The Riemann-Stieltjes Integral
Riemann-Stieltjes integrals
7.1 Prove that _[Z da = a(b) — a(a), directly from Definition 7.1.

Proof: Let f = 1 on [a,b], then given any partition P = {a = xo,...,x, = b}, then we

have
n

S(P,1,a) = Zﬂtk)Aaka where #; € [x4-1,x4]
pa

I
N
>
S

a(b) —a(a).
So, we know that jz da = a(b) — a(a).

7.2 Iffe€ R(a) on [a,b] and if I:fda = 0 for every f which is monotonic on [a, b],
prove that @ must be constant on [a, b].

Proof: Use integration by parts, and thus we have

[/ adr = f®)e) - fyat@)

Given any point ¢ € [a,b), we may choose a monotonic function f defined as follows.
Oifx <c
f= :
lifx > c.

jbadfz a(c) = a(b).

So, we know that « is constant on [a, b].

So, we have

7.3 The following definition of a Riemann-Stieltjes integral is often used in the
literature: We say that f'is integrable with respect to « if there exists a real number A4
having the property that for every ¢ > 0, there exists a 6 > 0 such that for every partition
P of [a,b] with norm ||P|| < & and for every choice of #; in [x;_1,x;], we have
IS(P.fya) — A] < e.

(a) Show that if j: fda exists according to this definition, then it is also exists according

to Definition 7.1 and the two integrals are equal.

Proof: Since refinement will decrease the norm, we know that if there exists a real
number 4 having the property that for every € > 0, there exists a 6 > 0 such that for every
partition P of [a,b] with norm ||P| < & and for every choice of #; in [x;_1,x;], we have
IS(P,f,a) — A| < €. Then choosing a P, with ||P;| < §, then for P € P, = ||P|| < d. So,
we have

IS(P,fya) — A < e.
That is, I fda exists according to this definition, then it is also exists according to
a
Definition 7.1 and the two integrals are equal.



(b) Let f{x) = a(x) = Oforit <x<c flx)=a(x)=1forc <x < b,
fle) = 0,a(c) = 1. Show that f . fda exists according to Definition 7.1 but does not exist
by this second definition.

b
Proof: Note that JZ fda exists and equals 0 according to Definition 7.11f _[a fda exists

according to this definition, then given & = 1, there exists a 6 > 0 such that for every
partition P of [a,b] with norm ||P|| < ¢ and for every choice of #; in [x;_1,x], we have
IS(P,f,a)| < 1. We may choose a partition P = {a = x,...,x, = b} with ||P| < 6 and
¢ € (xj,xj1), wherej = 0,...,n— 1. Then

S(Pof;a) :f(x)[a(xf+1) - a('x])] = 19 where x € (caijrl)
which contradicts to [S(P,f,a)| < 1.

7.4 1f f € R according to Definition 7.1, prove that _[Z f(x)dx also exists according to
definition of Exercise 7.3. [Contrast with Exercise 7.3 (b).]

Hint: Let I = IZj(x)dx, M = sup{|f(x)| : x € [a,b].} Given & > 0, choose P so that
U(P:,f) < I+ ¢/2 (notation of section 7.11). Let N be the number of subdivision points in
P:and let 6 = &/(2MN). If |P| < &, write

UP.f) = D Mi()Axy = S1 + S,
where S is the sum of terms arising from those subintervals of P containing no points of
P and §; is the sum of remaining terms. Then
S1 S UPe,f) <I+¢&/2and S, < NM||P| < NMo = &/2,
and hence U(P;,f) < I+ ¢. Similarly,
L(P.f) > I—¢if |P| < 6' for some ¢'.
Hence [S(P,f) — I| < ¢ if |P|| < min(J,6").

Proof: The hint has proved it.

Remark: There are some exercises related with Riemann integrals, we write thme as
references.

(1) Suppose that /> 0 and f'is continuous on [a,b], and _[ ’ flix)dx = 0. Prove that
fx) = 0 on [a,b]. ’

Proof: Assume that there is a point ¢ € [a,b] such that f{c) > 0. Then by continuity of

f, we know that given ¢ = f(z—c) > 0, thereisa o > O such thatas [x —¢| < 0, x € [a,b], we
have

) ~fie)] < L
which implies that

f% <fix)ifx e (c-0,c+9)NJ[a,b] =1
So, we have

0 < @m < s < | b fx)dx = 0, where 0 < [1], the length of /
which is absurb. Hence, we obtain that f{x) = 0 on [a, b].

(2) Let f'be a continuous function defined on [a, b]. Suppose that for every continuous
function g defined on [a, b] which satisfies that



[ gty = o,

we always have
j " f)g)dx = 0.
Show that fis a constant function on [aa, b].
Proof: Let IZ fx)dx = I, and define g(x) = f(x) — ﬁ, then we have
[ gt = 0,
which implies that, by hypothesis, a
| gy = 0
which implies that '
I:U(x) —¢)g(x)dx = 0 for any real c.

So, we have

b 5 It
j (g(x))?dx = 0 if letting ¢ = L
which implies that g(x) = 0 forall x € [a,b] by (1). That is, f{x) = Ia on [a,b].

b—
(3) Define

0ifx € [0,1]-0Q
h(x) = L if x is the rational number m/n (in lowest terms)
lifx = 0.
Then h € R([0,1]).

Proof: Note that we have shown that /4 is continuous only at irrational numbers on
[0,1] — Q. We use it to show that 4 is Riemann integrable, i.e., # € R([0,1]). Consider the
upper sum U(P,f) as follows.

Given ¢ > 0, there exists finitely many points x such that f{x) > &/2. Consider a
partition P, = {xo = a,...,x, = b} so that its subintervals I; = [x,_;,x;] for some j
containing those points and Y _|I;| < &/2. So, we have

UP.f) = D MAx,
k=1

D)
1 2
<é&2+¢2
=
where Y = > M;l;, and Y, is the sum of others.
So, we have shown that f'satisfies the Riemann condition with respect to a(x) = x.

Note: (1) The reader can show this by Theorem 7.48 (Lebesgue’s Criterion for
Riemann Integrability). Also, compare Exercise 7.32 and Exercise 4.16 with this.

(2) In Theorem 7.19, if we can make sure that there is a partition P, such that



U(P;,f,a) — L(Pe,f,a) < g,
then we automatically have, for any finer P(S P.),
UP.f,a) — L(P,f,a) < &
since the refinement makes U increase and L decrease.

(4) Assume that the function f{x) is differentiable on [a, ], but not a constant and that

fla) = f(b) = 0. Then there exists at least one point & on (a, b) for which
1) > I fx)d.

Proof: Consider supe(,|f' (x)| := M as follows.
(1) If M = +oo, then it is clear.
(i1)) We may assume that M < +oo.

Letx € [a, 4], then

fx) = fix) = fla) =f(y)(x—a) < M(x—a), where y € (a,x).
and let x € [42,p], then

fx) = fix) = f(b) =f(z)(x—b) < M(b—-x), wherez € (x,b).
So, by (*) and (**), we know that

jb foo)dx = j * fydx + | bb o)

a+b

<MI (x— a)dx+Mj (b —x)dx
- (a5

M>—4 (b_a) jf(x)dx

Note that by (*) and (**), the equality does NOT hold since if it was, then we had
f(x) = M on [a,b] which implies that fis a constant function. So, we have

> (b_a) jf(x)dx

By definition of supremum, we know that there exists at least one point & on (a,b) for
which

which implies that

1> Gt [ fooye

(5) Gronwall Lemma: Let f'and g be continuous non-negative function defined on
[a,b], and ¢ > 0. If

fo) e+ | " a(O)f(t)dt for all x € [a,b],
then

oy
fix) < ceIa &0 g’

In particular, as ¢ = 0, we have f = 0 on [a,b].

Proof: Let ¢ > 0 and define

3k



F@) = o+ [ goftoy
then we have
(1). F(a) = c > 0.
(i1). F'(x) = g(x)f(x) > 0 = Fis increasing on [a,b] by Mean Value Theorem
(iii). F(x) > f{x) on [a,b] = F'(x) < g(x)F(x) by (ii).
So, from (ii1), we know that

F(x) < F(a)efag(t)dt _ Cefag(t)dz by (i),

For ¢ = 0, we choose ¢, = 1/n — 0, then by preceding result,

flx) < %eja O Dasn > .
So, we have proved all.
(6) Define

x+1
fx) = f sin(£2)dt.

(a) Prove that |[f{x)| < 1/xifx > 0.

Proof: Let x > 0, then we have, by change of variable(u = %), and integration by
parts,

_ 1 @D* Giny
fix) = > LZ S du

o
_;erfﬂww>
-3 o
(x+1)? )2
_ 1| cosu +I(+l) cosU g,
2 Ju | DY)

_ cos(x?) cos[ (x +1)° ] _J(“l)z cosu
- 20x+ 1) o 4y
which implies that,

2 2
cos(x?) cos[(x+1) :| =D sy
Mol = | =% ‘* 26+ 1) | Lz st M

e 1 1 (x+1)? du
S22 T2+ 1) 4 J 32
1 1 1
T2 T2+ 1) 2Ge+ 1) 2x
= 1/x.

Note: There is another proof by Second Mean Value Theorem to show above as
follows. Since

1% §iny
fx) =~ LZ Wdu by (a),

we know that, by Second Mean Value Theorem,



B l y o 1 (x+1)2 .
fix) = s Ixz sinudu + p I sinudu

+1y

{%[cos(xz) —cosy] + 1 [cosy B COS((X D >:|}
{(-+++5 )COS(V) +eos?) = peos(r+ DY) }

cos((x + 1)2> ‘}

which implies that
1)1 1 cos(x?)
[flx)| < 2{‘ x+—x+1‘|cosy|+‘ s +

x+1

1 1 1 cos xz) COS((.X'+ 1)2>
_7{(7_x+1>+ ‘ x+1

1 1 1 1 1
<7{(7_x+1>+7+x+1

since no x makes |cos(x?)| = |cos<(x+ 1)2>| =1

= 1/x.

(b) Prove that 2xf{(x) = cos(x?) — cos[(x + 1)2] + r(x), where |[r(x)] < ¢/xand cisa
constant.
Proof: By (a), we have

fx) = 08 xz) COS[(’HUZ] _j(x” cosu g,
2(+ 1) 432

which implies that

cos[(x+1) ]+xj(+1) cosu g,

2xf(x) = cos(x?) — L

+1)2

] cos[ (x + 1)2] +xj.(z ;02/”2‘ du

= cos(x?) — cos|:(x+ 1)2] + x—}-

where

(x+1
rx) = —1 ] cos[ (x+1)*] + %I i LOSU iy

132
which implies that

x+1)2

X+ e

+ % J' u32dy

1+x+1

<

X
2
<X

Note: Of course, we can use the note in (a) to show it. We write it as follows.

Proof: Since

flx) = %{(—% + ] )cos(y) + ¢ cos(x?) — cos((x+ 1) )}
which implies that




2xf(x) = ( X l)cos(y) + cos(x?) — —X cos((x+ 1)2>

x+1 x+1
_ 2y _ 2 1 2 X _
= cos(x?) cos((x+l) >+ T cos((x—i—l) >+(x+1 l>cos(y)
where
_ 1 2 X _
r(x) = T cos((x+1) >+(x+1 1>cos(y)
which implies that
1 X
el = x+1 +1 x+1
__2
x+1
< 2/x.

(c) Find the upper and lower limits of xf(x), as x - .

Proof: Claim that lim supy-. cos(x?) — cos((x + 1)2> = 2 as follows. Taking
x = ny2n, where n € Z, then

cos(x?) — cos((x+ 1)2> = —cos(nm + 1).
If we can show that {nm } is dense in [0,27] modulus 27z. It is equivalent to show that
{n‘/;} is dense in [0, 1] modulus 1. So, by lemma {ar : a € Z}, where r € Q¢ is dense
in [0, 1] modulus 1, we have proved the claim. In other words, we have proved the claim.

