Supplement on lim sup and lim inf

Introduction

In order to make us understand the information more on approaches of a given real
sequence {an}, ,, We give two definitions, thier names are upper limit and lower limit. It
is fundamental but important tools in analysis. We do NOT give them proofs. The reader
can see the book, Infinite Series by Chao Wen-Min, pp 84-103. (Chinese Version)

Definition of limit sup and limit inf

Definition Given a real sequence {an}_,, we define
bn = sup{am : m > n}
and
cn = inf{am : m > n}.

Example {1+ (-1)"}", ={0,2,0,2,...}, so we have
bn = 2and ¢, = 0 for all n.

Example {(-1)"n}~, = {-1,2,-3,4,...}, so we have
bn = 4+ and ¢, = —oo for all n.

Example {-n}~, = {-1,-2,-3,...}, sowe have
bn = —nand ¢, = —oo for all n.

Proposition  Given a real sequence {as},_,, and thus define b, and cn as the same as
before.
1 bp# -0, and cy # 0 Vn € N,
2 If there is a positive integer p such that b, = +oo, then by = +00 Vn € N.
If there is a positive integer g such that cq = —oo, then ch = —0 Vn € N.
3 {bn} is decreasing and {cn} is increasing.

By property 3, we can give definitions on the upper limit and the lower limit of a given
sequence as follows.

Definition Given a real sequence {a,} and let b, and c, as the same as before.
(1) If every by € R, then
inf{by, : n € N}
is called the upper limit of {a,}, denoted by
lim sup an.

That is,

limsupan = infbn.

—00 n

If every b, = 400, then we define
lim supan = +o.

(2) If every cn € R, then
sup{cn : n € N}
is called the lower limit of {a,}, denoted by



lim infay.
N—o0
That is,
liminfa, = SupCa.

If every ¢, = —oo, then we define
liminfa, = —oo.
N—o0

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example {1+ (-1)"}", ={0,2,0,2,...}, so we have
bhn =2andc, = 0foralln
which implies that
limsupa, = 2and liminfa, = 0.

Example {(-1)"n} ", = {-1,2,-3,4,...}, so we have
bn = +o0and ¢y = —oo for all n
which implies that
lim supan = +o and lim infa, = —oo.

Example {-n}~, = {-1,-2,-3,...}, sowe have
bn = —nand ¢, = —o forall n
which implies that
limsupa, = —0 and lim infa, = —oo.

Relations with convergence and divergence for upper (lower) limit

Theorem Let {a,} be a real sequence, then {a,} converges if, and only if, the upper
limit and the lower limit are real with

lim supan = lim infa, = liman.
Theorem Let {an} be a real sequence, then we have
(1) limpeo SUPpa@n = 40 < {an} has no upper bound.

(2) limp.e SUpan = —0 < forany M > 0, there is a positive integer ny such
that as n > ng, we have
an < -M.,
(3) limn. supan = a if, and only if, (a) given any ¢ > 0, there are infinite
many numbers n such that
a—&g < an
and (b) given any ¢ > 0, there is a positive integer no such that as n > ny, we have
dn < a-+é&.

Similarly, we also have
Theorem Let {an} be a real sequence, then we have



(1) limpe infan = —0 < {an} has no lower bound.
(2) limpe infan = 400 < forany M > 0, there is a positive integer ng such
that as n > ng, we have
an > M.
(3) limn. infa, = aif, and only if, () given any ¢ > 0, there are infinite
many numbers n such that
a+ & > an
and (b) given any ¢ > 0, there is a positive integer no such that as n > ny, we have
dn > a-—é&.

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.

Definition Let {an} be a real sequence, then we have

(1) If limy. SUpan = —oo, then we call the sequence {a,} diverges to —oo,
denoted by

lima, = —o.

(2) If limy. infa, = 400, then we call the sequence {a,} diverges to +oo,
denoted by

liman = +o.
Theorem Let {an} be areal sequence. If a is a limit point of {an}, then we have
liminfa, < a < |limsupan.
Some useful results
Theorem Let {an} be a real sequence, then

(1) limpoe infan < limpoe SUpan.

