     1

So, given   0, there is a partition Pf and Pg such that


k1

n1

Mkfk  
a

b
fd  /2     2

and


k1

n2

Mkgk  
a

b
gd  /2.     3

So, consider P  Pf  Pg, then we have, by (1),
UP, f  g,  UP, f,  UP,g,

along with



UP, f,  
k1

n1

Mkfk and UP,g,  
k1

n2

Mkgk

which implies that, by (2) and (3),

UP, f  g,  
a

b
fd  

a

b
gd  

which implies that


a

b
f  gd  

a

b
fd  

a

b
gd

since  is arbitrary.

(c) 
a

b
f  gd  

a

b
fd  

a

b
gd

Proof: Similarly by (b), so we omit the proof.

7.12 Give an example of bounded function f and an increasing function  defined on
a,b such that |f|  R but for which 

a

b
fd does not exist.

Solution: Let

fx 
1 if x  0,1  Q
1 if x  0,1  Qc

and x  x on 0,1. Then it is clear that f  R on a,b and |f|  R on a,b.
7.13 Let  be a continuous function of bounded variation on a,b. Assume that

g  R on a,b and define x  
a

x
gtdt if x  a,b. Show that:

(a) If f  on a,b, there exists a point x0 in a,b such that

a

b
fd  fa 

a

x0 gd  fb 
x0

b
gd.

Proof: Since  is a continuous function of bounded variation on a,b, and g  R
on a,b, we know that x is a continuous function of bounded variation on a,b, by
Theorem 7.32. Hence, by Second Mean-Value Theorem for Riemann-Stieltjes
integrals, we know that


a

b
fd  fa 

a

x0
dx  fb 

x0

b
dx

which implies that, by Theorem 7.26,


a

b
fd  fa 

a

x0
gd  fb 

x0

b
gd.

(b) If, in addition, f is continuous on a,b, we also have


a

b
fxgxdx  fa 

a

x0
gd  fb 

x0

b
gd.

Proof: Since


a

b
fd  

a

b
fxgxdx by Theorem 7.26,

we know that, by (a),




a

b
fxgxdx  fa 

a

x0
gd  fb 

x0

b
gd.

Remark: We do NOT need the hypothesis that f is continuous on a,b.

7.14 Assume that f  R on a,b, where  is of bounded variation on a,b. Let
Vx denote the total variation of  on a,x for each x in a,b, and let Va  0. Show
that


a

b
fd  

a

b
|f|dV  MVb,

where M is an upper bound for |f| on a,b. In particular, when x  x, the inequality
becomes


a

b
fd  Mb  a.

Proof: Given   0, there is a partition P  a  x0, . . . ,xn  b such that


a

b
fd    SP, f,


k1

n

ftkk, where tk  xk1,xk

 
k1

n

|ftk||xk  xk1|

 
k1

n

|ftk|Vxk  Vxk1

 SP, |f|,V
 UP, |f|,V since V is increasing on a,b

which implies that, taking infimum,


a

b
fd    

a

b
|f|dV

since |f|  RV on a,b.
So, we have


a

b
fd  

a

b
|f|dV     *

since 
a

b
|f|dV is clear non-negative. If M is an upper bound for |f| on a,b, then (*) implies

that


a

b
fd  

a

b
|f|dV  MVb

which implies that


a

b
fd  Mb  a

if x  x.

7.15 Let n be a sequence of functions of bounded variation on a,b. Suppose
there exists a function  defined on a,b such that the total variation of   n on a,b
tends to 0 as n  . Assume also that a  na  0 for each n  1,2, . . . . If f is



continuous on a,b, prove that

limn a
b
fxdnx  

a

b
fxdx.

Proof: Use Exercise 7.14, we then have


a

b
fxd  nx  MVnb  0 as n  

where Vn is the total variation of   n, and M  supxa,b|fx|.
So, we have

limn a
b
fxdnx  

a

b
fxdx.

Remark: We do NOT need the hypothesis a  na  0 for each n  1,2, . . . .
7.16 If f  R, f2  R, g  R, and g2  R on a,b, prove that

1
2 a

b

a

b fx gx
fy gy

2

dy dx

 
a

b
f2xdx 

a

b
g2xdx  

a

b
fxgxdx

2

.

When   on a,b, deduce the Cauchy-Schwarz inequality


a

b
fxgxdx

2

 
a

b
f2xdx 

a

b
g2xdx .

(Compare with Exercise 1.23.)
Proof: Consider

1
2 a

b

a

b fx gx
fy gy

2

dy dx

 1
2 a

b

a

b
fxgy  fygx2dy dx

 1
2 a

b

a

b
f2xg2y  2fxgyfygx  f2yg2xdy dx

 1
2 a

b
f2xdx 

a

b
g2ydy

 
a

b
fxgxdx 

a

b
fygydy

 
a

b
g2xdx 

a

b
f2ydy

 
a

b
f2xdx 

a

b
g2ydy  

a

b
fxgxdx

2

,

if   on a,b, then we have



0  1
2 a

b

a

b fx gx
fy gy

2

dy dx

 
a

b
f2xdx 

a

b
g2ydy  

a

b
fxgxdx

2

which implies that


a

b
fxgxdx

2

 
a

b
f2xdx 

a

b
g2xdx .

Remark: (1) Here is another proof: Let A  
a

b
f2xdx, B  

a

b
fxgxdx, and

C  
a

b
g2xdx. From the fact,

0  
a

b
fxz  gx2dx for any real z

 Az2  2Bz  C.
It implies that

B2  AC.
That is,


a

b
fxgxdx

2

 
a

b
f2xdx 

a

b
g2xdx .

Note: (1) The reader may recall the inner product in Linear Algebra. We often
consider Riemann Integral by defining

 f,g : 
a

b
fxgxdx

where f and g are real continuous functions defined on a,b. This definition is a real case.
For complex case, we need to preserve its positive definite. So, we define

 f,g : 
a

b
fxgxdx

where f and g are complex continuous functions defined on a,b, and g means its
conjugate. In addition, in this sense, we have the triangular inequality:

f  g  f  h  f  h, where f   f, f  .

(2) Suppose that f  R on a,b where   on a,b and given   0, then there
exists a continuous function g on a,b such that

f  g  .

Proof: Let K  supxa,b|fx|, and given   0, we want to show that
f  g  .

Since f  R on a,b where   on a,b, given 1   0, there is a partition
P  x0  a, . . . ,xn  b such that

UP, f,  LP, f, 
j1

n

Mjf  mjfj  2.     1

Write P  A  B, where A  xj : Mjf  mjf   and
B  xj : Mjf  mjf  , then




B
j  

B
Mjf  mjfj  2 by (1)

which implies that


B
j  .     2

For this partition P, we define the function g as follows.

gt  xj  t
xj  xj1 fxj1 

t  xj1
xj  xj1 fxj, where xj1  t  xj.

So, it is clear that g is continuous on a,b. In every subinterval xj1,xj

|ft  gt|  xj  t
xj  xj1 ft  fxj1 

t  xj1
xj  xj1 ft  fxj

 |ft  fxj1|  |ft  fxj|
 2Mjf  mjf     3

Consider


A

xj1,xj 

|ft  gt|2d  
A
4Mjf  mjf2j by (3)

 4
A
Mjf  mjfj by definition of A

 4
A
j by   1

 4b  a
and


B

xj1,xj 

|ft  gt|2d  
B
4K2j

 4K2 by (2).
Hence,


a

b
|ft  gt|2d  4b  a  4K2

 2

if we choose  is small enough so that 4b  a  4K2  2. That is, we have
proved that

f  g  .

P.S.: The exercise tells us a Riemann-Stieltjes integrable function can be approximated
(approached) by continuous functions.
(3)There is another important result called Holder’s inequality. It is useful in Analysis

and more general than Cauchy-Schwarz inequality. In fact, it is the case p  q  2 in
Holder’s inequality.We consider the following results.
Let p and q be positive real numbers such that

1
p  1q  1.

Prove that the following statements.
(a) If u  0 and v  0, then



uv  u
p
p  v

p
q .