Note: We use the lemma as follows. {ar+ b : a € Z,b € Z}, where r € Q¢ is dense in
R. Tt is equivalent to {ar : a € Z}, where r € Q¢ is dense in [0, 1] modulus 1.

Proof: Say {ar+b : a € Z,b € Z; = S, and since r € Q°¢, then by Exercise 1.16,

there are infinitely many rational numbers A/k with k > 0 such that |kr — h| < 4-. Consider

(x—0,x+0) = I, where 6 > 0, and thus choosing k, large enough so that 1/ky < 6.
Define L = |kor — ho|, then we have sL € [ for some s € Z. So,
sL = (£)[(sko)r — (shy)] € S. That is, we have proved that S is dense in R.

(d) Does _[ :, sin(#?)dt converge?

Proof: Yes,
IX/ sin’tdt| = ‘% j:/ Si%du by the process of (a)
— ‘% |: % J g sinudu + L/ J i sin ua’u:| ‘ by Second Mean Value Theorem
x x"Jy
SIERS

which implies that the integral exists.

Note: (i) We can show it without Second Mean Value Theorem by the method of (a).
However Second Mean Value Theorem is more powerful for this exercise.

(i1) Here is the famous Integral named Dirichlet Integral used widely in the STUDY
of Fourier Series. We write it as follows. Show that the Dirichlet Integral

* sinx
IO Sxod



converges but not absolutely converges. In other words, the Dirichlet Integral converges
conditionally.

Proof: Consider

!

x . y x
j SIX gy = % I sinxdx + L I sinxdx by Second Mean Value Theorem;
x X X Jy

we have

x .
sinx 2.2 _4
L o dx §x+x,<x.

So, we know that Dirichlet Integral converges.
Define I, = [4 + 2nr, 5 + 2nr], then

o0 . .
sinx > sinx
j() | X dx - .[1 | X |dx
n

So, we know that Dirichlet Integral does NOT converges absolutely.
(7) Deal similarity with

fo) = | ! sin(edt.
Show that
e*|flx)| < 2
and that
e*f(x) = cos(e¥) — e ! cos(e*!) + r(x),
where |r(x)| < min(1,Ce™), for all x and

Proof: Since

x+1
fx) = j sin(e")dt

- j ) SINU g, by Change of Variable (let u = )

extl

X x+1 .
— Lose _ cose J. COSU 7y, by Integration by parts
e ex+1 o uZ

which implies that
cose*
Mo < | <05

< dv e (1-1)

which implies that

cos e*'! " du -
+ L2 since cosu 1S not constant 1
ex+1 o u2

e*[fx)] < 2.
In addition, by (*), we have
e*f(x) = cos(e*) — e~ cos(e™!) + r(x),

where



extl

r(x) = —exJ. Y Cz#du
o

which implies that

r(x)| = 1—e! < 1forall x o
or which implies that, by Integration by parts,
ex+1
r(x)| = e I Losu g,
)] = ef| [ <08
xX+1
_ x| sine*! _ sine* ¢ sinu
= e* e +2J'ex 3 du

ex+l

< ex 1 + 1 +2 du since sinu is not constant 1
220r+1) o2 Ul
e

= 2¢7 for all x. ko

By (**) and (***), we have proved that |r(x)| < min(1, Ce™) for all x, where C = 2.
Note: We give another proof on (7) by Second Mean Value Theorem as follows.

Proof: Since

ex+1 .
fx) = j SIBU gy
e.x

extl

y
= % I sinudu + ex1+1 j sinudu by Second Mean Value Theorem
e* v

1

ext 1

= %(cos e —cosy) + (cosy — cose*!) *

which implies that
e*[f{x)| = |cose* —cosy + e~ (cosy — cose )|

= |(cose* — e lcose*!) + cosy(l —e™!)|

< |cose® —elcose |+ (1 —e!)

< (1+e)+ (1 —e)since no x makes |cose*| = |cose*!| = 1.

= 2.
In addition, by (*), we know that

e*f(x) = cose* — e~ cose ! + r(x)
where
r(x) = (e"'cosy — cosy)
which implies that
r(x)| < 1—-e7! < 1 forallx. o

In addition, from the proof of the process in (7), we know that



extl

J' cosu g,
eX

ol = | <

xX+1

1L (7 1 ¢
5 I cosudu + o J cosudu
e Jox e2(x+1) ¥

X

= e~¥[siny — sine* + e~2(sine**! — siny)|

e~|siny(1 —e2) + (e ?sine*! — sine¥)|
< e¥(l —e?) +e*|e?sine™!| + e*[sine*|
< e*(l —e?)+e (1 +e?) since no x makes [sine*!| = [sine*| = 1
= 2e™ for all x.

So, by (**) and (***), we have proved that |r(x)| < min(1, Ce™), where C = 2.

(8) Suppose that fis real, continuously differentiable function on [a, b],

fla) = f(b) =0, and
bez(x)dx = 1.

Prove that

b
| 3fl)f (o = -
and that

j:[f(x)]zdx . jzxZﬁ(x)dx >4

Proof: Consider

b b
j 3fl) (x)ds = j 3fle)df)
~ LWL - [ Aodos)
- j " ) + j " ) (x)dx since fla) = f(b) = 0.
so we have

b -1
faxf(x)f(x)dx - =L,

In addition, by Cauchy-Schwarz Inequality, we know that

[vera [ e = ([ bxf(x)f(x)dx)z -1

Note that the equality does NOT hold since if it was, then we have f'(x) = kxf(x). It
implies that

k2

[ (x) = kxf(x) Je ™

() -0

=0
which implies that

which implies that
)
flx) = Ce™™, a constant

which implies that

skekok



C = 0O since f{a) = 0.
That is, f{x) = 0 on [a,b] which is absurb.

7.5 Let {a.} be a sequence of real numbers. For x > 0, define
[x]

Alx) = Zan = Zan,

n=x n=1
where [x] is the largest integer in x and empty sums are interpreted as zero. Let fhave a
continuous derivative in the interval 1 < x < a. Use Stieltjes integrals to derive the
following formula:

> aifin) = =A@ () + A@)fa).

n<a
Proof: Since

Ia A@x)f (x)dx = Ia A(x)df(x) since f'has a continous derivative on [1,a]
1 1

= —Ifﬂx)dA(x) + A(a)fa) — A(1)f(1) by integration by parts

a [a]
= =" ayfln) + A(a)fa) by Lf(x)dA(x) = 3" auftn) and A(1) = ay,
n=2

n<a
we know that

3 anfin) = —J.TA(x)f’(x)dx + A@)fa).

n<a

7.6 Use Euler’s summation formula, integration by parts in a Stieltjes integral, to
derive the following identities:

n

" B
@2 % = ,,x+1+SL;de1fs + 1.

Proof:

n

2%

k=1

| Tx‘sd[x] 1

—j’:[x]dx—s Fs[a] - 1] + 1

sjn de+nl‘s

1 xs+1

= L—i—s."n[ledxifmt 1.
1

ns—l x$




= [ [l + 0 n) =111+ 1

= Inx‘ldx— jnx‘ldx+ In de+ 1

1 1 1 x2

_ nx_[x]
—logn—j.l 2 + 1.

7.7 Assume that /' is continuous on [1,2n] and use Euler’s summation formula or
integration by parts to prove that

2n
Db = | j F/()([x] = 2[x/2])dk.
k=1

Proof:
2n 2n n
D D) = =D k) +2 > f2k)
k=1 k=1 k=1

_ _( [ ? Ax)dx] + f(l)) ; 2(j?nf(x)d[x/2])
= (-] ey + 2z ) + 2= [ w2l + femi2n2) - A1) [121)
) 1

since /' is continuous on [1,2n]
= Jjnf(x)[x]dx —2nf(2n) — J‘jnf(x)[x/Z]dx + 2nf(2n)
= [ 7)1x) - 2Lv2as.

7.8 Let ¢ =x—[x] - % if x # integer, and let ¢; = 0 if x = integer. Also, let
¢r = I z ¢1(t)dt. If /" is continuous on [1,n] prove that Euler’s summation formula implies
that

S = [ e - [ gty @+ LA,
)
Proof: Using Theorem 7.13, then we have
kz; Sy = [ Aoy + [ f (o + AD S
- [y + [ g + LA
= [y + (<[ 62007 ) + £ gam) = (D)) + LA
- [ - [ gawar oo + LA

=[x [ gy o+ LLZHE ince is continuous on 1.1,



7.9 Take f(x) = logx in Exercise 7.8 and prove that
1= (n+4d - " $2(0)
logn! (n+2>logn n+1+J'1 2 dt.

Proof: Let f{x) = logx, then by Exercise 7.8, it is clear. So, we omit the proof.
Remark: By Euler’s summation formula, we can show that
_ n n 3 B L ﬂ IOgl’l
Zlogk—jllogxdx+fl( [x] 2) T

1<k<n
Since

% B
|(x [x] 2)| <12
and
a+l 1
I (x— [x] - j)dx = 0 for all real a,
we thus have the convergence of the improper integral

jl (x —[x] - %)dx by Second Mean Value Theorem.

So, by (*), we have
| = 1 —
logn! (n+ 5 )logn n+C+vy,

where

c=1 +IT(x— - L),
and

o f - D4
So,

: !
lim—2—— = ¢C = (.
71—00 e—nnn+l/2

Now, using Wallis formula, we have
. 2.2 440 2n)20) -
M 3355 an-ansn 72

which implies that
2mn!)*
[2n)!°@2n + 1)
which implies that, by (¥*%),
Ci(2rnriren)*

Ci[@n)* e J2n + 1)

(1+0(1)) = 72

(1+0(1)) = /2

which implies that
Cin B
m(l +0(1)) = /2.

Letn — o, we have C; = /27, and IT(x— [x] — +)dx = - log2m — 1.

Note: In (**%*), the formula is called Stirling formula. The reader should be noted that
Wallis formula is equivalent to Stirling formula.

kk
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7.10 1fx > 1, let 7(x) denote the number of primes p < x, that is,
n@) =D 1,
px

where the sum is extended over all primes p < x. The prime number theorem states that
logx _ 1

X
This is usually proved by studying a related function 3 given by

9(x) = D _ logp,

p=x

lim (x)

where again the sum is extended over all primes p < x. Both function 7 and 3 are step
functions with jumps at the primes. This exercise shows how the Riemann-Stieltjes integral
can be used to relate these two functions.

(a) If x > 2, prove that 7(x) and 3(x) can be expressed as the following
Riemann-Stieltjes integrals:

_ B
9(x) = j , logidn(0), n(x) j 1 Tog7 %90,
Note. The lower limit can be replaced by any number in the open interval (1,2).

Proof: Since 9(x) = Zp_x logp, we know that by Theorem 7.9,

9(x) = f log tdn (1),
3/2
and 7(x) = Zpix 1, we know that by Theorem 7.9,

n(x)zjx L_49(r).

3/2 logt

(b) If x > 2, use integration by parts to show that
9) = n(x)logx — | 0 4,

2
CACO I I )

) = logx " 2 tlog?t

These equations can be used to prove that the prime number theorem is equivalent to
the relation lim,.., 2 = 1.

X

dt.

Proof: Use integration by parts, we know that
@dz +logxr(x) — log(3/2)7(3/2)

X

8() = | ;2 logdn(r) = - | y

= —jx @dt + logxm(x) since w(3/2) = 0
3/2
X 2
= m(x)logx —I @di since j @di =0byz(x) =00n(0,2),
2 32

and



| _ 9@ 3(x) _ 9372)
71'()() B -[3/2 IOgl‘dS(t) B I3/2 t10g2tdt+ 10gx 10g(3/2)

_ I 9O gy 1+ 99 inee 9(3/2) = 0
32 tlog“t logx

= 90 1 D rsinee [T 2O_ar = 0by 9x) = 0.0n[0,2).

- logx 2 tlog’t 32 tlog?t

7.111fa / on[a,b], prove that
@ [ fda = [ fioo+ [ fdar, (a < ¢ < b)
Proof: Given ¢ > 0, there is a partition P such that

UP.f,a) < I(a,b) +s.