(2) limpoo inf(—an) = —limp.e supan and limpoe sup(—an) = —limp.o infa,
(3) Ifeverya, > 0, and 0 < limp. infan < limpy. SUpan < +o0, then we
have
limsup-+ = —2L1 — and liminfL = — 1
nia SUP 3, limn.. infay o 0 8n o [impLe SUPan

Theorem Let {an} and {bn}be two real sequences.
(1) If there is a positive integer ng such that a, < by, then we have

liminfa, < lim infb, and lim supan < lim supbn.

(2) Suppose that —o < limp.s infan, limp.e infby, limp.. Supan,
limpoe SUPp bR < +oo, then

lim infan + lim infby
< liminf(an + bn)
im infan + lim supbn (or lim supan + lim infby )

li
n-
li
n-
<l
n-
li
n

im supan + lim supbn.



In particular, if {a,} converges, we have

lim sup(an + bn) = liman + lim supbn
and

liminf(an + bn) = liman + lim infbx.

(3) Suppose that —o < limp.s infan, limp.e infby, limp.. Supan,
limp. SUpbn < +o0, and an > 0, by > 0 Vn, then

(lim infa, ) (lim infb,)
< lim inf(anbn)
< (lim infan ) (Jim supbn ) (or (fim infbn ) (Jim supan ))
< lim sup(anbn)
< (lim supas ) (lim supby ).
In particular, if {a,} converges, we have
lim sup(anbn) = (ILLrQ an> lim sup by
and
lim inf(an + bn) = (liman ) lim infby.

Theorem Let {an} be a positive real sequence, then
H H an+]_ H H 1/n H 1/n H an+]_
lim inf =3 = < lim inf(an)™" < lim sup(an)™" < lim sup 2

Remark We can use the inequalities to show

] 1/n
lim M _ e,
n—-oo

Theorem Let {an} be a real sequence, then

lim infa, < lim inf 3% |im, supM < lim supan.
N—o0 N—00 n n—o0 n n—oo

Exercise Letf : [a,d] - R be a continuous function, and {an} is a real sequence. If f is
increasing and for every n, limn.. infan, limy.. supan € [a,d], then
lim supf(an) = f(lim supan ) and lim inff(a,) = f(lim infa, ).
Remark: (1) The condition that f is increasing cannot be removed. For
example,
fx) = Ix,
and

4 — 1/k if k is even
“7 ] -1-1kifkis odd.
(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.
Exercise Let {an} be a real sequence satisfying anp < an + ap for all n, p. Show that
{2~} converges.
Hint: Consider its limit inf.



Remark: The exercise is useful in the theory of Topological Entorpy.
Infinite Series And Infinite Products
Sequences

8.1 (a) Given a real-valed sequence {an} bounded above, let u, = sup{ax : k > n}.
Then un N\, and hence U = limn.. Un is either finite or —co. Prove that
U = limsupan = lim(sup{ax : k = n}).

Proof: It is clear that u, \, and hence U = limn. un is either finite or —oo.
If U = —0, then given any M > 0, there exists a positive integer N such that as n > N,
we have

Un < -M

which implies that, asn > N, a, < -M. So, limy.an = —oo. That is, {an} is not bounded
below. In addition, if {an} has a finite limit supreior, say a. Then given € > 0, and given
m > 0, there exists an integer n > m such that

an >a—¢
which contradicts to lim,-.. an = —oo. From above results, we obtain
U = lim supan
in the case of U = —co.

If U is finite, then given ¢ > 0, there exists a positive integer N such that asn > N, we
have

U<up<U-+es.

So,asn > N, up < U+ ¢ which implies that,asn > N, an < U + &. In addition, given
g >0, and m > 0, there exists an integer n > m,

U — 8/ < an
by U < un = sup{ax : k > n} if n > N. From above results, we obtain
U = lim supan
in the case of U is finite.

(b)Similarly, if {an} is bounded below, prove that
V = liminfa, = lim(inf{ax : k = n}).