Equality holds if and only if up  vq.
Proof: Let fu  up

p  vp
q  uv be a function defined on 0,, where 1

p  1
q  1,

p  0, q  0 and v  0, then fu  up1  v. So, we know that
fu  0 if u  0,v

1
p1 and fu  0 if u  v

1
p1 ,

which implies that, by f v
1
p1  0, fu  0. Hence, we know that fu  0 for all u  0.

That is, uv  up
p  vp

q . In addition, fu  0 if and only if u  v
1
p1 if and only if up  vq.

So, Equality holds if and only if up  vq.
Note: (1) Here is another good proof by using Young’s Inequality, let fx be an

strictly increasing and continuous function defined on x : x  0, with f0  0. Then
we have, let a  0 and b  0,

ab  
0

a
fxdx  

0

b
f1xdx, where f1 is the inverse function of f.

And the equality holds if and only if fa  b.
Proof: The proof is easy by drawing the function f on x  y plane. So, we omit it.
So, by Young’s Inequality, let fx  x, where   0, we have the Holder’s

inequality.
(2) The reader should be noted that there are many proofs of (a), for example, using the

concept of convex function, or using A.P. G.P. along with continuity.
(b) If f,g  R on a,b where  on a,b, f,g  0 on a,b, and


a

b
fpd  1  

a

b
gqd,

then


a

b
fgd  1.

Proof: By Holder’s inequality, we have

fg  f
p

p  g
q

q

which implies that, by  on a,b, and 
a

b
fpd  1  

a

b
gqd,


a

b
fgd  

a

b fp
p d  a

b gq
q d  1

p  1q  1.

(c) If f and g are complex functions in R, where  on a,b, then


a

b
fgd  

a

b
|f|pd

1/p


a

b
|g|qd

1/q

.     *

Proof: First, we note that


a

b
fgd  

a

b
|fg|d.

Also,


a

b
|f|pd  Mp  

a

b |f|
M

p
d  1



and


a

b
|g|qd  Nq  

a

b |g|
N

q
d  1.

Then we have by (b),


a

b |f|
M
|g|
N d  1

which implies that, by (*)


a

b
fgd  MN  

a

b
|f|pd

1/p


a

b
|g|qd

1/q

.

(d) Show that Holder’s inequality is also true for the ”improper” integrals.
Proof: It is clear by (c), so we omit the proof.
7.17 Assume that f  R,g  R, and f  g  R on a,b. Show that

1
2 a

b

a

b
fy  fxgy  gxdy dx

 b  a 
a

b
fxgxdx  

a

b
fxdx 

a

b
gxdx .

If   on a,b, deduce the inequality


a

b
fxdx 

a

b
gxdx  b  a 

a

b
fxgxdx

when both f and g are increasing (or both are decreasing) on a,b. Show that the reverse
inequality holds if f increases and g decreases on a,b.
Proof: Since

1
2 a

b

a

b
fy  fxgy  gxdy dx

 1
2 a

b

a

b
fygy  fygx  fxgy  fxgxdy dx

 b  a 
a

b
fygydy  

a

b
fxdx 

a

b
gxdx

which implies that, (let , f, and g  on a,b),

0  12 a
b

a

b
fy  fxgy  gxdy dx

and (let , and f  on a,b, g  on a,b),

0  12 a
b

a

b
fy  fxgy  gxdy dx,

we know that, (let , f, and g  on a,b)


a

b
fxdx 

a

b
gxdx  b  a 

a

b
fxgxdx

and (let , and f  on a,b, g  on a,b)


a

b
fxdx 

a

b
gxdx  b  a 

a

b
fxgxdx.

Riemann integrals



7.18 Assume f  R on a,b. Use Exercise 7.4 to prove that the limit
limn

b  a
n 

k1

n

f a  k b  an

exists and has the value 
a

b
fxdx. Deduce that

limn 
k1

n
n

k2  n2  
4 , limn 

k1

n

n2  k21/2  log 1  2 .

Proof: Since f  R on a,b, given   0, there exists a   0 such that as
P  , we have

SP, f  
a

b
fxdx  .

For this , we choose n large enough so that ban  , that is, as n  N, we have ba
n  .

So,

SP, f  
a

b
fxdx  

which implies that

b  a
n 

k1

n

f a  k b  an  
a

b
fxdx  .

That is,

limn
b  a
n 

k1

n

f a  k b  an

exists and has the value 
a

b
fxdx.

Sincek1
n n

k2n2  1
n k1

n 1
k
n

21
, we know that by above result,

limn 
k1

n
n

k2  n2  limn
1
n 

k1

n
1

 kn 
2  1

 
0

1 dx
1  x2

 arctan1  arctan0
 /4.

Sincek1
n n2  k21/2  1

n k1
n 1

1 k
n

2 1/2 , we know that by above result,



limn 
k1

n

n2  k21/2  limn
1
n 

k1

n
1

1   kn 
2 1/2

 
0

1 dx
1  x21/2

 
0

/4
secd, let x  tan

 
0

/4
sec sec  tansec  tan d

 
1

1 2 du
u , let sec  tan  u

 log 1  2 .

7.19 Define
fx  

0

x
et2dt

2
, gx  

0

1 ex2t21
t2  1 dt.

(a) Show that gx  fx  0 for all x and deduce that fx  gx  /4.
Proof: Since

fx  2 
0

x
et2dt ex2

and note that if hx, t  ex
2 t21

t21 , we know that h is continuous on 0,a  0,1 for any
real a  0, and hx  2xex2t21 is continuous on 0,a  0,1 for any real a  0,

gx  
0

1
hxdt

 
0

1
2xex2t21dt

 2ex2 
0

1
xext2dt

 2ex2 
0

x
eu2du,

we know that gx  fx  0 for all x. Hence, we have fx  gx  C for all x,
constant. Since C  f0  g0  

0

1 dt
1t2  /4, fx  gx  /4.

Remark: The reader should think it twice on how to find the auxiliary function g.
(b) Use (a) to prove that

limx 0
x
et2dt  1

2  .

Proof: Note that

hx, t  ex2t21
t2  1  |ex2t21 |  1

x2t2  1
for all x  0;

we know that


0

1 ex2t21
t2  1 dt  1

x2 0
1 dt
1  t2  0 as x  .

So, by (a), we get



limx fx  /4

which implies that

limx 0
x
et2dt  1

2 

since limx 0
x
et2dt exists by 

0

x
et2dt  

0

x dt
1t2  arctanx  /2 as x  .

Remark: (1) There are many methods to show this. But here is an elementary proof
with help of Taylor series and Wallis formula. We prove it as follows. In addition, the
reader will learn some beautiful and useful methods in the future. For example, use the
application of Gamma function, and so on.
Proof: Note that two inequalities,

1  x2  ex2 
k0


x2k
k! for all x

and


k0


x2k
k!  

k0



x2k  1
1  x2 if |x|  1

which implies that
1  x2  ex2 if 0  x  1  1  x2n  enx2     1

and

ex2  1
1  x2 if x  0  enx2  1

1  x2
n
.     2

So, we have, by (1) and (2),


0

1
1  x2ndx  

0

1
enx2dx  

0


enx2dx  

0

 1
1  x2

n
dx.     3

Note that


0


enx2dx  1

n 0

ex2dx : K

n
.

Also,


0

1
1  x2ndx  

0

/2
sin2n1tdt  2  4  6   2n  22n

1  3  5   2n  1
and


0

 1
1  x2

n
dx  

0

/2
sin2n2tdt  1  3  5   2n  3

2  4  6   2n  2

2 ,

so

n 2  4  6   2n  22n1  3  5   2n  1  K  n 1  3  5   2n  32  4  6   2n  2

2

which implies that

n
2n  1

2  4  6   2n  22n2

1  3  5   2n  122n  1
 K2  n

2n  1
1  3  5   2n  322n  1

2  4  6   2n  22

2

2
    4

ByWallis formula, we know that, by (4)

K 

2 .

That is, we have proved that Euler-Possion Integral




0


ex2dx  

2 .

Note: (Wallis formula)

limn
2  4  6   2n  22n2

1  3  5   2n  122n  1
 
2 .

Proof: As 0  x  /2, we have
sin2n1t  sin2nt  sin2n1t, where n  N.