LetP' = {c} UP = P, U P,, where P; = {a = xo,...,xn, = ¢} and
Py = {x,, =c¢,...,xn, = b}then we have

I(a,c) +1(c,b) < U(Py,f,a) + U(Pa.fya) = UP.fa) < UPP,f,a).

So, by (1) and (2), we have
7(a,c) +7(c,b) < 7(a,b)

since ¢ is arbitrary.
On the other hand, given ¢ > 0, there is a partition P, and P, such that

U(P,.f,a) + UP,.f.a) < I(a,c) + I(c,b) + ¢
which implies that, let P = P, U P,
U(P,f,a) = UP1,f,a) + UPa,fya) < I(a,c) +1(c,b) + &.
Also,
I(a,b) < U(P,f,a).
By (3) and (4), we have
Ka,b) < I(a,c) +1(c,b)
since ¢ is arbitrary.
So, by (*) and (**), we have proved it.

b b b
O0) [ (f+eg)da <[ fda+ | gda.
Proof: In any compact interval J, we have
sup(f+ g) < supf+supg.
xeJ xeJ xeJ
So, given ¢ > 0, there is a partition P, and P, such that
ny l_)
> M(HAay < | fdo+el2
k=1 “

and

ny B
> My(@)hay < [ gda +el2,
k=1 a

So, consider P = P,U P, then we have, by (1),
UP,f+ga) < UP,fa)+ UP,ga)
along with

kk



n ny
UP.f,a) < D Mi(f)Aay and U(P,g,a) < D Mi(g)Aay
k=1 k=1

which implies that, by (2) and (3),

b b
UP,f+g,a) < J. fda +J. gda + ¢
which implies that

jb(f+ ¢)da < jbfda + jbgda
since ¢ is arbitrary. ' ' '
©] (+e)de>] fia+| gda
Proof: Similarly by (b), so we omit the proof.

7.12 Give an example of bounded function f'and an increasing function a defined on
[a,b] such that |[f| € R(a) but for which IZ fda does not exist.

Solution: Let
lifx e [0,1]N
fy =4 ©
-1ifx € [0,1] N Q¢
and a(x) = x on [0, 1]. Then it is clear that f ¢ R(a) on [a,b] and |[f] € R(a) on [a,b].

7.13 Let a be a continuous functionxof bounded variation on [a,b]. Assume that
g € R(a) on [a,b] and define B(x) = ja g(t)da(t) if x € [a,b]. Show that:
\ (a)Iff / on [a,b], therebexists a point x, in [a,b] such that
[ fdp = fla) [ " gda + flb) jXO gda.

Proof: Since a is a continuous function of bounded variation on [a,b], and g € R(a)
on [a,b], we know that (x) is a continuous function of bounded variation on [a, b], by
Theorem 7.32. Hence, by Second Mean-Value Theorem for Riemann-Stieltjes
integrals, we know that

b X0 b
[ 1ap = fia) [ " apey +f0) [ dp)
a a X0
which implies that, by Theorem 7.26,
b X0 b
jafdﬂ :ﬂa)ja gdo + f(b) j gdo.
(b) If, in addition, f'is continuous on [a,b], we also have
b X0 b
| 1@)gydx = fia) | “gda+f0) | gda.
Proof: Since

b b
[ dp = | ft)g@)dx by Theorem 7.26,
we know that, by (a),



[ b fo)g)dx = fla) | gda +(0) | b gda.

Remark: We do NOT need the hypothesis that f'is continuous on [a,b].

7.14 Assume that f € R(a) on [a,b], where a is of bounded variation on [a,b]. Let
V(x) denote the total variation of a on [a,x] for each x in (a,b], and let V(a) = 0. Show
that

b
< [ 11av < my),

jbfda

where M is an upper bound for [f| on [a, b]. In particular, when a(x) = x, the inequality
becomes

b
‘ [ sda
Proof: Given ¢ > 0, there is a partition P = {a = xo,...,x, = b} such that

jbfda—g < S(P.f.a)

< M(b - a).

n
= Zﬂl‘k)Aak, where 7; € [x41,x¢]
P

< Zlf(zk)ﬂa(xk) —a(xX41)]
k=1

< D AV (xi) = Vi)
k=1

= S, V)
< U(P,|f], V) since V is increasing on [a, D]
which implies that, taking infimum,
b b
[ tdoa—e < [ 1fav

since |f| € R(V) on [a, b].
So, we have

jjfda < fbde

since fZJ]‘]dV is clear non-negative. If M is an upper bound for |f] on [a, b], then (*) implies
that

b
< [ 1hav < mv)

jbfda

which implies that

| " e

<M(b-a)
if a(x) = x.

7.15 Let {a.} be a sequence of functions of bounded variation on [a,b]. Suppose
there exists a function o defined on [a, b] such that the total variation of @ — a, on [a, b]
tends to 0 as n - co. Assume also that a(a) = a,(a) = 0 foreachn = 1,2,.... Iffis



continuous on [a,b], prove that
b b
lim j 00)dan(x) = j ) da(x).
Proof: Use Exercise 7.14, we then have
b
| (@~ a,))

where V', is the total variation of a — a,, and M = sup,cp,»[f(x)|.
So, we have

< MV,(b) > 0asn - o©

b b
lim j ) dan(x) = j o) da(x).

Remark: We do NOT need the hypothesis a(a) = a,(a) = 0 foreachn = 1,2,....
7.16 If f€ R(a), f> € R(a), g € R(a), and gZ € R(a) on [a,b], prove that

1y [ ) &)
= Gafz(x)da(x)) ( | ag2(x)da(x)) - (jb f(x)g(x)da(x)>2,

When o " on [a,b], deduce the Cauchy-Schwarz inequality

(I’ e = ([ pedac)) ([ gwraatey)

(Compare with Exercise 1.23.)

2
da(y) ]da(x)

Proof: Consider
1 Ib bl fx) g(x)
204 g)

- L[] e - 10156 daty) Jaate)

2
da(y) ]da(x)

- T rwe0) - 08000)e +£0)g0)dat) |datw)
= L[ feodate) | 220
=5 ag a(y)

- [ fwgeadat) [ )g0)dar)

b b

+ J.a g2 (x)da(x) J.afz (»)da(y)

b b b 2
- [ reodac) | @03dae) - | [ g |

ifa / on[a,b], then we have



Six) glx)
S) gO»)

el
IA

il

[ peiacs) | 20yia) - [ [ foraedato |

2
da(y) ]da(x)

which implies that

(I’ rogeae) = ([ ) ([ gwraatey )

Remark: (1) Here is another proof: Let 4 = IZﬁ(x)da(x), B = sz(x)g(x)da(x), and
C= jz g2(x)da(x). From the fact,

b
0 < j [(x)z + g(x)]dx for any real z

= Az*> + 2Bz + C.
It implies that
B? < AC.
That is,

(I’ e = ([ o)) ([ g wraatey )

Note: (1) The reader may recall the inner product in Linear Algebra. We often
consider Riemann Integral by defining

b
< f,g >= jaf(x)g(x)dx

where fand g are real continuous functions defined on [a, b]. This definition is a real case.
For complex case, we need to preserve its positive definite. So, we define

b
<fig>= j A3 ()dx

where f'and g are complex continuous functions defined on [a,b], and g means its
conjugate. In addition, in this sense, we have the triangular inequality:

lf =gl < If =2l + = All, where [[f]| = < f.f>.

(2) Suppose that f € R(a) on [a,b] where @ " on [a,b] and given € > 0, then there
exists a continuous function g on [a, b] such that

If—gll <e.
Proof: Let K = sup,cj,5|f(x)|, and given &€ > 0, we want to show that

If-gll <e.
Since /'€ R(a) on [a,b] where a " on [a,b], given (1 >)&’ > 0, there is a partition
P =<{x¢o =a,...,x, = b} such that
UP.fia) = L(P.fia) = D [Mi(f) — mi()]Aa; < (£')°.
j=1
Write P = AU B, where 4 = {x; : M;(f) —m;(f) < €'} and
B = {x;j : M;(f) —m;(f) > &'}, then



£ Y Aaj < D IMi() — mi(H]Aa; < (¢')° by (1)

which implies that
ZA(I, <ég.
B

For this partition P, we deﬁne the function g as follows.

Xj-1
g(t) _x 1f(xj 1) #ﬂxj), where Xj-1 <t< Xj.

So, it is clear that g is continuous on [a,b]. In every subinterval [x-1,%;]
— Xj-1

0) = 2] = |5 ) — o] + 5= [0 — f)

< A0) = fg-0)| + ) = fx))]
< 2[M;(f) = m;()]

Consider

D] 0~ g@Fde< 3 AMG) - mi()) Aa by (3)
A

A Xj=1Xj

<4 Z e'[M;(f) — m;(f)]Aa; by definition of 4
A
<4e' > Agjbye <1
y

&'la(b) —a(a)]
and
Y| 0 -g)lda =Y 4K A
B 1] B
< 4K?¢' by (2).
Hence,

J.bjf(t) - g(t)|2da < 4¢'la(b) —a(a)] + 4K?¢’

< g?

if we choose &' is small enough so that 4¢'[a(b) — a(a)] + 4K?¢’ < &2. That is, we have
proved that

If-gll <e.

P.S.: The exercise tells us a Riemann-Stieltjes integrable function can be approximated
(approached) by continuous functions.

(3)There is another important result called Holder’s inequality. It is useful in Analysis
and more general than Cauchy-Schwarz inequality. In fact, itis the casep = ¢ = 2 in
Holder’s inequality. We consider the following results.

Let p and g be positive real numbers such that

1,1 _
7Ty 1.
Prove that the following statements.
(@) Ifu > 0and v > 0, then



Equality holds if and only if u? = v4.
Proof: Let flu) = % + = — uv be a function defined on [0,+x), where + + +
p>0,¢g>0andv >0, thenf'(u) = u”"' —v. So, we know that
f@) <0ifue (0,77 ) andf(u) > 0ifu e (Vir,+)
which implies that, by f(Vﬁ> = 0, flu) > 0. Hence, we know that f{u) > 0 for all u > 0.

That is, uv < 4~ + 2= In addition, f{u) = 0 if and only if u = v7T if and only if up = ve.
So, Equality holds if and only if u? = v4.

= 1)

Note: (1) Here is another good proof by using Young’s Inequality, let f{x) be an
strictly increasing and continuous function defined on {x : x > 0}, with f{0) = 0. Then
we have, leta > Oand b > 0,

a b
ab < [ floydx+ [ f1(x)dx, where £ is the inverse function of /.
0 0
And the equality holds if and only if f{a) = b.

Proof: The proof is easy by drawing the function f on x — y plane. So, we omit it.

So, by Young’s Inequality, let f{x) = x*, where @ > 0, we have the Holder’s
inequality.

(2) The reader should be noted that there are many proofs of (a), for example, using the
concept of convex function, or using 4. P.> G. P. along with continuity.

(b)Iff,g € R(a) on [a,b] where a@ /" on [a,b], f,g > 0on [a,b], and
b b
[ praa =1 =] gida,

then
b
[ feda < 1.
Proof: By Holder’s inequality, we have

P, g
8= pt

which implies that, by ¢  on [a,b], and jZﬂ’da =1= Iquda,

b b b oq
i & gg =11 _
jafgdasja pda+ja do =L+ L -1,

(c) If fand g are complex functions in R(a), where @ /" on [a,b], then

J'b feda| < { [ :’mpda} v {Iz|g|qda} "
U:fgda

f:lﬂpda — = Iz(%)pda _

Proof: First, we note that

< J:Jfg|da.

Also,



and

b b q
I lg|da = N4 :J. (%) da = 1.

> gl
Lﬁwd‘”

< MN = {jjmpda} 1/p{jz|g|‘1da} N

(d) Show that Holder’s inequality is also true for the “improper” integrals.