Proof: Since the proof is similar to (a), we omit it.

If U and V are finite, show that:
(c) There exists a subsequence of {a,} which converges to U and a subsequence which
convergesto V.

Proof: Since U = lim supn-« an by (a), then
(i) Given ¢ > 0, there exists a positive integer N such that as n > N, we have
an < U+e.
(ii) Given ¢ > 0, and m > 0, there exists an integer P(m) > m,
U-¢ < apm.
Hence, {apm) - Is a convergent subsequence of {a,} with limit U.
Similarly for the case of V.



(d) If U =V, every subsequnce of {a,} converges to U.
Proof: By (a) and (b), given &€ > 0, then there exists a positive integer N; such that as
n > N, we have
an<U+eg
and there exists a positive integer N, such that as n > N,, we have
U-¢ < an.
Hence, as n > max(N,N,), we have
U-¢g<an<U+e
That is, {an} is a convergent sequence with limit U. So, every subsequnce of {an}
converges to U.

8.2 Given two real-valed sequence {an} and {b,} bounded below. Prove hat
(@) lim supn-w(@n + bn) < lim supn-«an + lim supn-« bn.

Proof: Note that {a,} and {b,} bounded below, we have lim supn.«an = +o 0or is
finite. And lim supn-. bn = +o0 or is finite. It is clear if one of these limit superior is +oo,
S0 we may assume that both are finite. Let a = lim supn-«an and b = lim supn-« bn. Then
given ¢ > 0, there exists a positive integer N such that as n > N, we have

an+by,<a+b+eg/2

In addition, let ¢ = lim supn-«(an + bn), where ¢ < +owo by (*). So, for the same ¢ > 0, and

given m = N there exists a positive integer K such that as K > N, we have
c—¢l2 < aK+bK.
By (*) and (**), we obtain that
c—¢l2 <ak+bxk <a+b+el2
which implies that
c<a+b
since ¢ is arbitrary. So,
lim ﬁgg(an +bn) < lim supan + lim sup by.

n—oo

Remark: (1) The equality may NOT hold. For example,
an = (-1)" and b, = (-1)™.
(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on process of proof.

(b) lim supn-w(@nbn) < (lim supn-x an)(lim supn- bn) if an > 0, b, > 0 for all n, and
if both lim supn-« an and lim supn-- by are finite or both are infinite.

Proof: Let lim supn-.an = a and lim supn-. bn = b. It is clear that we may assume
that a and b are finite. Given ¢ > 0, there exists a positive integer N such thatas n > N,
we have

anbnh < (@a+é&)(b+¢e) =ab+e(@a+b+e).

In addition, let ¢ = lim supn-«(anbn), where ¢ < +o0 by (*). So, for the same ¢ > 0, and
given m = N there exists a positive integer K such that as K > N, we have

cC—¢< aK+bK.
By (*) and (**), we obtain that
C—eg<ak+bxk<a+b+e@+b+eg)

**

**



which implies that
c<a+hb
since ¢ is arbitrary. So,

lim ﬁﬂg(anbn) < (Iim ﬁggan) (Iim sup bn).

n—oo
Remark: (1) The equality may NOT hold. For example,
ap = 1/nifnisoddand a, = 1if niseven.
and
bn = 1lifnisoddand b, = 1/nif niseven.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on the process of the proof.

(3) The reader should be noted that if letting A, = logan and B, = logbn, then by (a)
and logx is an increasing function on (0, +), we have proved (b).

8.3 Prove that Theorem 8.3 and 8.4.
(Theorem 8.3) Let {an} be a sequence of real numbers. Then we have:
@) lim infrwan < lim supn.« an.

Proof: If lim supn.«an = +oo, then it is clear. We may assume that
lim supn»an < +o0. Hence, {an} is bounded above. We consider two cases: (i)
lim supn.»an = @, where a is finite and (ii) lim supn-.an = —oo.