So, we know that


0

/2
sin2n1tdt  

0

/2
sin2ntdt  

0

/2
sin2n1tdt

which implies that
2n2n  2   4  2

2n  12n  1   3  1 
2n  12n  3   3  1
2n2n  2   4  2


2 

2n  22n  4   4  2
2n  12n  3   3  1 .

So,
2n2n  2   4  2

2n  12n  3   3  1

2
1

2n  1 

2 

2n2n  2   4  2
2n  12n  3   3  1

2
1
2n .

Hence, from
2n2n  2   4  2

2n  12n  3   3  1

2
1
2n 

1
2n  1  1

2n

2  0,

we know that

limn
2  4  6   2n  22n2

1  3  5   2n  122n  1
 
2 .

(2) Here is another exercise from Hadamard’s result. We Write it as follows. Let
f  CkR with f0  0. Prove that there exists an unique function g  Ck1R such that
f  xgx on R.
Proof: Consider

fx  fx  f0

 
0

1
dfxt

 
0

1
xfxtdt

 x 
0

1
fxtdt;

we know that if gx : 
0

1
fxtdt, then we have prove it.

Note: In fact, we can do this job by rountine work. Define

gx 
fx
x if x  0
0 if x  0.

However, it is too long to write. The trouble is to make sure that g  Ck1R.

7.20 Assume g  R on a,b and define fx  
a

x
gtdt if t  a,b. Prove that the



integral 
a

x
|gt|dt gives the total variation of f on a,x.

Proof: Since 
a

x
|gt|dt exists, given   0, there exists a partition

P1  x0  a, . . . ,xn  x such that

LP, |g|  
a

x
|gt|dt  .     1

So, for this P1, we have


k1

n

|fxk  fxk1| 
k1

n


xk1

xk
gtdt 

k1

n

|ckxk  xk1| byMean Value Theorem     2

where infxxk1,xk |gx|  ck  supxxk1,xk |gx|.
Hence, we know that, by (1) and (2),


k1

n

|fxk  fxk1|  
a

x
|gt|dt  

which implies that

Vfa,b  
a

x
|gt|dt

since  is arbitrary.
Conversely, since 

a

x
|gt|dt exists, given   0, there exists a partition P2 such that

UP2, |g|  
a

x
|gt|dt  /2.     3

Also, for the same , there exists a partition P3  t0  a, . . . , tm  x such that

Vfa,b  /2 
k1

m

|ftk  ftk1|.     4

Let P  P2  P3  s0  a, . . . , sp  x, then by (3) and (4), we have

UP, |g|  
a

x
|gt|dt  /2

and

Vfa,b  /2 
k1

p

|fsk  fsk1|


k1

p


sk1

sk
gtdt


k1

p

|c kxk  xk1|

 UP, |g|
which imply that

Vfa,b  
a

x
|gt|dt

since  is arbitrary.
Therefore, from above discussion, we have proved that

Vfa,b  
a

x
|gt|dt.

7.21 If f  f1, . . . , fn be a vector-valued function with a continuous derivative f on



a,b. Prove that the curve described by f has length

fa,b  
a

b
ftdt.

Proof: Since f  f1 , . . . , fn  is continuous on a,b, we know that
j1

n fj
2
t

1/2
 ft is uniformly continuous on a,b. So, given   0, there exists

a 1  0 such that as |x  y|  1, where x,y  a,b, we have
|fx  fy|  

3b  a .     1

Since ft  R on a,b, for the same , there exists 2  0 such that as P1  2,
where P1  x0  a, . . . ,xn  bwe have

SP1,f  
a

b
ftdt  /3, where SP1,f 

j1

n

ftjxj     2

and fa,b exists by Theorem 6.17, for the same , there exists a partition
P2  s0  a, . . . , sm  b such that

fa,b  /3 
k1

m

fsk  fsk1


k1

m


j1

n

fjsk  fjsk1
2

1/2

.     3

Let   min1,2 and P  P2 so that P  , where P  y0  a, . . . ,yq  bthen by
(1)-(3), we have
(i) As |x  y|  , where x,y  a,b, we have

|fx  fy|  
3b  a .     4

(ii) As P  , we have

SP,f  
a

b
ftdt  /3, where SP,f 

j1

q

ftjyj     5

(iii) As P  , we have

fa,b  /3  
k1

m


j1

n

fjsk  fjsk1
2

1/2

 
k1

q


j1

n

fjyk  fjyk1
2

1/2


k1

q


j1

n

fjzk
2

yj, byMean Value Theorem


k1

q

fzkyj

 fa,b     6
By (ii) and (iii), we have




k1

q

gzkyj  SP,g  
k1

q

gzkyj 
j1

q

gtjyj

 
k1

q

|gzk  gtj|yj


k1

q


3b  a yj

 /3.     7
Hence, (5)-(7) implies that


a

b
ftdt  fa,b  .

Since  is arbitrary, we have proved that

fa,b  
a

b
ftdt.

7.22 If fn1 is continuous on a,x, define
Inx  1

n! a
x
x  tnfn1tdt.

(a) Show that

Ik1x  Ikx 
fkax  ak

k! , k  1,2, . . . ,n.

Proof: Since, for k  1,2, . . . ,n,

Ikx  1
k! a

x
x  tkfk1tdt

 1
k! a

x
x  tkdfkt

 1
k! x  tkfkt

a

x
 k 

a

x
x  tk1fktdt

  f
kax  ak

k!  1
k  1! a

x
x  tk1fktdt

  f
kax  ak

k!  Ik1x,

we know that

Ik1x  Ikx 
fkax  ak

k! , for k  1,2, . . . ,n.

(b) Use (a) to express the remainder in Taylor’s formula (Theorem 5.19) as an integral.
Proof: Since fx  fa  I0x, we know that



fx  fa  I0x

 fa 
k1

n

Ik1x  Ikx  Inx


k0

n fkax  ak

k!  1
n! a

x
x  tnfn1tdt by (a).

So, by Taylor’s formula, we know that

Rnx 
fn1cx  an1

n  1!  1
n! a

x
x  tnfn1tdt, for some c  a,x.

where Rnx is the remainder term.
Remark: 1. The reader should be noted that with help ofMean Value Theorem, we

have

1
n! a

x
x  tnfn1tdt  fn1cx  an1

n  1! .     *

2. Use Integration by parts repeatedly; we can show (*). Of course, there is other
proofs such asMathematical Induction.
Proof: Since

 uvn1dt  uvn  uvn1  uvn2 . . .1nunv  1n1  un1vdt,
letting vt  x  tn and ut  ft, then

fx 
k0

n fka
k! x  ak  1

n! a
x
x  tnfn1tdt.

Note: The reader should give it a try to show it. Since it is not hard, we omit the detail.
3. The remainder term as an integral is useful; the reader should see the textbook in

Ch9, pp242-244.
4. There is a good exercise related with an application of Taylor’s Remainder. We write

it as a reference.
Let ut  ftut  0, where ft is continuous and non-negative on 0,c If u is

defined and not a zero function on 0,c and


a

b
b  ta  tft  b  a for all a,b  0,c, where a  b.     *

Then u at most has one zero on 0,c.
Proof: First, we note that u has at most finitely many zeros in the interval 0,c by

uniqueness theorem on O.D.E. So, let ua  ub  0, where a,b  0,c with a  b,
and no point y  a,b such that uy  0. Consider a,b and by Taylor’s Theorem with
Remainder Term as an integral, we have

ux  ua  uax  a  
a

x
x  tutdt

 uax  a  
a

x
x  tutdt

 uax  a  
a

x
x  tutftdt.     **

Note that ux is positive on a,b ( Or, ux is negative on a,b ) So, we have



|ux|  |ua|x  a.     ***
By (**),

0  ub  uab  a  
a

b
b  tutftdt

which implies that

uab  a  
a

b
b  tutft

which implies that by (***), and note that ua  0,

b  a  
a

b
b  tt  aftdt

which contradicts to (*). So, u at most has one zero on 0,c.
Note: (i) In particular, let ft  et, we have (*) holds.
Proof: Since


a

b
b  tt  aetdt  ea2  b  a  eb2  b  a

by integration by parts twice, we have, (let b  a  x),
ea2  b  a  eb2  b  a  b  a

 ea2  x  exa2  x  x
 xea  1  eax2ex  x  2
 0 since a  b and ex  1  x.