Then we have by (b),

IA

1
which implies that, by (*)

| feda

Proof: It is clear by (c), so we omit the proof.
7.17 Assume that f € R(a),g € R(a), and f-g € R(a) on [a,b]. Show that

> Ib[ | z(f(y) ~ ))(2) - g())da(y) :|da(x)

- @) - @) | frgrdace) - ([ foda ) ([ e ).
If o / on [a,b], deduce the inequality
(] 7w ) ([ stardace) ) < @) - ata) [ fogtodate)

when both f'and g are increasing (or both are decreasing) on [a,b]. Show that the reverse
inequality holds if f'increases and g decreases on [a, b].

Proof: Since

1] :Ujm — /) (g() — g(x))dau(y) ]dam
N % I:[ij(y)g(y) —f0)g(x) = flx)g(y) +fx)glx)da(y) :|da(x)

- @) - @) [ 0)20)da0) - (| fndan) ) ([ strdao)
which implies that, (let a, f, and g " on [a,b]),
b b
0= L[| [ 00)-A0)ew) - gw)dat) |date)
and (let ¢, and /' " on [a,b], g \, on [a,b]),
b b
0= L [ 00) A (e0) - )y Jataco),
we know that, (let a, f, and g /" on [a, b])
b b b
(] e ([ stoda) < @ty - ata)) [ orgodate)
and (let o, and /' on [a,b], g \, on [a,b])
b b b
(I e ) ([ stda)) = @®) - ata) [ fogtodatw).

Riemann integrals



7.18 Assume f € R(a) on [a,b]. Use Exercise 7.4 to prove that the limit
1,1_% b;a Z](a+kb;a>
k=1
exists and has the value Ib f(x)dx. Deduce that

"_’OO Z k2 +n? +n2 - %’ }11_9.} ]:Zl(nz +k2)_1/2 = 10g<1 + ﬁ)

Proof: Since f € R(a) on [a,b], given ¢ > 0, there exists a 0 > 0 such that as
IP|| < o6, we have

b
S(P,f) — j 100

For this §, we choose 7 large enough so that =% < §, that is, as n > N, we have &% < §.
So,

< €.

< €&

b
‘S(P, n-| o)

which implies that

n b
‘ b;a Z](a+kb;a> —j fx)dx| < e.
k=1 a
That is,
lim b-—a Z a+ kb;a
n-oo N = f( n )
exists and has the value Ib Slx)dx.
Since ZZ=1 T = 1 Z—l (% )
_ S 1
I1—>O<)Zk2+n2 n—mol’l;( )+1
_ Il dx
0o 1+ x2
= arctan 1 — arctan(
= /4.

Since 37 (> +42)"? = L3 we know that by above result,

[<>]”2’



n

lim D02 + 427 = Jim > ——
1 pa |:1+(%) :I

dx

Jo (1+x2)"

e7/4

= secO0do, let x = tan0
Jo

= [ sec dee

Jo sec + tan6

o142
_ du
TR let

= iog(l + ﬁ)

el

secO +tanf = u

7.19 Define
fix) = (jz e‘fzdt)z, glx) = J; wdt

?+1

(a) Show that g’(x) + f'(x) = 0 for all x and deduce that f{x) + g(x) = n/4.
Proof: Since

fx)=2 (Jx e’zdt> e
0
2 (241)

and note that if 4(x,?) = S, We know that /4 is continuous on [0,a] x [0, 1] for any
real @ > 0, and &, = —2xe™~"(**D is continuous on [0,a] x [0, 1] for any real a > 0,

'(x) = 1h d
g'(x) xat
0
= J.l Dxe X+ gt
0
1
= D¢ J. xe~ 00’ df
0

X
2 2
=—Zexj.e”du,
0

we know that g'(x) + f'(x) = 0 for alll x. Hence, we have f(x) + g(x) = C for all x,
constant. Since C = f(0) + g(0) = [ 4 = /4, fix) + g(x) = n/4.

0 1+2

Remark: The reader should think it twice on how to find the auxiliary function g.
(b) Use (a) to prove that
lim | edt = %ﬁ

X—>00 0

Proof: Note that
‘ h(x,1) =

e—x2(12+1) ‘ < —x2(12+1) 1 3
£ e < ———— forallx > 0;
2+ 1 = |_x2(t2+1)

we know that

1 2241
det < - 0asx - o.
0

?+1

LJ‘ dt
x2Jo 14122

So, by (a), we get



limflx) = n/4
which implies that
lim [ etar = Lym

—00
x 0

since limy.q J e " dt exists by_[ e’dt < _[0 £ = arctanx > 7/2 asx > .

Remark: (1) There are many methods to show this. But here is an elementary proof
with help of Taylor series and Wallis formula. We prove it as follows. In addition, the
reader will learn some beautiful and useful methods in the future. For example, use the
application of Gamma function, and so on.

Proof: Note that two inequalities,
1+x2<e” =

and

gx—z," i -1 _ifpx <1

which implies that

1-x2<e?if0<x<1=(1-x?)"<e™ 1
and
< 1 _ify< 7nx2<( : )n
e _1+x21fx_036 132/ 2
So, we have, by (1) and (2),
(-xyde< [ emdx< [ emiax< [ " 3
jo( —X) x_IOe x_J.Oe x_J.o(l-l—Xz) o
Note that
P gy 1 p— _ K
Ioe dx—ﬁjoe dx.—ﬁ.
Also,
! T2 2:4+6++:2n-2)2n)
2\ gy — Wl g,
jo(l x2)"dx jo sin?*ludr = P ETE S
and
® 1 )n _ /2 . n=2 _ 1-3-5---(2n—3)£
I0(1+x2 d Io SNl = e an=2) 2
SO
2:4:6---2n=2)2n) _ . _ 1-.3.5-.-2n-3) o
Jn 1+3:5««:2n+1) _K_‘/ﬁ2-4-6---(2n—2)2
which implies that
. [2:4:6---2n-2)2n)] ckr<_n [1-3 (2n—3) (2n—1)( )
2041 [1.3.500.2n-1)]Qn+1) 2n—1 [2 4-6-
By Wallis formula, we know that, by (4)
_
K = 5

That is, we have proved that Euler-Possion Integral



Note: (Wallis formula)

po [2:4:6---Qn-2)@m)*  _ 5
PO 03050 (20— 1)]2(2n+ 1) 2

Proof: As 0 < x < n/2, we have

sin®™t < sin?'t < sin®*!

t, where n € N.

So, we know that

. 5 /2 . on1

sin”"tdt < I sin”" tdt
0

/2

/2 .
J. sin?™dr < J
0

0
which implies that

@2n)@2n-2)---4-2 _ 2n-1)2n=3)-+3:1, _ 2n-2)2n—-4)---4-2
Rn+1)2n—=1)«+3:1 = (2n)2n-2)+++4:2 2 =~ 2n-1)2n—-3)++3-1"
So,

[ Qn)2n—2) ++ 4.2 T 1 <£<[ Qn)(2n—2) +++4 .2 TL

Qn-1)2n-3)++3-1 | 2n+1 = 2 ~ | 2n-1)2n-3)++3-1 | 2n’

Hence, from

Q2n)2n—2) +++4 .2 2 1 . |
|:(2n—1)(2n—3)-..3.1:| (E_m> SE%—)O’

we know that
g [2:4:6---2n-2)2m]° _ x
P35 2n-1)]*Cn+1) 2

(2) Here is another exercise from Hadamard’s result. We Write it as follows. Let
f € CK(R) with f{0) = 0. Prove that there exists an unique function g € C¥'(R) such that

f=xg(x)onR.
Proof: Consider

Sx) = fix) = f(0)
- I;dﬂxt)
- I;xf(xt)dt
1
— x j ACHE

we know that if g(x) = j(l) f(xt)dt, then we have prove it.

Note: In fact, we can do this job by rountine work. Define

Sx) .
ifx+0

(x) = !
&) 0ifx = 0.

However, it is too long to write. The trouble is to make sure that g € C<1(R).

7.20 Assume g € R on [a,b] and define f{x) = -[Z g(t)dtif t € [a,b]. Prove that the



integral Iz lg(?)|dt gives the total variation of f'on [a,x].

Proof: Since Ix|g(t) |dt exists, given ¢ > 0, there exists a partition
a
P, = {xo =a,...,x, = x} such that

L(P.lgl) > [ e(o)idi —e.

So, for this P, we have

n

3 ) — foe) =
k=1

k=1

<

Xj—

g(t)dt‘ = Z]ck(xk —Xj-1)| by Mean Value Theorem 2
! k=1

Where infxE[xk,l,Xk] |g(x) | S Ck S Supr[xk,l,Xk] |g(x) |'
Hence, we know that, by (1) and (2),

Zlf(xk) — fxp)| > _[ lg(t)|dt — ¢
k=1 a
which implies that

Vhab) = [ gt

since ¢ is arbitrary.
. X . . . ..
Conversely, since f lg(?)|dt exists, given € > 0, there exists a partition P, such that
a

UPs.lg)) < [ lg(o)lde + 2.

Also, for the same ¢, there exists a partition P; = {¢y = a,...,t» = x} such that
Via,b) - €2 < D Ifte) = fltsr)|-
k=1

LetP = P,UP; = {so = a,...,sp, = x}, then by (3) and (4), we have
UP.lg)) < [ [g(ldi + &2

and
P
VAa,b) —¢/2 < Zlf(sk) = flsk-1)]
k=1
4 Sk
-y j g(t)dt‘
k=117 Skl
p
= Z‘ék(xk — X))
k=1
< U, g
which imply that

Vtab) < [ g

since ¢ 1s arbitrary.
Therefore, from above discussion, we have proved that

Vhab) = [ g0

721 1t f=(f1,...,fa) be a vector-valued function with a continuous derivative /' on



[a,b]. Prove that the curve described by fhas length
b
Afa.b) = [ 1172 .

Proof: Since /' = (f},...,f,) is continuous on [a,b], we know that
12
[ijl(ﬂ)z(t)} = |/ ()| is uniformly continuous on [a,b]. So, given & > 0, there exists
ad; > 0 such that as [x —y| < ,, where x,y € [a,b], we have
_ __ &
W@ =10 < 5555
Since ||f'(¢)|| € R on [a,b], for the same &, there exists 0, > 0 such thatas ||P;]| < &2,

where P, = {xo = a,...,x, = bywe have

b n
\S(Pl,ufn)— [ @ lde| < e13, where S I£ 1) = DI () A,
a j=1

and A/(a,b) exists by Theorem 6.17, for the same ¢, there exists a partition
Py, = {sp =a,...,sm = b} such that

Afda,b) —¢€/3 < ZHf(Sk) —fGsi-) |l
=1

12
- Z{Z[(ﬁ)m) - (ﬂ)(sk_l)f} .
=1 =1
Let 6 = min(d,,9,) and P < P; so that |P| < &, where P = {yy = a,...,y, = b}then by
(1)-(3), we have

(1) As |x —y| < 6, where x,y € [a,b], we have

1= POl < 555
(ii) As ||P]| < o0, we have
s D - [ o

(iii) As || P|| < &, we have

12
Ada,b) —&/3 < Z{Z[(ﬁ)(sk) - (m(sk_nf}

k=1 | j=I

12
{Z[(f,-)(yk) - (z;)(yk_of}

=1

q
< &3, where S(P, I ) = D_I1'G)) 1Ay

J=1

{Z[f}(zk)]z}ij, by Mean Value Theorem

By (ii) and (iii), we have

\S]

(O8]



D glzn)Ay; - S(P.g)
k=1

D gAY - Y g@)Ay;
=1

Jj=1

< D Jg(zx) — g@)lAy;
k=1

q
__& )
< /; 36 —a) Y
= ¢&/3.
Hence, (5)-(7) implies that
b
[ 1r@ar-agab)| <.

Since ¢ is arbitrary, we have proved that

b
Aa,b) = [ 17 lde

7.221f f+1) is continuous on [a,x], define
_ 1 (T A
L) = L j = 0" (o)

(a) Show that

L1 (x) — [i(x) = f(k)(a)l(;!c_a)k ,k=1,2,...,n.