(ii) In the proof of exercise, we use the uniqueness theorem: If px and qx are
continuous on 0,a, then

y  pxy  qxy  0, where y0  y0, and y0  y0

has one and only one solution. In particular, if y0  y0  0, then y  0 on 0,a is the
only solution. We do NOT give a proof; the reader can see the book, Theory of Ordinary
Differential Equation by Ince, section 3.32, or Theory of Ordinary Differential
Equation by Coddington and Levison, Chapter 6.
However, we need use the uniqueness theorem to show that u (in the exercise) has at

most finitely many zeros in 0,c.
Proof: Let S  x : ux  0, x  0,c. If #S  , then by Bolzano-Weierstrass

Theorem, S has an accumulation point p in 0,c. Then up  0 by continuity of u. In
addition, let rn  p, and urn  0, then

up  limxp
ux  up
x  p  limn

urn  up
rn  p  0.

(Note that if p is the endpoint of 0,c, we may consider x  p or x  p). So, by
uniqueness theorem, we then have u  0 on 0,c which contradicts to the hypothesis, u
is not a zero function on 0,c. So, #S  .
7.23 Let f be continuous on 0,a. If x  0,a, define f0x  fx and let

fn1x  1
n! 0

x
x  tnftdt, n  0,1, 2, . . .

(a) Show that the nth derivative of fn exists and equals f.
Proof: Consider, by Chain Rule,



fn  1
n  1! 0

x
x  tn1ftdt  fn1 for all n  N,

we have
fnn  f.

That is, nth derivative of fn exists and equals f.
Remark: (1) There is another proof byMathematical Induction and Integration by

parts. It is not hard; we omit the proof.
(2) The reader should note that the exercise tells us that given any continuous function f

on a,b, there exists a function gn on a,b such that gnn  f, where n  N. In fact, the
function

gn  1
n! a

x
x  tnftdt,n  0,1, 2, . . .

(3) The reader should compare the exercise with 7.22. At the same time, look at two
integrands in both exercises.
(b) Prove the following theorem of M. Fekete: The number of changes in sign of f in

0,a is not less than the number of changes in sign in the ordered set of numbers
fa, f1a, . . . , fna.

Hint: Use mathematical induction.
Proof: Let Tf denote the number of changes in sign of f on 0,a and Snf the

number of changes in sign in the ordered set of numbers
fa, f1a, . . . , fna.

We prove Tf  Snf for each n byMathematical Induction as follows. Note that
Snf  n.
As n  1, if S1f  0, then there is nothing to prove it. If S1f  1, it means that

faf1a  0. Without loss of generality, we may assume that fa  0, so f1a  0
which implies that

0  f1a  1
0! 0

a
ftdt

which implies that there exists a point y  0,a such that fy  0. Hence, Tf  S1f
holds for any continuous functions defined on 0,a.
Assume that n  k holds for any continuous functions defined on 0,a, As n  k  1, .

we consider the ordered set of numbers
fa, f1a, . . . , fka, fk1a.

Note that
fn1a  f1na for all n  N,

so by induction hypothesis,
Tf1  Skf1

Suppose Skf1  p, and f10  0, then f1  f at least has p zeros by Rolle’s
Theorem. Hence,

Tf  Tf1  Skf1  p     *
We consider two cases as follows.
(i) faf1a  0 :With help of (*),

Tf  Skf1  Sk1f.



(ii) faf1a  0 :Claim that
Tf  Skf1  p

as follows. Suppose NOT, it means that Tf  Tf1  p by (*). Say
fa1  fa2 . . . fap  0, where 0  a1  a2 . . . ap  1.

and
f1b1  f1b2 . . . f1bp  0, where 0  b1  b2 . . . bp  1.

By faf1a  0, we know that
fxf1x  0 where x  0,c, c  mina1,b1

which is impossible since
fxf1x  fxf1x  f10 by f10  0

 fxf1 y, where y  0,x  0,c
 fxfy
 0 since fx and fy both positive or negative.

So, we obtain that Tf  Skf1  p. That is, Tf  Skf1  1  Sk1f.
From above results, we have proved it byMathmatical Induction.
(c) Use (b) to prove the following theorem of Feje’r: The number of changes in sign of

f in 0,a is not less than the number of changes in sign in the ordered set

f0,
0

a
ftdt,

0

a
tftdt, . . . ,

0

a
tnftdt.

Proof: Let gx  fa  x, then, define g0x  gx, and for n  0,1, 2, . . . ,

gn1a  1
n! 0

a
a  tngtdt

 1
n! 0

a
unfudu by change of variable (u  a  t).

So, by (b), the number of changes in sign of g in 0,a is not less than the number of
changes in sign in the ordered set

ga,g1a, . . . ,gn1a.
That is, the number of changes in sign of g in 0,a is not less than the number of changes
in sign in the ordered set

f0,
0

a
ftdt,

0

a
tftdt, . . . ,

0

a
tnftdt.

Note that the number of changes in sign of g in 0,a equals the number of changes in
sign of f in 0,a, so we have proved the Feje’r Theorem.

7.24 Let f be a positive continuous function in a,b. Let M denote the maximum
value of f on a,b. Show that

limn a
b
fxndx

1/n

 M.

Proof: Since f is a positive continuous function in a,b, there exists a point c  a,b
such that fc  M  supxa,b fx  0. Then given M   0, there is a   0 such
that as x  Bc,  a,b : I, we have

0 M    fx  M  .
Hence, we have



|I|1/nM    
I
fnxdx

1/n
 

a

b
fxndx

1/n

 b  a1/nM

which implies that

M    limn inf a
b
fxndx

1/n

 M.

So, limn inf a
b
fxndx

1/n
 M since  is arbitrary. Similarly, we can show that

limn sup a
b
fxndx

1/n
 M. So, we have proved that limn a

b
fxndx

1/n
 M.

Remark: There is good exercise; we write it as a reference. Let fx and gx are
continuous and non-negative function defined on a,b. Then

limn a
b
fxngxdx

1/n

 max
xa,b

fx.

Since the proof is similar, we omit it. (The reader may let x  
a

x
gtdt).

7.25 A function f of two real variables is defined for each point x,y in the unit square
0  x  1, 0  y  1 as follows:

fx,y 
1 if x is rational,
2y if x is irrational.

(a) Compute 
0

1
fx,ydx and 

0_

1
fx,ydx in terms of y.

Proof: Consider two cases for upper and lower Riemann-Stieltjes integrals as
follows.
(i) As y  0,1/2 : Given any partition P  x0  0, . . . ,xn  1, we have

sup
xxj1,xj 

fx,y  1, and inf
xxj1,xj 

fx,y  2y.

Hence, 
0

1
fx,ydx  1, and 

0_

1
fx,ydx  2y.

(ii) As y  1/2, 1 : Given any partition P  x0  0, . . . ,xn  1, we have
sup

xxj1,xj 
fx,y  2y, and inf

xxj1,xj 
fx,y  1.

Hence, 
0

1
fx,ydx  2y, and 

0_

1
fx,ydx  1.

(b) Show that 
0

1
fx,ydy exists for each fixed x and compute 

0

t
fx,ydy in terms of x

and t for 0  x  1, 0  t  1.
Proof: If x  Q  0,1, then fx,y  1. And if x  Qc  0,1, then fx,y  2y. So,

for each fixed x, we have


0

1
fx,ydy  

0

1
1dy  1 if x  Q  0,1

and


0

1
fx,ydy  

0

1
2ydy  1 if x  Qc  0,1.

In addition,


0

t
fx,ydy  

0

t
1dy  t if x  Q  0,1



and


0

t
fx,ydy  

0

t
2ydy  t2 if x  Qc  0,1.

(c) Let Fx  
0

1
fx,ydy. Show that 

0

1
Fxdx exists and find its value.

Proof: By (b), we have
Fx  1 on 0,1.

So, 
0

1
Fxdx exists and


0

1
Fxdx  1.

7.26 Let f be defined on 0,1 as follows: f0  0; if 2n1  x  2n, then
fx  2n for n  0,1, 2, . . .

(a) Give two reasons why 
0

1
fxdx exists.

Proof: (i) fx is monotonic decreasing on 0,1. (ii) x : f is discontinuous at x has
measure zero.
Remark: We compute the value of the integral as follows.
Solution: Consider the interval In  2n, 1 where n  N, then we have f  R on In for

each n, and


2n

1
fxdx 

k1

n


2k

2k1

fxdx


k1

n

2k1 
2k

2k1

dx


k1

n

2k12k

 2
1
4 1   14 

n

1  1
4

 2
3 1  1

4
n

 2
3 as n  .

So, th integral 
0

1
fxdx  2

3 .

Note: In the remark, we use the following fact. If f  R on a,b, then


a

b
fxdx  limn an

b
fxdx

where an is a sequence with an  a, and an  a for all n.
Proof: Since an  a, given   0, there is a positive integer N such that as n  N, we

have
|an  a|  /M, where M  sup

xa,b
|fx|

So,




a

b
fxdx  

an

b
fxdx  

a

an
fxdx

 M|an  a|
 .

That is, 
a

b
fxdx  limn an

b
fxdx.

(b) Let Fx  
0

x
ftdt. Show that for 0  x  1 we have

Fx  xAx  13 Ax
2,

where Ax  2logx/ log2 and where y is the greatest integer in y.

Proof: First, we note that Fx  
0

1
ftdt  

x

1
ftdt  2

3  x
1
ftdt. So, it suffices to

consider the value of the integral


x

1
ftdt.

Given any x  0,1, then there exists a positive N such that 2N1  x  2N. So,


x

1
ftdt  

2N

1
ftdt  

x

2N

ftdt

 2
3 1  1

4
N

 2N2N  x by Remark in (a)

 2
3  13

1
4

N
 1

2
N
x.

So,

Fx  1
2

N
x  13

1
4

N

 2Nx  13 2
2N

 xAx  13 Ax
2

where Ax  2N. Note that 2N1  x  2N, we have
N  log1/2x , where y is the Gauss symbol.

Hence,
Ax  2logx/ log2.

Remark: (1) The reader should give it a try to show it directly by considering 0,x,
where 0  x  1.
(2) Here is a good exercise. We write it as a reference. Suppose that f is defined on

0,1 by the following

fx 
1
2n if x 

j
2n where j is an odd integer and 0  j  2n, n  1,2, . . . ,

0 otherwise.

Show that f  R on 0,1 and has the value of the integral 0.
Proof: In order to show this, we consider the Riemann’s condition with respect to

x  x as follows. Given a partition
P  x0  0  0

2n ,x1 
1
2n ,x2 

2
2n , . . . ,xj 

j
2n , . . . ,x2n 

2n
2n  1 , then the upper

sum



UP, f 
k1

2n

Mkxk

 1
2n 

k1

2n

Mk

 1
2n

2
2n  n  1  0 as n  .

So, f satisfies the Riemann’s condition on 0,1.
Note: (1) The reader should give it a try to show that the set of discontinuities of f has

measure zero. Thus by Theorem 7.48 (Lebesgue’s Criterion for Riemann Integral), we
know that f  R on 0,1. In addition, by the fact, the lower Riemann integral equals the
Riemann integral, we know that its integral is zero.
(2) For the existence of Riemann integral, we summarize to be the theorem: Let f be a

bounded function on a,b. Then the following statements are equivalent:
(i) f  R on a,b.
(ii) f satisfies Riemann’s condition on a,b.
(iii) 

a

b
fxdx  

a

b
fxdx

(iv) the set of discontinuities of f on I has measure zero.
P.S.: The reader should see the textbook, pp 391; we have the general discussion.

7.27 Assume f has a derivative which is monotonic decreasing and satisfies
fx  m  0 for all x in a,b. Prove that


a

b
cos fxdx  2

m .

Hint: Multiply and divide the integrand by fx and use Theorem 7.37(ii).
Proof: Since fx  m  0, and 1

f is monotonic increasing on a,b, we consider


a

b
cos fxdx  

a

b cos fx
fx fxdx

 1
fb c

b
cos fxfxdx, by Theorem 7.37(ii)

 1
fb fc

fb
cosudu, by Change of Variable

 sin fb  sin fc
fb

which implies that


a

b
cos fxdx  2

m .

7.28 Given a decreasing seq uence of real numbers Gn such that Gn  0 as
n  . Define a function f on 0,1 in terms of Gn as follows: f0  1; if x is
irrational, then fx  0; if x is rational m/n (in lowest terms), then fm/n  Gn.
Compute the oscillation fx at each x in 0,1 and show that f  R on 0,1.

Proof: Let x0  Qc  0,1. Since limnGn  0, given   0, there exists a
positive integer K such that as n  K, we have |Gn|  . So, there exists a finite number



of positive integers n such that Gn  . Denote S  x : |fx|  , then #S  .
Choose a   0 such that x0  ,x0   0,1 does NOT contain all points of S. Note
that fx0  0. Hence, we know that f is continuous at x0. That is, fx  0 for all
x  Qc  0,1.
Let x0  0, then it is clear that f0  1 f0  0. So, f is not continuous at

0. Q  0,1.
Let x0  Q  0,1, say x0  M

N (in lowest terms). Since Gn is monotonic
decreasing, there exists a finite number of positive integers n such that Gn  GN.
Denote T  x : |fx|  GN, then #T  . Choose a   0 such that
x0  ,x0    0,1 does NOT contain all points of T. Let h  0,, then

supfx  fy : x,y  x0  h,x0  h  0,1  fx0  GN.
So, fx0  GN. That is, fx  fx for all x  Q  0,1.

Remark: (1) If we have proved f is continuous on Qc  0,1, then f is automatically
Riemann integrable on 0,1 since D Q  0,1  Q, the set of discontinuities of f has
measure zero.
(2) Here is a good exercise. We write it as a reference. Given a function f defined on

a,b, then the set of continuities of f on a,b is G set.
Proof: Let C denote the set of continuities of f on a,b, then

C  x : fx  0
 k1 x : fx  1/k

and x : fx  1/k is open. We know that C is a G set.

Note: (i) We call S a G set if S  n1 On, where On is open for each n.
(ii) Given y  x  a,b : fx  1/k : I, then fy  1/k. Hence, there exists a

d  0, such that
fBy,d  1/k, where By,d  a,b

For z  By,d, consider a smaller  so that Bz,  By,d. Hence,
fBz,  1/k

which implies that
fz  1/k.

Hence, By,d  I. That is, y is an interior point of I. That is, I is open since every point
of I is interior.

7.29 Let f be defined as in Exercise 7.28 with Gn  1/n. Let gx  1 if
0  x  1, g0  0. Show that the composite function h defined by hx  gfx is not
Riemann-integrable on 0,1, although both f  R and g  R on 0,1.
Proof: By Exercise 7.28, we know that

hx 
0 if x  Qc  0,1
1 if x  Q  0,1

which is discontinuous everywhere on 0,1. Hence, the function h (Dirichlet Function) is
not Riemann-integrable on 0,1.
7.30 Use Lebesgue’s theorem to prove Theorem 7.49.
(a) If f is of bounded variation on a,b, then f  R on a,b.



Proof: Since f is of bounded variation on a,b, by Theorem 6.13 (Jordan Theorem),
f  f1  f2, where f1 and f2 are increasing on a,b. Let Di denote the set of discontinuities
of fi on a,b, i  1,2. Hence, D, the set of discontinuities of f on a,b is

D  D1  D2.
Since |D1 |  |D2 |  0, we know that |D|  0. In addition, f is of bounded on a,b since f
is bounded variation on a,b. So, by Theorem 7.48, f  R on a,b.
(b) If f  R on a,b, then f  R on c,d for every subinterval c,d  a,b, |f|  R

and f2  R on a,b. Also, f  g  R on a,b whenever g  R on a,b.
Proof: (i) Let Da,b and Dc,d denote the set of discontinuities of f on a,b and c,d,

respectively. Then
Dc,d  Da,b.