Proof: Since, fork = 1,2,...,n,
1) = 3¢ | =o'

- [ a-ntawe
- Lla-0o ] k[ a- 0w |
= —ﬂk)(a)/(ﬁf_ @) (k_l 0! J Z<x— 07 f® (t)dt

k
_ _ﬂk)(a)](;!c— a) +]k—1(x),

we know that

I ) - 1) = L@ o1

(b) Use (a) to express the remainder in Taylor’s formula (Theorem 5.19) as an integral.
Proof: Since f{x) — fla) = Io(x), we know that



fx) = fla) +Io(x)
= fla) + D i1 (x) = L(x)] + In(x)
k=1

n k _ k X
:kz:f”(a)l({)!c a) +%Ia(x_t)”ﬂnﬂ)(t)dtby(a).
-0

So, by Taylor’s formula, we know that

Ru(x) = A "H)E;)f“l;!")m - # j :(x— £)"f ) (£)dt, for some ¢ € (a,x).

where R,(x) is the remainder term.

Remark: 1. The reader should be noted that with help of Mean Value Theorem, we
have

X n+l) _ n+l
# J'a(x_ t)nf(”+1)(l)dl _ S E;)—Exl)!a) .

2. Use Integration by parts repeatedly; we can show (*). Of course, there is other
proofs such as Mathematical Induction.

Proof: Since
Juv“’“’dt = wy® — y/ye=D 4"y ) — (1) u My 4+ (1) J u™Dydt,

letting v(¢) = (x — )" and u(t) = f(¢t), then
flx) = Z LD -+ L [ oo,

Note: The reader should give it a try to show it. Since it is not hard, we omit the detail.

3. The remainder term as an integral is useful; the reader should see the textbook in
Ch9, pp242-244.

4. There is a good exercise related with an application of Taylor’s Remainder. We write
it as a reference.

Let u"(¢) + f(t)u(t) = 0, where f{(¢) is continuous and non-negative on [0,c] If u is
defined and not a zero function on [0,c] and

b
j (b—1)(a—0Oft) < b—aforalla,b € [0,c], where a < b.

Then u at most has one zero on [0,c].

Proof: First, we note that u# has at most finitely many zeros in the interval [0, c] by
uniqueness theorem on O.D.E. So, let u(a) = u(b) = 0, where a,b € [0,c] witha < b,
and no point y € (a,b) such that u(y) = 0. Consider [a,b] and by Taylor’s Theorem with
Remainder Term as an integral, we have

u(x) = u(a) +u'(a)(x —a) + J.x(x — tHu" (t)dt
— u(a)(x—a) + jx(x — 0 (1)dt
— u'(a)(x —a) - jx(x — Du()ft)dt.

Note that u(x) is positive on (a,b) ( Or, u(x) is negative on (a,b) ) So, we have

k3k



u@)| < |u'(@)|(x - a). o
By (**),
b
0=u)=u(a)b-a)- J. (b — t)u(t)f(t)dt
which implies that

b
w(@)b-a) = | b= uno)
which implies that by (***), and note that u'(a) # 0,

b
b-a< | (b-0)-afind
which contradicts to (*). So, u at most has one zero on [0, c].
Note: (i) In particular, let f{¢) = e, we have (*) holds.

Proof: Since
b
j (b—1)(t—a)etdt = e (2 +b—a) +eb(2 +b—a)

by integration by parts twice, we have, (let b —a = x),
e (-2+b—-a)+e?2+b—a)—(b-a)
=e(2+x)+e(2+x)—x
=x(e?—1)+e*(2e"+(x+2))

< 0Osincea < bande* > 1 +x.

(i1) In the proof of exercise, we use the uniqueness theorem: If p(x) and ¢(x) are
continuous on [0,a], then

V"' +p()y' +q(x)y = 0, where y(0) = yo, and y'(0) = y;
has one and only one solution. In particular, if y(0) = y’'(0) = 0, then y = 0 on [0,a] is the
only solution. We do NOT give a proof; the reader can see the book, Theory of Ordinary
Differential Equation by Ince, section 3.32, or Theory of Ordinary Differential
Equation by Coddington and Levison, Chapter 6.
However, we need use the uniqueness theorem to show that u (in the exercise) has at
most finitely many zeros in [0, c].

Proof: Let S = {x : u(x) = 0, x € [0,c]}. If #(S) = oo, then by Bolzano-Weierstrass

Theorem, S has an accumulation point p in [0,c]. Then u(p) = 0 by continuity of u. In
addition, let , - p, and u(r,) = 0, then

V) = tig MDD _ g ) 1) _

n—0 rn_p

(Note that if p is the endpoint of [O,C], we may consider x - p* orx - p~). So, by
uniqueness theorem, we then have u = 0 on [0, c] which contradicts to the hypothesis, u
is not a zero function on [0,c]. So, #(S) < o.

7.23 Let f'be continuous on [0,a]. If x € [0,a], define fy(x) = f(x) and let
fral) = L r(x— O"fe)dt, n = 0,1,2, ...
n. Jo

(a) Show that the nth derivative of f, exists and equals f.
Proof: Consider, by Chain Rule,



= b [ 07 0t = oy oralln < N
— . 0

we have

ﬁln) _ f

That is, nth derivative of f, exists and equals f.

Remark: (1) There is another proof by Mathematical Induction and Integration by
parts. It is not hard; we omit the proof.

(2) The reader should note that the exercise tells us that given any continuous function f

on [a,b], there exists a function g, on [a,b] such that g = f, where n € N. In fact, the

function

R I RPN _
g =1 L(x 0'A0)dt,n = 0,1,2,...

(3) The reader should compare the exercise with 7.22. At the same time, look at two
integrands in both exercises.

(b) Prove the following theorem of M. Fekete: The number of changes in sign of f'in
[0,a] is not less than the number of changes in sign in the ordered set of numbers

Aa).fi(a),....[a(a).

Hint: Use mathematical induction.

Proof: Let 7(f) denote the number of changes in sign of fon [0,a] and S,(f) the
number of changes in sign in the ordered set of numbers

Aa).fi(a),....fu(a).
We prove T(f) > S,(f) for each n by Mathematical Induction as follows. Note that
Sa(f) < n.
Asn =1, if S1(f) = 0, then there is nothing to prove it. If §;(f) = 1, it means that
fla)fi(a) < 0. Without loss of generality, we may assume that f{a) > 0, so fi(a) < 0
which implies that

0> fila) = &J.(jf(t)dt

which implies that there exists a point y € [0,a) such that f{y) < 0. Hence, 7(f) > S;(f)
holds for any continuous functions defined on [0, a].

Assume that n = k holds for any continuous functions defined on [0,a], Asn = k+ 1,.
we consider the ordered set of numbers

ﬂa)oﬁ (Cl), cee afk(a)ofk+l (Cl)
Note that
Jur1(a) = (f1),(a) foralln € N,
so by induction hypothesis,
T(f1) > Sk(f1)
Suppose Si(f1) = p, and f1(0) = 0, then f| = fat least has p zeros by Rolle’s
Theorem. Hence,
() = T(f1) = Sk(fi) = p
We consider two cases as follows.
(1) fla)f1(a) = 0 :With help of (*),
() = Si(f1) = S ().



(i1) fla)f1(a) < 0 :Claim that

T(f) > Si(fi) = p
as follows. Suppose NOT, it means that 7(f) = 7(f;) = p by (*). Say
fay) = flay) =...= flap) = 0, where 0 < a; < ay <...<ap < 1.
and
fi(by) = fi(ba) =...= fi(bp) = 0, where 0 < b < by <...< b, < 1.

By fla)fi(a) < 0, we know that
f)fi(x) < 0 where x € (0,¢), ¢ = min(a;,b;)
which is impossible since
Sfi(x) = f)lf1(x) = £1(0)] by £1(0) = 0

= fx)1(v), where y € (0,x) < (0,c¢)

= fx)f)

> 0 since f{x) and f{y) both positive or negative.
So, we obtain that 7(f) > Sy(f1) = p. Thatis, T(f) > Si(f1) + 1 = Sk ().

From above results, we have proved it by Mathmatical Induction.

(c) Use (b) to prove the following theorem of Feje’r: The number of changes in sign of
fin [0,a] is not less than the number of changes in sign in the ordered set

£10). | 0 foyde, 0 (... | O PRt

Proof: Let g(x) = fla — x), then, define go(x) = g(x), and forn = 0,1,2,...,
gum(@ = & [ @-0"gwya
= # IZ u"f(u)du by change of variable (u = a —f).
So, by (b), the number of changes in sign of g in [0,a] is not less than the number of
changes in sign in the ordered set
g(a).gi(a),....gnn(a).

That is, the number of changes in sign of g in [0, a] is not less than the number of changes
in sign in the ordered set

£10). | 0 foyde, 0 (... | 0 PR,

Note that the number of changes in sign of g in [0, a] equals the number of changes in
sign of fin [0,a], so we have proved the Feje’r Theorem.

7.24 Let /fbe a positive continuous function in [a,b]. Let M denote the maximum
value of fon [a,b]. Show that

b 1/n
m(j f(x)"dx) = M.

Proof: Since f'is a positive continuous function in [a, b], there exists a point ¢ € [a,b]
such that f{c) = M = sup,c, f(x) > 0. Then given (M >)e > 0, thereisa é > 0 such

that as x € B(c,0) N [a,b] = I, we have
0<IM—-¢<flx) <M+e.
Hence, we have



1/n b 1/n
|[|1/n(M—g) < (I f"(x)dx) < (I f(x)"dx> < (b—a)l/nM
1 a
which implies that

b 1/n
M-¢ < lim inf(j f(x)”dx) <M.

I/n
So, lim- inf (j: f(x)"dx) = M since ¢ is arbitrary. Similarly, we can show that
1/n 1/n
lim— sup (Izj(x)"dx) = M. So, we have proved that lim- (Izﬂx)"dx) =M.

Remark: There is good exercise; we write it as a reference. Let f{x) and g(x) are
continuous and non-negative function defined on [a,b]. Then

b 1/n
,lqlgg(j f(x)”g(x)dx) = n%az(]f(x).
Since the proof is similar, we omit it. (The reader may let a(x) = jz g(t)dr).

7.25 A function f of two real variables is defined for each point (x,)) in the unit square
0<x<1,0<y<1asfollows:

1 if x is rational,
Sflx,y) = {

2y if x is irrational.
(a) Compute j(l) f(x,y)dx and I; f(x,y)dx in terms of y.

Proof: Consider two cases for upper and lower Riemann-Stieltjes integrals as
follows.
(1) Asy € [0,1/2] : Given any partition P = {xo = 0,...,x, = 1}, we have

sup flx,y) =1, and inf f{x,y) = 2y.

xe[xj-1%] xe[xj-1%]
Hence, I;ﬂx,y)dx =1, and I(l) flx,y)dx = 2y.
(i) Asy € (1/2,1] : Given any partition P = {xo = 0,...,x, = 1}, we have
sup f(x,y) =2y, and inf f{x,y) = 1.

xe[xj-1%] xelxj1]
Hence, I;ﬂx,y)dx = 2y, and _[(1) flx,y)dx = 1.
(b) Show that j(l) flx,vy)dy exists for each fixed x and compute j; f(x,y)dy in terms of x
andffor0 <x<1,0<¢r<1.

Proof: If x € QN [0,1],then f{x,y) = 1. And ifx € QN [0,1], then f{x,y) = 2y. So,
for each fixed x, we have

1 1
[ fayydy = [ 1dy = 1ifx e 0N [0.1]
0 0

and

I 1
joﬂx,y)dy = Io 2ydy = 1ifx € Q¢ N[0, 1].
In addition,

t t
jf(x,y)dyzf ldy = tifx € ON[0,1]
0 0



and

t t
I fx,y)dy = j 2ydy = ? if x € Q¢ N [0,1].
0 0

(c) Let F(x) = [, fx,y)dy. Show that || F(x)dx exists and find its value.

Proof: By (b), we have
F(x) =1on[0,1].

So, I (1) F(x)dx exists and

IIF(x)dx - 1.
0

7.26 Let f'be defined on [0, 1] as follows: f{0) = 0; if 27! < x < 27", then
fix) =2"forn =0,1,2,...

(a) Give two reasons why I; S(x)dx exists.