Since f  R on a,b, and use Theorem 7.48, |Da,b |  0 which implies that |Dc,d |  0.
In addition, since f is bounded on a,b, f is automatically is bounded on c,d for every
compact subinterval c,d. So, by Theorem 7.48, f  R on c,d.
(ii) Let Df and D |f| denote the set of discontinuities of f and |f| on a,b, respectively,

then
D |f|  Df.

Since f  R on a,b, and use Theorem 7.48, |Df |  0 which implies that |D |f| |  0. In
addition, since f is bounded on a,b, it is clear that |f| is bounded on a,b. So, by
Theorem 7.48, |f|  R on a,b.
(iii) Let Df and Df2 denote the set of discontinuities of f and f2 on a,b, respectively,

then
Df2  Df.

Since f  R on a,b, and use Theorem 7.48, |Df |  0 which implies that Df2  0. In
addition, since f is bounded on a,b, it is clear that f2 is bounded on a,b. So, by
Theorem 7.48, f2  R on a,b.
(iv) Let Df and Dg denote the set of discontinuities of f and g on a,b, respectively.

Let Dfg denote the set of discontinuities of fg on a,b, then
Dfg  Df  Dg

Since f,g  R on a,b, and use Theorem 7.48, |Df |  |Dg |  0 which implies that
|Dfg |  0. In addition, since f and g are bounded on a,b, it is clear that fg is bounded on
a,b. So, by Theorem 7.48, fg  R on a,b.
(c) If f  R and g  R on a,b, then f/g  R on a,b whenever g is bounded away

from 0.
Proof: Let Df and Dg denote the set of discontinuities of f and g on a,b, respectively.

Since g is bounded away from 0, we know that f/g is well-defined and f/g is also bounded
on a,b. Consider Df/g, the set of discontinuities of f/g on a,b is

Df/g  Df  Dg.
Since f  R and g  R on a,b, by Theorem 7.48, |Df |  |Dg |  0 which implies that
|Df/g |  0. Since f/g is bounded on a,b with |Df/g |  0, f/g  R on a,b by Theorem
7.48.
Remark: The condition that the function g is bounded away from 0 CANNOT omit.

For example, say gx  x on 0,1 and g0  1. Then it is clear that g  R on 0,1, but



1/g  R on 0,1. In addition, the reader should note that when we ask whether a function
is Riemann-integrable or not, we always assume that f is BOUNDED on a COMPACT
INTERVAL a,b.
(d) If f and g are bounded functions having the same discontinuities on a,b, then

f  R on a,b if, and only if, g  R on a,b.
Proof: () Suppose that f  R on a,b, then Df, the set of discontinuities of f on a,b

has measure zero by Theorem 7.48. From hypothesis, Df  Dg, the set of discontinuities
of g on a,b, we know that g  R on a,b by Theorem 7.48.
() If we change the roles of f and g, we have proved it.

(e) Let g  R on a,b and assume that m  gx  M for all x  a,b. If f is
continuous on m,M, the composite function h defined by hx  fgx is
Riemann-integrable on a,b.
Proof: Note that h is bounded on a,b. Let Dh and Dg denote the set of dsicontinuities

of h and g on a,b, respectively. Then
Dh  Dg.

Since g  R on a,b, then |Dg |  0 by Theorem 7.48. Hence, |Dh |  0 which implies that
h  R on a,b by Theorem 7.48.
Remark: (1) There has a more general theorem related with Riemann-Stieltjes

Integral. We write it as a reference.
(Theorem)Suppose g  R on a,b, m  gx  M for all x  a,b. If f is

continuous on m,M, the composite function h defined by hx  fgx  R on
a,b.
Proof: It suffices to consider the case that  is increasing on a,b. If a  b,

there is nothing to prove it. So, we assume that a  b. In addition, let
K  supxa,b|hx|. We claim that h satisfies Riemann condition with respect to  on
a,b. That is, given   0, we want to find a partition P such that

UP,h,  LP,h, 
k1

n

Mkh  mkhk  .

Since f is uniformly continuous on m,M, for this   0, there is a 
2K1    0 such

that as |x  y|   where x,y  m,M, we have
|fx  fy|  

2b  a .     1

Since g  R on a,b, for this   0, there exists a partition P such that

UP,g,  LP,g, 
k1

n

Mkg  mkgk  2.     2

Let P  A  B, where A  xj : Mkg  mkg   and
B  xj : Mkg  mkg  , then


B
k  

B
Mkh  mkhk  2 by (2)

which implies that


B
k  .



So, we have
UA,h,  LA,h,  

A
Mkh  mkhk

 /2 by (1)
and

UB,h,  LB,h,  
B
Mkh  mkhk

 2K
B
k

 2K
 /2.

It implies that
UP,h,  LP,h,  UA,h,  LA,h,  UB,h,  LB,h,

 .
That is, we have proved that h satisfies the Riemann condition with respect to  on a,b.
So, h  R on a,b.
Note: We mention that if we change the roles of f and g, then the conclusion does

NOT hold. Since the counterexample is constructed by some conclusions that we will learn
in Real Analysis, we do NOT give it a proof. Let C be the standard Cantor set in 0,1 and
C the Cantor set with positive measure in 0,1. Use similar method on defining Cantor
Lebesgue Function, then there is a continuous function f : 0,1  0,1 such that
fC  C. And Choose g  XC on 0,1. Then

h  g  f  XC
which is NOT Riemann integrable on 0,1.
(2) The reader should note the followings. Since these proofs use the exercise 7.30 and

Theorem 7.49, we omit it.
(i) If f  R on a,b, then |f|  R on a,b, and fr  R on a,b, where r  0,.
(ii) If |f|  R on a,b, it does NOT implies f  R on a,b. And if f2  R on a,b, it

does NOT implies f  R on a,b. For example,

f  1 if x  Q  a,b
1  Qc  a,b

(iii) If f3  R on a,b, then f  R on a,b.
7.31 Use Lebesgue’s theorem to prove that if f  R and g  R on a,b and if

fx  m  0 for all x in a,b, then the function h defined by
hx  fxgx

is Riemann-integrable on a,b.
Proof: Consider

hx  exph log f,
then by Theorem 7.49,

f  R  log f  R  h log f  R  exph log f  h  R.

7.32 Let I  0,1 and let A1  I   13 ,
2
3  be the subset of I obtained by removing



those points which lie in the open middle third of I; that is, A1  0, 13   
2
3 , 1. Let A2

be the subset of A1 obtained by removing he open middle third of 0, 13  and of 
2
3 , 1.

Continue this process and define A3,A4, . . . . The set C  n1 An is called the Cantor set.
Prove that
(a) C is compact set having measure zero.
Proof: Write C  n1 An. Note that every An is closed, so C is closed. Since A1 

is closed and bounded, A1 is compact and C  A1, we know that C is compact by
Theorem 3.39.
In addition, it is clear that |An |   23 

n for each n. Hence, |C|  limn|An |  0, which
implies that C has a measure zero.
(b) x  C if, and only if, x  n1

 an3n, where each an is either 0 or 2.

Proof: ()Let x  C  n1 An, then x  An for all n. Consider the followings.
(i) Since x  A1  0, 13   

2
3 , 1, then it implies that a1  0 or 2.

(ii) Since x  A2  0, 19   
2
9 ,

3
9   

6
9 ,

7
9   

8
9 ,

9
9 , then it implies that a2  0

or 2.
Inductively, we have an  0 or 2. So, x  n1

 an3n, where each an is either 0 or 2.
() If x  n1

 an3n, where each an is either 0 or 2, then it is clear that x  An for
each n. Hence, x  C.
(c) C is uncountable.
Proof: Suppose that C is countable, write C  x1,x2, . . . . We consider unique ternary

expansion: if x  n1
 an3n, then x : a1, . . . ,an, . . . . From this definition, by (b), we

have
xk  xk1,xk2, . . .xkk,. . .  where each component is 0 or 2.

Choose y  y1,y2, . . .  where

yj 
2 if xjj  0
0 if xjj  2.

By (b), y  C. It implies that y  xk for some k which contradicts to the choice of y.
Hence, C is uncountable.
Remark: (1) In fact, C  C means that C is a perfect set. Hence, C is uncountable.