Proof: (i) f{x) is monotonic decreasing on [0, 1]. (ii) {x : fis discontinuous at x} has
measure zero.

Remark: We compute the value of the integral as follows.

Solution: Consider the interval 7, = [27,1] where n € N, then we have f € R on [, for

each n, and
n D—k+1

j ; fox)dx = ijik fox)dx
k=1

2—k+l

= Xn:2‘k+1 J.sz dx

k=1

- Y etnet
k=1

_,al-)]

=

3] 3w

So, th integral J.(l)f(x)dx =2
Note: In the remark, we use the following fact. If f € R on [a, b], then
| b foydx = lim | b o)
where {a,} is a sequence with a, - a, and a, > a }or all n.

Proof: Since a, — a, given ¢ > 0, there is a positive integer N such that asn > N, we
have

la, —a| < &/M, where M = sup |[f(x)|
x€la,b]

So,



fb ox)dx — j " )

f f(x)dx‘
< Ma, — a|

< E&.
Thatis, | fic)dx = limy.. | b ).
(b) Let F(x) = | 0 A(t)dt. Show that for 0 < x < 1 we have
F(x) = x4(x) - $AX)’,
where A(x) = 2-[logx/log2] and where [y] is the greatest integer in y.

Proof: First, we note that F(x) = _[ (1) At)dt - Ii f)dt = % — Ii f(t)dt. So, it suffices to
consider the value of the integral

jl o).

Given any x € [0, 1], then there exists a positive N such that 2V < x < 2-N, So,
1 1 2N
[ moar= | soae+ [ foyar
X 2N x

_ 2 [1 - (%)NJ +2-¥(2-N — x) by Remark in (a)
N N
)

o= (4)'r- 1 (1)’

= 2Ny - L2

3
-2
3

So,

= xA(x) - %A(x)z
where A(x) = 27V. Note that 27¥! < x < 27V, we have
N = |:10g1 /2x:|, where [y] is the Gauss symbol.
Hence,
A(x) = Q-[-logx/log2]
Remark: (1) The reader should give it a try to show it directly by considering [0,x],
where 0 < x < 1.

(2) Here is a good exercise. We write it as a reference. Suppose that f'is defined on
[0, 1] by the following

) 21,, ifx = # where j is an odd integerand 0 < j < 2", n = 1,2,...,
x =

0 otherwise.
Show that f'€ R on [0, 1] and has the value of the integral 0.

Proof: In order to show this, we consider the Riemann’s condition with respect to
a(x) = x as follows. Given a partition
P = {xo =0 =X = 3,02 = Frye X = S X = = 1}, then the upper

2n 2 2
sum



2)1
UP.f) = D MAx,
k=1

-1 (2,1 N
ox ( T 1) Oasn — oo.
So, fsatisfies the Riemann’s condition on [0, 1].

Note: (1) The reader should give it a try to show that the set of discontinuities of f has
measure zero. Thus by Theorem 7.48 (Lebesgue’s Criterion for Riemann Integral), we
know that f'€ R on [0, 1]. In addition, by the fact, the lower Riemann integral equals the
Riemann integral, we know that its integral is zero.

(2) For the existence of Riemann integral, we summarize to be the theorem: Let f be a
bounded function on [a,b]. Then the following statements are equivalent:

(i) f € Ron [a,b].

(i1) f'satisfies Riemann’s condition on [a, b].

Giii) | foo)dx = [ foeydx

(iv) the set of discontinuities of f'on / has measure zero.

P.S.: The reader should see the textbook, pp 391; we have the general discussion.

7.277 Assume fhas a derivative which is monotonic decreasing and satisfies
f(x) >m > 0 forall x in [a,b]. Prove that

b
I cos f{x)dx
Hint: Multiply and divide the integrand by f'(x) and use Theorem 7.37(ii).

<2
<2

Proof: Since /' (x) > m > 0, and % is monotonic increasing on [a,b], we consider

jj cosf(x)dx = I: C;,S(J;C(;C)f(x)dx

- ﬁ | j[cos 0x)]/ (x)dx, by Theorem 7.37(ii)
-1 J’ﬂ »

f®) Jre
_sinf(b) —sinf(c)
- f(b)

cosudu, by Change of Variable

which implies that

<2
- m

Ib cos f(x)dx

7.28 Given a decreasing seq uence of real numbers {G(n)} such that G(n) - 0 as
n — . Define a function fon [0, 1] in terms of {G(n)} as follows: f{0) = 1; if x is
irrational, then f{x) = 0; if x is rational m/n (in lowest terms), then f{m/n) = G(n).
Compute the oscillation w/(x) at each x in [0, 1] and show that /'€ R on [0,1].

Proof: Let xo € Q¢ N [0,1]. Since lim,-. G(n) = 0, given ¢ > 0, there exists a
positive integer K such that as n > K, we have |G(n)| < ¢. So, there exists a finite number



of positive integers n such that G(n) > €. Denote S = {x : |[f(x)| = ¢}, then #(S) < oo.
Choose a 0 > 0 such that (xo — d,x9 + 0)(< [0, 1]) does NOT contain all points of S. Note
that f{xo) = 0. Hence, we know that f'is continuous at xo. That is, wAx) = 0 for all

x e Q°NIo,1].

Letxo = 0, then it is clear that w(0) = 1(= f{0)) > 0. So, fis not continuous at
0.e ON[O,1].

Letxo € ON(0,1], say xg = % (in lowest terms). Since {G(n)} is monotonic
decreasing, there exists a finite number of positive integers n such that G(n) > G(N).
Denote 7' = {x : [f{x)| = G(N)}, then #(T) < c. Choose a 6 > 0 such that
(xo —0,x0 +0) N [0,1] does NOT contain all points of 7. Let & € (0,0), then

sup{f(x) —fy) : x,y € (xo —h,xo +h) N[0,1]} = flxo) = G(N).
So, wA(xo) = G(N). Thatis, wAx) = flx) forallx € O N (0, 1].

Remark: (1) If we have proved f'is continuous on Q¢ N [0, 1], then fis automatically
Riemann integrable on [0, 1] since D(€ QN [0,1] < Q), the set of discontinuities of f'has
measure zero.

(2) Here is a good exercise. We write it as a reference. Given a function f defined on
(a,b), then the set of continuities of fon (a,b) is Gs set.

Proof: Let C denote the set of continuities of fon (a,b), then
C=Ax:wg =0}
=N, {x : odx) < Uk}
and {x : g, < l/k} is open. We know that Cis a G5 set.
Note: (1) We call Sa G5 setif S = N, O,, where O, 1s open for each n.

(i1) Given y € {x € (a,b) : odx) < l/k} = I, then w(y) < 1/k. Hence, there exists a
d > 0, such that
Qq(B(y,d)) < 1/k, where B(y,d) < (a,b)
For z € B(y,d), consider a smaller 6 so that B(z,0) < B(y,d). Hence,
QAB(z,6)) < 1k
which implies that
wdz) < l/k.
Hence, B(y,d) < I. That s, y is an interior point of /. That is, / is open since every point
of / 1s interior.

7.29 Let fbe defined as in Exercise 7.28 with G(n) = 1/n. Let g(x) = 1 if
0 <x <1, g(0) = 0. Show that the composite function / defined by A(x) = g[f{(x)] is not
Riemann-integrable on [0, 1], although both f € Rand g € Ron [0,1].

Proof: By Exercise 7.28, we know that
0if °N[o,1
poy =4 OHrEC N
lifx e ONJ0,1]

which is discontinuous everywhere on [0, 1]. Hence, the function / (Dirichlet Function) is
not Riemann-integrable on [0, 1].

7.30 Use Lebesgue’s theorem to prove Theorem 7.49.
(a) If fis of bounded variation on [a, b], then f € R on [a,b].



Proof: Since f'is of bounded variation on [a,b], by Theorem 6.13 (Jordan Theorem),
f = f1 —f>, where f] and f, are increasing on [a,b]. Let D; denote the set of discontinuities
of f; on [a,b], i = 1,2. Hence, D, the set of discontinuities of fon [a,b] is
D < D, UD.,.
Since |D,| = |Dz| = 0, we know that |[D| = 0. In addition, fis of bounded on [a, b] since f
is bounded variation on [a,b]. So, by Theorem 7.48, f € R on [a,b].
(b) If f € Ron [a,b], then f € R on [c,d] for every subinterval [c,d] < [a,b], |f] € R
and /> € R on [a,b]. Also, f+g € Ron [a,b] whenever g € R on [a,b].
Proof: (i) Let Dy, ;) and Dy, 5 denote the set of discontinuities of fon [a,b] and [c,d],
respectively. Then
D[c,d] < D[a,b]-
Since f € R on [a,b], and use Theorem 7.48, |D, ;| = 0 which implies that |D. 4| = 0.
In addition, since fis bounded on [a, b], fis automatically is bounded on [c,d] for every
compact subinterval [c,d]. So, by Theorem 7.48, f € R on [c,d].
(ii) Let Dy and D, denote the set of discontinuities of f'and |f| on [a,b], respectively,
then
Dm < Df.
Since f € R on [a,b], and use Theorem 7.48, |D,| = 0 which implies that |[Ds| = 0. In
addition, since f'is bounded on [a, b], it is clear that |f] is bounded on [a, b]. So, by

Theorem 7.48, |[f| € R on [a,b].
(iii) Let Dy and D, denote the set of discontinuities of fand /> on [a, b], respectively,

then
sz < Df'

Since f € R on [a,b], and use Theorem 7.48, |D/| = 0 which implies that |Df2 = 0. In
addition, since f'is bounded on [a, b], it is clear that /> is bounded on [a,b]. So, by
Theorem 7.48, /> € R on [a,b].

(iv) Let Dy and D, denote the set of discontinuities of fand g on [a,b], respectively.
Let Dy, denote the set of discontinuities of fg on [a,b], then

Dy © DU Dg

Since f,g € R on [a,b], and use Theorem 7.48, |D/| = |D¢| = 0 which implies that
|Dg| = 0. In addition, since f'and g are bounded on [a, b], it is clear that fg is bounded on
[a,b]. So, by Theorem 7.48, fg € R on [a,b].

(c)Iffe Rand g € R on [a,b], then flg € R on [a,b] whenever g is bounded away
from 0.

Proof: Let Dy and D, denote the set of discontinuities of f'and g on [a,b], respectively.
Since g is bounded away from 0, we know that f/g is well-defined and f/g is also bounded
on [a,b]. Consider Dy,, the set of discontinuities of f/g on [a, D] is

Dﬂg c Df U Dg.
Since f € Rand g € R on [a,b], by Theorem 7.48, |D/| = |D,| = 0 which implies that
|Dge| = 0. Since f/g is bounded on [a,b] with |Dg,| = 0, f/lg € R on [a,b] by Theorem
7.48.

Remark: The condition that the function g is bounded away from 0 CANNOT omit.
For example, say g(x) = x on (0, 1] and g(0) = 1. Then it is clear that g € R on [0, 1], but



1/g ¢ Ron [0,1]. In addition, the reader should note that when we ask whether a function

is Riemann-integrable or not, we always assume that fis BOUNDED on a COMPACT
INTERVAL [a,b].

(d) If fand g are bounded functions having the same discontinuities on [a, b], then
f € Ron [a,b] if, and only if, g € R on [a,b].

Proof: (=) Suppose that f € R on [a,b], then Dy, the set of discontinuities of fon [a, b]
has measure zero by Theorem 7.48. From hypothesis, D, = D, the set of discontinuities

of gon [a,b], we know that g € R on [a,b] by Theorem 7.48.
(<) If we change the roles of fand g, we have proved it.

(G) Let g € Ron [a,b] and assume that m < g(x) < M for all x € [a,b]. If fis
continuous on [m, M], the composite function / defined by A(x) = f[g(x)] is
Riemann-integrable on [a, b].

Proof: Note that / is bounded on [a,b]. Let D;, and D, denote the set of dsicontinuities
of 4 and g on [a, b], respectively. Then
Dh g Dg.

Since g € R on [a,b], then |Dy| = 0 by Theorem 7.48. Hence, |D;| = 0 which implies that
h € Ron [a,b] by Theorem 7.48.

Remark: (1) There has a more general theorem related with Riemann-Stieltjes
Integral. We write it as a reference.

(Theorem)Suppose g € R(a) on [a,b], m < g(x) < M forall x € [a,b]. Iffis
continuous on [m, M], the composite function / defined by 4(x) = f[g(x)] € R(a) on
[a,b].

Proof: It suffices to consider the case that ¢ is increasing on [a,b]. If a(a) = a(b),
there is nothing to prove it. So, we assume that a(a) < a(b). In addition, let
K = sup,cp,p1|h(x)]. We claim that £ satisfies Riemann condition with respect to a on
[a,b]. That is, given ¢ > 0, we want to find a partition P such that

n

UP,ha) = L(P h,a) = D [Mi(h) = m(h)]Aay < &.
k=1
Since f'is uniformly continuous on [m, M], for this € > 0, there is a (m >>6 > 0 such
that as |x — y| < 6 where x,y € [m,M], we have

o) =10 < Sty —ata]

Since g € R(a) on [a,b], for this 6 > 0, there exists a partition P such that

n

UP,g,a) — L(P,g,a) = D_[Mi(g) — mi(g)]Aay < &2
k=1

LetP = AUB, where 4 = {x; : M;(g) —my(g) < 0} and
B = {x; : My(g) —mi(g) = 6}, then

8 Ay < D [Mi(h) = m()]Aay < 62 by (2)
B B

which implies that

ZAak < 5
B



So, we have
UA, h,a) = L(A,h,0) < D [My(h) = mi(h)]Aay
A

< &2 by (1)
and

U(B,h,a) — L(B,h,a) < Y [My(h) — mi(h)]Aay

B

< 2K Aay

B

< 2Ko

< ¢/2.
It implies that

UP,h,a) — L(P,h,a) = U,h,a) — L(4,h,a) + UB,h,a) — L(B,h,a)
< €.

That is, we have proved that / satisfies the Riemann condition with respect to a on [a, b].
So, h € R(a) on [a,b].

Note: We mention that if we change the roles of fand g, then the conclusion does
NOT hold. Since the counterexample is constructed by some conclusions that we will learn
in Real Analysis, we do NOT give it a proof. Let C be the standard Cantor set in [0, 1] and
C' the Cantor set with positive measure in [0, 1]. Use similar method on defining Cantor
Lebesgue Function, then there is a continuous function /" : [0,1] — [0, 1] such that
AC) = C'. And Choose g = X¢con [0,1]. Then

h=geof=Xc
which is NOT Riemann integrable on [0, 1].

(2) The reader should note the followings. Since these proofs use the exercise 7.30 and
Theorem 7.49, we omit it.

(1) If f € Ron [a,b], then |[f] € Ron [a,b], and f € R on [a,b], where r € [0,).
(ii) If |f] € R on [a,b], it does NOT implies f € R on [a,b]. And if /2> € R on [a,b], it
does NOT implies f € R on [a,b]. For example,
f= { 1ifx € QN la,b]
-1 € 0N a,b]
(iii) If f* € R on [a,b], then f € R on [a,b].

7.31 Use Lebesgue’s theorem to prove thatif f € Rand g € R on [a,b] and if
fix) > m > 0 for all x in [a,b], then the function /4 defined by

hx) = oy
is Riemann-integrable on [a, b].
Proof: Consider
h(x) = exp(hlogf),
then by Theorem 7.49,
feR=1logfeR= hlogfeR = exp(hlogf) =h € R.

7.32 LetI=1[0,1]and let 4; = I— (&, 2) be the subset of 7 obtained by removing
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those points which lie in the open middle third of /; that is, 4, = [0, + ] U [ ,1]. Let 4,
be the subset of 4, obtained by removing he open middle third of [0 =1 and of [£ 2 1].

Continue this process and define A3, 44,.... The set C = N 4, is called the Cantor set.
Prove that
(a) C is compact set having measure zero.

Proof: Write C = N, 4,. Note that every 4, is closed, so C is closed. Since 4(# ¢)

is closed and bounded, 4, is compact and C < A, we know that C is compact by
Theorem 3.39.

In addition, it is clear that |[4,| = (%)n for each n. Hence, |C| < lim,-«|4,| = 0, which
implies that C has a measure zero.

(b) x € C1if, and only if, x = Z;il a,3™", where each a, is either 0 or 2.

Proof: (=)Letx € C = N, A, thenx € 4, for all n. Consider the followings.

(i) Sincex € 4; = [0, 3] [3 1], then it implies thata1 = 0or?2.

(i) Since x € 4, = ([0, 51U [, 2D U (L, 51U £, 2]), then it implies that a; = 0

or 2.
Inductively, we have a, = 0 or 2. So, x = Z:;l a,37", where each a, is either 0 or 2.

(o) Ifx = Z:ll a,3™", where each a, is either 0 or 2, then it is clear that x € 4, for
each n. Hence, x € C.

(c) C is uncountable.

Proof: Suppose that C is countable, write C = {x1,x2,... ;. We consider unique ternary
expansion: if x = Z:;l a,37", then x := (ay,...,an,...). From this definition, by (b), we
have

X = (Xk1,Xk2, ... Xpi.- .. ) Where each component is 0 or 2.

2 ifx]_-,- =0
Vi = .
0 lij'j =2,
By (b), y € C. It implies that y = x; for some k which contradicts to the choice of y.
Hence, C is uncountable.

Choose y = (y1,)2,...) where

Remark: (1) In fact, C = C' means that C is a perfect set. Hence, C is uncountable.
The reader can see the book, Principles of Mathematical Analysis by Walter Rudin, pp
41-42.

(2)Let C = {x DX = Zn , @n37", where each a, is either 0 or 2} Define a new
function ¢ : C - [0,1] by

b(x) Z (an)/2

then it is clear that ¢ is 1-1 and onto. So, C is equlvalent to [0,1]. Thatis, Cis
uncountable.

(d) Letf{x) = 1ifx € C, f{x) = 0ifx ¢ C. Prove that f € Ron [0,1].

Proof: In order to show that f € R on [0, 1], it suffices to show that, by Theorem 7.48,
f'is continuous on [0, 1] — C since it implies that D < C, where D is the set of
discontinuities of fon [0, 1].

Letxo € [0,1] — C, and note that C = C’, so there isa 6 > 0 such that



(xo —0,x0 +0) N C = ¢, where (xg — 5,x0 +0) < [0,1]. Then given ¢ > 0, there is a
0 > O such thatasx € (xo — 0,x9 +0), we have

flx) =flxo)] = 0 < &.

Remark: (1) C = C' :Givenx € C = N>, 4,, and note that every endpoints of 4,
belong to C. So, x is an accumulation point of the set {y : y is the endpoints of An}. So,
C < (C'. In addition, C' < C since C'is closed. Hence, C = C'.

(2) In fact, we have
f'is continuous on [0, 1] — C and f'is not continuous on C.

Proof: In (d), we have proved that f'is continuous on [0, 1] — C, so it remains to show
that f'is not continuous on C. Let xo € C, if fis continuous at x, then given ¢ = 1/2, there
isad > Osuchthatasx € (xg—9d,x9+0)NJ[0,1], we have

[flx) —fxo)| < 172
which is absurb since we can choose y € (xg —9,x0+6) N [0,1]and y ¢ C by the fact C

does NOT contain an open interval since C has measure zero. So, we have proved that f'is
not continuous on C.

Note: In a metric space M, a set S(S M) is called nonwhere dense if int(c/(S)) = ¢.
Hence, we know that C is a nonwhere dense set.

Supplement on Cantor set.

From the exercise 7.32, we have learned what the Cantor set is. We write some
conclusions as a reference.

(1) The Cantor set C is compact and perfect.

(2) The Cantor set C is uncountable. In fact, #(C) = #(R).

(3) The Cantor set C has measure zero.

(4) The Cantor set C is nonwhere dense.

(5) Every point x in C can be expressed as x = Zw

1 @n37", where each a, is either 0 or

(6) Xc : [0,1] - {0, 1} the characteristic function of C on [0, 1] is Riemann integrable.

The reader should be noted that Cantor set C in the exercise is 1 —dimensional case. We
can use the same method to construct a n —dimensional Cantor set in the set
{(x1,...,x0) : 0<x; <1,j=1,2,..n}. In addition, there are many researches on Cantor
set. For example, we will learn so called Space-Filling Curve on the textbook, Ch9, pp
224-225.

In addition, there is an important function called Cantor-Lebesgue Function related
with Cantor set. The reader can see the book, Measure and Integral (An Introduction to
Real Analysis) written by Richard L. Wheeden and Antoni Zygmund, pp 35.

"7.33 The exercise outlines a proof (due to Ivan Niven) that 72 is irrational. Let
flx) = x"(1 —x)"/n!. Prove that:

(@) 0 < flx) < 1/n!if0 <x < 1.

Proof: It is clear.

(b) Each kth derivative /% (0) and f®(1) is an integer.
Proof: By Leibnitz Rule,



k
SO = L SO - =+ DI {ED o= ks + DI -0
Jj=0

which implies that
Oifk<n
f9(0) = lifk=n .
D n e @Qn—k+1)]ifk > n
So, f©(0) € Z for each k € N. Similarly, /% (1) € Z for each k € Z.

Now assume that 72 = a/b, where a and b are positive integers, and let
F(x) = b” Z(_l)kf@k) (x) w22k,
k=0
Prove that:
(c) F(0) and F(1) are integers.
Proof: By (b), it is clear.
(d) m2a"fix) sinmx = <L {F'(x)sin7x — 7F(x) cos mx}

Proof: Note that

n n

F'(x) + m2F(x) = b” Z(—l)kﬂ2k+2)(x)7r2”‘2k + r2phn Z(_l)kf(zk) (o) 22k

k=0 k=0

n—1
= pn Z(_l)kf(zku)(x)ﬂzn—zk + b7(=1)" ) (x)
k=0
+ r2phn Z(_l)kf(zk) ()22 4 g2bnflx) 2
k=1

n—1
= pn Z[(_l)"f&kﬂ)(x)ﬂzn—%] + |:(_1)k+1f(2k+2)(x)ﬂ2n—2k:|
k=0

+ bn(_l)”f(2n+2)(x) + n-anf(x)nQn
= n2a"f(x) since fis a polynomial of degree 2n.
So,
d%c {F'(x)sinzx — nF(x)cosmx}
= (sinzx)[F"(x) + m2F(x)]
= r2a"f(x) sin7x.
(e) F(1) + F(0) = ra" [, flx) sinzxdsx.
Proof: By (d), we have
1
la" j flx)sinzxdx = F'(x) sinnx — nF(x) cos 7tx|(1)
0

= [F'(1)sint — nF(1)cosn] — [F'(0)sin0 — 7F(0) cos0]
n[F(1) + F(0)]

which implies that



F(1) + F(0) = na” j ; f0x) sin zxdx.

(f) Use (a) in (e) to deduce that 0 < F(1) + F(0) < 1 if n is sufficiently large. This
contradicts (¢) and show that 72 (and hence ) is irrational.

Proof: By (a), and sinx € [0,1] on [0, 7], we have

I I
. n . n
0 < na”J S(x) sin xdx < _ﬂna' J sinzxdx = —2;' > 0asn - o.
0 0 !

So, as n is sufficiently large, we have, by (d),
0<F(1)+F0O) <1
which contradicts (c). So, we have proved that 72 (and hence ) is irrational.

Remark: The reader should know that 7 is a transcendental number. (Also, so is e). It
is well-known that a transcendental number must be an irrational number.

In 1900, David Hilbert asked 23 problems, the 7th problem is that, if a(+ 0, 1) is an
algebraic number and S is an algebraic number but not rational, then is it true that o/ is a
transcendental number. The problem is completely solved by Israil Moiseevic Gelfand in
1934. There are many open problem now on algebraic and transcendental numbers. For
example, It is an open problem: Is the Euler Constant

y = lim<1 + % +...+% - 10gn>
a transcendental number.