The reader can see the book, Principles of Mathematical Analysis by Walter Rudin, pp
41-42.
(2) Let C  x : x  n1

 an3n, where each an is either 0 or 2 . Define a new
function  : C  0,1 by

x 
n1


an/2
2n ,

then it is clear that  is 1-1 and onto. So, C is equivalent to 0,1. That is, C is
uncountable.
(d) Let fx  1 if x  C, fx  0 if x  C. Prove that f  R on 0,1.
Proof: In order to show that f  R on 0,1, it suffices to show that, by Theorem 7.48,

f is continuous on 0,1  C since it implies that D  C, where D is the set of
discontinuities of f on 0,1.
Let x0  0,1  C, and note that C  C, so there is a   0 such that



x0  ,x0    C  , where x0  ,x0    0,1. Then given   0, there is a
  0 such that as x  x0  ,x0  , we have

|fx  fx0|  0  .

Remark: (1) C  C :Given x  C  n1 An, and note that every endpoints of An
belong to C. So, x is an accumulation point of the set y : y is the endpoints of An . So,
C  C. In addition, C  C since C is closed. Hence, C  C.
(2) In fact, we have

f is continuous on 0,1  C and f is not continuous on C.

Proof: In (d), we have proved that f is continuous on 0,1  C, so it remains to show
that f is not continuous on C. Let x0  C, if f is continuous at x0, then given   1/2, there
is a   0 such that as x  x0  ,x0    0,1, we have

|fx  fx0|  1/2
which is absurb since we can choose y  x0  ,x0    0,1 and y  C by the fact C
does NOT contain an open interval since C has measure zero. So, we have proved that f is
not continuous on C.
Note: In a metric space M, a set S M is called nonwhere dense if intclS  .

Hence, we know that C is a nonwhere dense set.
Supplement on Cantor set.

From the exercise 7.32, we have learned what the Cantor set is. We write some
conclusions as a reference.
(1) The Cantor set C is compact and perfect.
(2) The Cantor set C is uncountable. In fact, #C  #R.
(3) The Cantor set C has measure zero.
(4) The Cantor set C is nonwhere dense.
(5) Every point x in C can be expressed as x  n1

 an3n, where each an is either 0 or
2.
(6) XC : 0,1  0,1 the characteristic function of C on 0,1 is Riemann integrable.
The reader should be noted that Cantor set C in the exercise is 1 dimensional case. We

can use the same method to construct a n dimensional Cantor set in the set
x1, . . . ,xn : 0  xj  1, j  1,2, . .n. In addition, there are many researches on Cantor
set. For example, we will learn so called Space-Filling Curve on the textbook, Ch9, pp
224-225.
In addition, there is an important function called Cantor-Lebesgue Function related

with Cantor set. The reader can see the book,Measure and Integral (An Introduction to
Real Analysis) written by Richard L. Wheeden and Antoni Zygmund, pp 35.

7.33 The exercise outlines a proof (due to Ivan Niven) that 2 is irrational. Let
fx  xn1  xn/n!. Prove that:
(a) 0  fx  1/n! if 0  x  1.
Proof: It is clear.
(b) Each kth derivative fk0 and fk1 is an integer.
Proof: By Leibnitz Rule,



fkx  1
n! 

j0

k

jkn   n  j  1xnj 1kjn   n  k  j  11  xnkj

which implies that

fk0 
0 if k  n
1 if k  n

nk 1knn   2n  k  1 if k  n
.

So, fk0  Z for each k  N. Similarly, fk1  Z for each k  Z.
Now assume that 2  a/b, where a and b are positive integers, and let

Fx  bn
k0

n

1kf2kx2n2k.

Prove that:
(c) F0 and F1 are integers.
Proof: By (b), it is clear.
(d) 2anfx sinx  d

dx F
x sinx  Fxcosx

Proof: Note that

Fx  2Fx  bn
k0

n

1kf2k2x2n2k  2bn
k0

n

1kf2kx2n2k

 bn
k0

n1

1kf2k2x2n2k  bn1nf2n2x

 2bn
k1

n

1kf2kx2n2k  2bnfx2n

 bn
k0

n1

1kf2k2x2n2k  1k1f2k2x2n2k

 bn1nf2n2x  2bnfx2n

 2anfx since f is a polynomial of degree 2n.
So,

d
dx F

x sinx  Fxcosx

 sinxFx  2Fx
 2anfx sinx.

(e) F1  F0  an 
0

1
fx sinxdx.

Proof: By (d), we have

2an 
0

1
fx sinxdx  Fx sinx  Fxcosx|0

1

 F1 sin  F1cos  F0 sin0  F0cos0
 F1  F0

which implies that



F1  F0  an 
0

1
fx sinxdx.

(f) Use (a) in (e) to deduce that 0  F1  F0  1 if n is sufficiently large. This
contradicts (c) and show that 2 (and hence ) is irrational.
Proof: By (a), and sinx  0,1 on 0,, we have

0  an 
0

1
fx sinxdx  an

n! 0
1
sinxdx  2an

n!  0 as n  .

So, as n is sufficiently large, we have, by (d),
0  F1  F0  1

which contradicts (c). So, we have proved that 2 (and hence ) is irrational.
Remark: The reader should know that  is a transcendental number. (Also, so is e). It

is well-known that a transcendental number must be an irrational number.
In 1900, David Hilbert asked 23 problems, the 7th problem is that, if  0,1 is an

algebraic number and  is an algebraic number but not rational, then is it true that  is a
transcendental number. The problem is completely solved by Israil Moiseevic Gelfand in
1934. There are many open problem now on algebraic and transcendental numbers. For
example, It is an open problem: Is the Euler Constant

  lim 1  12 . . . 1n  logn

a transcendental number.
7.34 Given a real-valued function , continuous on the interval a,b and having a

finite bounded derivative  on a,b. Let f be defined and bounded on a,b and assume
that both integrals


a

b
fxdx and 

a

b
fxxdx

exists. Prove that these integrals are equal. (It is not assumed that  is continuous.)
Proof: Since both integrals exist, given   0, there exists a partition

P  x0  a, . . . ,xn  b such that

SP, f,  
a

b
fxdx  /2

where

SP, f, 
j1

n

ftjj for tj  xj1,xj


j1

n

ftjsjxj by Mean Value Theorem, where sj  xj1,xj     *

and

SP, f  
a

b
fxxdx  /2

where

SP, f 
j1

n

ftjtjxj for tj  xj1,xj     **

So, let tj  sj, then we have



SP, f,  SP, f.
Hence,


a

b
fxdx  

a

b
fxxdx

 SP, f,  
a

b
fxdx  SP, f  

a

b
fxxdx

 .
So, we have proved that both integrals are equal.

7.35 Prove the following theorem, which implies that a function with a positive
integral must itself be positive on some interval. Assume that f  R on a,b and that
0  fx  M on a,b, where M  0. Let I  

a

b
fxdx, let h  1

2 I/M  b  a, and
assume that I  0. Then the set T  x : fx  h contains a finite number of intervals,
the sum of whose lengths is at least h.
Hint. Let P be a partition of a,b such that every Riemann sum SP, f  k1

n ftkxk
satisfies SP, f  I/2. Split SP, f into two parts, SP, f  kA kB, where

A  k : xk1,xk  T, and B  k : k  A.
If k  A, use the inequality ftk  M; if k  B, choose tk so that ftk  h. Deduce that
kA xk  h.

Proof: It is clear by Hint, so we omit the proof.
Remark: There is another proof about that a function with a positive integral must

itself be positive on some interval.
Proof: Suppose NOT, it means that in every subinterval, there is a point p such that

fp  0. So,

LP, f 
j1

n

mjxj  0 since mj  0

for any partition P. Then it implies that

sup
P
LP, f  

a

b
fxdx  0

which contradicts to a function with a positive integral. Hence, we have proved that a
function with a positive integral must itself be positive on some interval.

Supplement on integration of vector-valued functions.
(Definition) Given f1, . . . , fn real valued functions defined on a,b, and let

f  f1, . . . , fn : a,b  Rn. If   on a,b. We say that f  R on a,b means that
fj  R on a,b for j  1,2, . . . ,n. If this is the case, we define


a

b
fd  

a

b
f1d, . . . ,

a

b
fnd .