7.34 Given a real-valued function o, continuous on the interval [a, b] and having a
finite bounded derivative @’ on (a,b). Let fbe defined and bounded on [a, b] and assume
that both integrals

b b
j f00)da(x) and j o0)a (x)dx
exists. Prove that these integrals are equal. (It is not assumed that o' is continuous.)

Proof: Since both integrals exist, given ¢ > 0, there exists a partition
P = {xo =a,...,x, = b} such that

b
‘S(P,f, a) - j fo0)da(x)| < e/2
where
S(P.f,a) = Y flt))Aa for t; € [x)-1,x/]
j=1
= Zf(tj)a’(sj)ij by Mean Value Theorem, where s; € (xj-1,x;) *
Jj=1
and
b
‘S(P,fa’) - j fo0)a' (x)dx| < /2
where
S(P.fa') = D flt))a () Ax; for t; € [x;-1,%;] o

=1
So, let ¢; = s;, then we have



S(P.f,a) = S(P,fa").
Hence,

‘ j " ) dax) - jb o0)a (x)dx

<

b
4 ‘S(P, fa') - j o0)a (x)dx

S.fa) - | fo)dao)

< é&.

So, we have proved that both integrals are equal.

7.35 Prove the following theorem, which implies that a function with a positive
integral must itself be positive on some interval. Assume that f € R on [a,b] and that
0 < flx) <Mon[a,b], where M > 0. Let [ = IZj(x)dx, leth = %I/(M+ b—a), and
assume that / > 0. Then the set 7 = {x : f{x) > h} contains a finite number of intervals,

the sum of whose lengths is at least /.
Hint. Let P be a partition of [a, b] such that every Riemann sum S(P,f) = ZZZI Sty Axy

satisfies S(P,f) > 1/2. Split S(P,f) into two parts, S(P,f) = >, _ +> _,, where
A=Ak : [xp1,x] €Ty, and B =<k : k ¢ A}.

If k € A, use the inequality f(t,) < M; if k € B, choose #; so that f{#;) < h. Deduce that

ZkeA Axk > h.

Proof: It is clear by Hint, so we omit the proof.

Remark: There is another proof about that a function with a positive integral must
itself be positive on some interval.

Proof: Suppose NOT, it means that in every subinterval, there is a point p such that

Jp) = 0. So,
L(P.f) = ijij < Osincem; <0

J=1
for any partition P. Then it implies that

sup L(P,f) = jb fox)dx <0
P a

which contradicts to a function with a positive integral. Hence, we have proved that a
function with a positive integral must itself be positive on some interval.

Supplement on integration of vector-valued functions.
(Definition) Given f1,...,f, real valued functions defined on [a,b], and let

f=(A,....fr) : [a,b] > R". If @ /" on [a,b]. We say that f € R(a) on [a,b] means that
fi € R(a) on [a,b] forj = 1,2,...,n. If this is the case, we define

jzfda - (szlda,...,Jjﬁzda)_

From the definition, the reader should find that the definition is NOT stranger for us. When
we talk f = (f1,...,/2) € R(a) on [a,b], it suffices to consider each f; € R(a) on [a,b] for
j=12,...,n.
For example, if f € R(a) on [a,b] where @ " on [a,b], then |f|| € R(a) on [a,b].
Proof: Since f € R(a) on [a,b], we know that f; € R(a) on [a,b] forj = 1,2,...,n.
Hence,



Z/} € R(a) on [a,b]
k=1
which implies that, by Remark (1) in Exercise 7.30,
" 12
If]| = (Zf} € R(a) on [a,b]> e R(a) on [a,b].
k=1

Remark: In the case above, we have

jb fda

b
< j £l dex.

Proof: Consider

Iyl? =< j:flda,...,jzﬁda,jjflda,...,j:fnda >

- 3 ([ae) ()

which implies that, (let y; = [* fida, y =(1.....7)),

2 S ) b .
Iyll? = ;yj(jaﬁda)
=3[ e

J=1
j=1

b
< [ slly llde
b
= liyll | Iifllde
which implies that
b
Iyl < [ Iflde

Note: The equality holds if, and only if, f(¢) = k(2)y.
Existence theorems for integral and differential equations

The following exercises illustrate how the fixed-point theorem for contractions.
(Theorem 4.48) is used to prove existence theorems for solutions of certain integral and
differential equations. We denote by C[a, b] the metric space of all real continuous
functions on [a, b] with the metric

d(f,.g) = If - gll = max|flx) —g(x),

x€la,b]
and recall the C[a, b] is a complete metric space.

7.36 Given a function g in C[a,b], and a function K is continuous on the rectangle
0 = [a,b] x [a,b], consider the function T defined on C[a, b] by the equation

T)x) = g + 2] Ke, 090



where A is a given constant.
(a) Prove that 7' maps Cla, b] into itself.

Proof: Since K is continuous on the rectangle Q = [a,b] x [a,b], and ¢p(x) € Cla,b],
we know that

b
j K(x,0)o(t)dt € Cla,b].
Hence, we prove that 7(¢)(x) € Cla,b]. That is, T maps C[a, b] into itself.

(b) If [K(x,y)| < M on O, where M > 0, and if |A| < M~'(b—a)”', prove that T'is a
contraction of C[a, b] and hence has a fixed point ¢ which is a solution of the integral

equation p(x) = g(x) + 4| K(x,0)p(t)d
Proof: Consider

IT(p1)(x) = T(g2)(x) |

|2 Kot - o201t

IN

1 1K 0010~ 9200

b
< M [ Jo1(6) - p2(0)ld

< [AM(b - a)llp1() — p2(2) ||.
Since [A| < M~1(b—a)", then there exists ¢ such that |A| < ¢ < M~'(b—a)”". Hence, by
(*), we know that

IT(p1)(x) = T(@2)(X) | < ¥llo1(®) — 2(1) ||
where 0 < ¢cM(b —a) := y < 1. So, T'is a contraction of C[a, b] and hence has a fixed
b
point ¢ which is a solution of the integral equation ¢(x) = g(x) + }Lja K(x,t)p(t)dt.

7.37 Assume f'is continuous on a rectangle Q = [a — h,a + h] x [b — k,b + k], where
h>0k>0.

(a) Let ¢ be a function, continuous on [a — h,a + k], such that (x,p(x)) € Q for all x in
[a—h,a+ h]. If 0 < ¢ < h, prove that ¢ satisfies the differential equation y’ = f(x,y) on
(a — c,a + c) and the initial condition ¢(a) = b if, and only if, ¢ satisfies the integral
equation

o) = b+ jxf(t,(p(t))dt on (a—c,a+c).

Proof: (=)Since ¢'(¢) = f(t,p(t)) on (a — c,a + ¢) and p(a) = b, we have,
x € (a—c,a+c)

o) = p(a@) + [ o'(0ya

— o(a) + jxf(t,(p(t))dt on (a—c,a+c).
(<)Assume '
0() = b+ [ ft.p))dion (a~c.a+c),
then '
¢'(x) = flt,p(x)) on (a — c,a + c).
(b) Assume that |f(x,y)| < M on Q, where M > 0, and let ¢ = min{h,k/M}. Let S



denote the metric subspace of Cla — c¢,a + c] consisting of all ¢ such that |p(x) — b| < Mc
on [a — c¢,a + c]. Prove that S is closed subspace of Cla — c,a + ¢] and hence that § is itself
a complete metric space.

Proof: Since C[a — c,a + c] is complete, if we can show that S is closed, then S is
complete. Hence, it remains to show that S is closed.

Given f € §', then there exists a sequence of functions {f,} such that f, — funder the
sup norm ||. ||. So, given & > 0, there exists a positive integer N such that as n > N, we
have

max ]lfn(x) —fx)| < &.

x€la—c,a+c
Consider
[flx) = b| < [ftx) = fx()| + [fw(x) — b

< ) =A@ I + [lfv(x) = Bl

<&+ Mc
which implies that

|fix) — b] < Mc for all x

since ¢ is arbitrary. So, f € S. It means that § is closed.

(c) Prove that the function 7" defined on S by the equation
T()w) = b+ | Mg
maps S into itself.

Proof: Since

7)) - bl = | [ At

< [ ife.o0)ar
< (x—-a)M
< Mc

we know that 7(¢)(x) € S. That is, T maps S into itself.

(d) Now assume that f'satisfies a Lipschitz condition of the form

[fx,y) = flx,2)| < Aly - 2|
for every pair of points (x,y) and (x,z) in O, where 4 > 0. Prove that 7T is a contraction of
Sif h < 1/A. Deduce that for & < 1/4 the differential equation y' = f(x,y) has exactly one
solution y = @(x) on (a — ¢,a + ¢) such that p(a) = b.

Proof: Note that # < 1/4, there exists A such that 7 < A < 1/4. Since
[ T(p1)(x) = T(g2) ()|l

< [ 1fe.01) =t p20))la

<4 j:|¢1(f) — @a(2)|dt by [f(x,y) —flx,z)| < Aly — 7|

<A(x—a)llei(t) — e2(2) |l
< Ahllo.(t) — @22 |

<7lle1@) = @21l
where 0 < A4 = y < 1. Hence, T is a contraction of S. It implies that there exists one and



only one ¢ € S such that
o) = b+ | Mo

which implies that

¢'(x) = flx,p(x)).
That is, the differential equation y' = f{x,y) has exactly one solution y = ¢(x) on
(a — c,a + c) such that p(a) = b.

Supplement on Riemann Integrals

1. The reader should be noted that the metric space (R([a,b]),d) is NOT complete,
where

() = [ 1) - o).

We do NOT give it a proof. The reader can see the book, Measure and Integral (An
Introduction to Real Analysis) by Richard L.. Wheeden and Antoni Zygmund, Ch5.

2. The reader may recall the Mean Value Theorem: Let f be a continuous function on
[a,b]. Then

[/ fosyds = )b - a)

where x¢ € [a,b]. In fact, the point x( can be chosen to be interior of [a,b]. That is,
xo € (a,b).

Proof: Let M = sup,c(,1/(x), and m = inf,, ;) f(x). If M = m, then it is clear. So, we
may assume that M # m as follows. Suppose NOT, it means that xo = a or b. Note that,

fix1)) =m < flxg) =r <M= f(x,)
by continuity of fon [a,b]. Then we claim that
flxp) = mor M.
If NOT, i.e.,

fxy) < r < flxa)
it means that there exists a point p € (x1,x,) such that f(p) = r by Intermediate Value
Theorem. It contradicts to p = a or b. So, we have proved the claim. If f{a) = m, then

b b
I fx)dx =m(b—a) > 0 = I [f(x) — m]dx
which implies that, by f{x) —m > 0 on [a,b],
fix) = m forall x € [a,b].
So, it is impopssible. Similarly for other cases.

Remark: (1) The reader can give it a try to consider the Riemann-Stieltjes Integral as
follows. Let a be a continuous and increasing function on [a, b]. If f'is continuous on
[a,b], then

[ fooda) = flo)a®) - ata)]
where ¢ € (a,b).

Note: We do NOT omit the continuity of @ on [a, b] since



0ifx=0
fix) =xon[0,1]; a(x) = { Lifx € (0.1]

(2) The reader can see the textbook, exercise 14.13 pp 404.

Exercise: Show that

/2
<I dx < L,
0

s
2 1- % sin’x J2

Proof: It is clear by the choice of xo € (0,7/2).

3. Application on Integration by parts for Riemann-integrable function. It is
well-known that

[ ey = xfte) = [ xalft).
If f{x) has the inverse function g(y) = x, then (*) implies that

[ e = xft) - [ 20)ay.
For example,

I arcsinxdx = xarcsinx — I sinydy.

4. Here is an observation on Series, Differentiation and Integration. We write it as a
table to make the reader think it twice.

(Series) :  Summation by parts Cesaro Sum ?
(Differentiation) : (fg)' = fg+fg' Mean Value Theorem Chain Rule

(Integration) . Integration by parts Mean Value Theorem Change of Variable .