From the definition, the reader should find that the definition is NOT stranger for us. When
we talk f  f1, . . . , fn  R on a,b, it suffices to consider each fj  R on a,b for
j  1,2, . . . ,n.
For example, if f  R on a,b where   on a,b, then f  R on a,b.
Proof: Since f  R on a,b, we know that fj  R on a,b for j  1,2, . . . ,n.

Hence,




k1

n

fj2  R on a,b

which implies that, by Remark (1) in Exercise 7.30,

f  
k1

n

fj2  R on a,b
1/2

 R on a,b.

Remark: In the case above, we have


a

b
fd  

a

b
fd.

Proof: Consider

y2   
a

b
f1d, . . . ,

a

b
fnd,

a

b
f1d, . . . ,

a

b
fnd 


j1

n


a

b
fjd 

a

b
fjd ,

which implies that, (let yj  a
b
fjd, y y1, . . . ,yn),

y2 
j1

n

yj 
a

b
fjd


j1

n


a

b
fjyjd

 
a

b

j1

n

fjyj d

 
a

b
fyd

 y 
a

b
fd

which implies that

y  
a

b
fd.

Note: The equality holds if, and only if, ft  kty.

Existence theorems for integral and differential equations
The following exercises illustrate how the fixed-point theorem for contractions.

(Theorem 4.48) is used to prove existence theorems for solutions of certain integral and
differential equations. We denote by Ca,b the metric space of all real continuous
functions on a,b with the metric

df,g  f  g  max
xa,b

|fx  gx|,

and recall the Ca,b is a complete metric space.
7.36 Given a function g in Ca,b, and a function K is continuous on the rectangle

Q  a,b  a,b, consider the function T defined on Ca,b by the equation

Tx  gx   
a

b
Kx, ttdt,



where  is a given constant.
(a) Prove that T maps Ca,b into itself.
Proof: Since K is continuous on the rectangle Q  a,b  a,b, and x  Ca,b,

we know that


a

b
Kx, ttdt  Ca,b.

Hence, we prove that Tx  Ca,b. That is, T maps Ca,b into itself.

(b) If |Kx,y|  M on Q, where M  0, and if ||  M1b  a1, prove that T is a
contraction of Ca,b and hence has a fixed point  which is a solution of the integral
equation x  gx   

a

b
Kx, ttdt.

Proof: Consider

T1x  T2x   
a

b
Kx, t1t  2tdt

 || 
a

b
|Kx, t1t  2t|dt

 ||M 
a

b
|1t  2t|dt

 ||Mb  a1t  2t.     *
Since ||  M1b  a1, then there exists c such that ||  c  M1b  a1. Hence, by
(*), we know that

T1x  T2x  1t  2t
where 0  cMb  a :   1. So, T is a contraction of Ca,b and hence has a fixed
point  which is a solution of the integral equation x  gx   

a

b
Kx, ttdt.

7.37 Assume f is continuous on a rectangle Q  a  h,a  h  b  k,b  k, where
h  0,k  0.
(a) Let  be a function, continuous on a  h,a  h, such that x,x  Q for all x in

a  h,a  h. If 0  c  h, prove that  satisfies the differential equation y  fx,y on
a  c,a  c and the initial condition a  b if, and only if,  satisfies the integral
equation

x  b  
a

x
ft,tdt on a  c,a  c.

Proof: ()Since t  ft,t on a  c,a  c and a  b, we have,
x  a  c,a  c

x  a  
a

x
tdt

 a  
a

x
ft,tdt on a  c,a  c.

()Assume

x  b  
a

x
ft,tdt on a  c,a  c,

then
x  ft,x on a  c,a  c.

(b) Assume that |fx,y|  M on Q, where M  0, and let c  minh,k/M. Let S



denote the metric subspace of Ca  c,a  c consisting of all  such that |x  b|  Mc
on a  c,a  c. Prove that S is closed subspace of Ca  c,a  c and hence that S is itself
a complete metric space.
Proof: Since Ca  c,a  c is complete, if we can show that S is closed, then S is

complete. Hence, it remains to show that S is closed.
Given f  S, then there exists a sequence of functions fn such that fn  f under the

sup norm . . So, given   0, there exists a positive integer N such that as n  N, we
have

max
xac,ac

|fnx  fx|  .

Consider
|fx  b|  |fx  fNx|  |fNx  b|

 fx  fNx  fNx  b
   Mc

which implies that
|fx  b|  Mc for all x

since  is arbitrary. So, f  S. It means that S is closed.
(c) Prove that the function T defined on S by the equation

Tx  b  
a

x
ft,tdt

maps S into itself.
Proof: Since

|Tx  b|  
a

x
ft,tdt

 
a

x
|ft,t|dt

 x  aM
 Mc

we know that Tx  S. That is, T maps S into itself.
(d) Now assume that f satisfies a Lipschitz condition of the form

|fx,y  fx, z|  A|y  z|
for every pair of points x,y and x, z in Q, where A  0. Prove that T is a contraction of
S if h  1/A. Deduce that for h  1/A the differential equation y  fx,y has exactly one
solution y  x on a  c,a  c such that a  b.
Proof: Note that h  1/A, there exists  such that h    1/A. Since

T1x  T2x

 
a

x
|ft,1t  ft,2t|dt

 A 
a

x
|1t  2t|dt by |fx,y  fx, z|  A|y  z|

 Ax  a1t  2t
 Ah1t  2t
 1t  2t

where 0  A :   1. Hence, T is a contraction of S. It implies that there exists one and



only one   S such that

x  b  
a

x
ft,tdt

which implies that
x  fx,x.

That is, the differential equation y  fx,y has exactly one solution y  x on
a  c,a  c such that a  b.

Supplement on Riemann Integrals
1. The reader should be noted that the metric space Ra,b,d is NOT complete,

where

df,g  
a

b
|fx  gx|dx.

We do NOT give it a proof. The reader can see the book,Measure and Integral (An
Introduction to Real Analysis) by Richard L. Wheeden and Antoni Zygmund, Ch5.
2. The reader may recall theMean Value Theorem: Let f be a continuous function on

a,b. Then


a

b
fxdx  fx0b  a

where x0  a,b. In fact, the point x0 can be chosen to be interior of a,b. That is,
x0  a,b.
Proof: Let M  supxa,b fx, and m  infxa,b fx. If M  m, then it is clear. So, we

may assume that M  m as follows. Suppose NOT, it means that x0  a or b. Note that,
fx1  m  fx0 : r  M  fx2

by continuity of f on a,b. Then we claim that
fx0  m or M.

If NOT, i.e.,
fx1  r  fx2

it means that there exists a point p  x1,x2 such that fp  r by Intermediate Value
Theorem. It contradicts to p  a or b. So, we have proved the claim. If fa  m, then


a

b
fxdx  mb  a  0  

a

b
fx  mdx

which implies that, by fx  m  0 on a,b,
fx  m forall x  a,b.

So, it is impopssible. Similarly for other cases.
Remark: (1) The reader can give it a try to consider the Riemann-Stieltjes Integral as

follows. Let  be a continuous and increasing function on a,b. If f is continuous on
a,b, then


a

b
fxdx  fcb  a

where c  a,b.
Note: We do NOT omit the continuity of  on a,b since



fx  x on 0,1; x 
0 if x  0

1 if x  0,1
.

(2) The reader can see the textbook, exercise 14.13 pp 404.
Exercise: Show that


2  

0

/2 dx
1  1

2 sin
2x

 
2
.

Proof: It is clear by the choice of x0  0,/2.
3. Application on Integration by parts for Riemann-integrable function. It is

well-known that

 fxdx  xfx   xdfx.     *

If fx has the inverse function gy  x, then (*) implies that

 fxdx  xfx   gydy.
For example,

 arcsinxdx  xarcsinx   sinydy.
4. Here is an observation on Series, Differentiation and Integration. We write it as a

table to make the reader think it twice.
Series : Summation by parts Cesaro Sum ?

Differentiation : fg  fg  fg Mean Value Theorem Chain Rule

Integration : Integration by parts Mean Value Theorem Change of Variable .