For case (i), if lim inf_. a, = —oo, then there is nothing to prove it. We may assume
that lim inf,..an = @', where a’ is finite. By definition of limit superior and limit inferior,
given ¢ > 0, there exists a positive integer N such that asn > N, we have

a' —¢el2 <an<a+éel2

which implies that @’ < a since ¢ is arbitrary.

For case (ii), since lim supn-an = —oo, we have {a,} is not bounded below. If
lim inf,.-an = —oo, then there is nothing to prove it. We may assume that
liminf..an = @', where a’ is finite. By definition of limit inferior, given ¢ > 0, there
exists a positive integer N such that as n > N, we have

a' —¢l2 < apn
which contradicts that {a, } is not bounded below.

So, from above results, we have proved it.

(b) The sequence converges if and only if, lim supn..an and lim inf,.. a, are both
finite and equal, in which case limp.an = lim infr.c@n = lim SUpPn-« an.

Proof: (=)Given {an} a convergent sequence with limit a. So, given & > 0, there
exists a positive integer N such that as n > N, we have
a—-¢<ap<a+e.
By definition of limit superior and limit inferior, a = lim infy.an = lim SUpn-« an.
(<)By definition of limit superior, given ¢ > 0, there exists a positive integer N; such
that as n > N, we have
apnh < a-+é¢

and by definition of limit superior, given & > 0, there exists a positive integer N, such that
asn > N, we have



a—¢ < an.
So, as n > max(Ny,N;), we have

a—-g<ap<a+e.
That is, limp.xan = a.

(c) The sequence diverges to +o if and only if, lim infr.an = lim SUPn-w @n = +o0.

Proof: (=)Given a sequence {an} with limy..an = +o. So, given M > 0, there is a

positive integer N such that as n > N, we have
M < an.

It implies that {an} is not bounded above. So, lim supn.«an = +o. In order to show that
lim inf,..an = +o00. We first note that {an} is bounded below. Hence, lim infn...an # —oo.
So, it suffices to consider that lim inf,.. an is not finite. (So, we have
liminfp..an = +00.). Assume that lim inf,.an = a, where a is finite. Then given ¢ = 1,
and an integer m, there exists a positive K(m) > m such that

akm <a+1
which contradicts to (*) if we choose M = a + 1. So, lim inf,_ a, is not finite.
(d) The sequence diverges to —oo if and only if, lim infy.can = lim supp.wan = —oo.
Proof: Note that, lim supn-»(—an) = —lim infp.. an. So, by (c), we have proved it.

(Theorem 8.4)Assume that an < b, foreachn = 1,2,.... Then we have:
lim infa, < lim infb, and lim supan < lim supbn.

Proof: If lim inf,...bn = 400, there is nothing to prove it. So, we may assume that
lim infy.co by < +00. That is, lim infn., by = —o0 or b, where b is finite.

For the case, lim infn... bn = —oo, it means that the sequence {an} is not bounded
below. So, {b,} is also not bounded below. Hence, we also have lim infn.. an = —o.

For the case, lim inf,..bn = b, where b is finite. We consider three cases as follows.

(i) if lim inf,.an = —oo, then there is nothing to prove it.

(it) if lim infy..an = a, where a is finite. Given ¢ > 0, then there exists a positive
integer N such thatasn > N

a—¢el2 <an<bn<b+el2

which implies that a < b since ¢ is arbitrary.

(iii) if lim infy.c an = +o0, then by Theorem 8.3 (a) and (c), we know that
limp. an = 400 which implies that limy... by, = +00. Also, by Theorem 8.3 (c), we have
lim infpo by = +00 which is absurb.

So, by above results, we have proved that lim inf,..an < lim infp.. bn.

Similarly, we have lim supn-«an < lim supn-. bn.

8.4 I each an > 0, prove that
NP T L U _ Un _ g ani1
lim inf == < lim inf(an)™ < lim sup(an)™ < lim sup =3*-.

—00

Proof: By Theorem 8.3 (a), it suffices to show that
)" and Jim sup(an) ™" < lim sup L.

i inf Anel T
Jim inf 3+ < Jim inf(an i
We first prove

. 1/n . An+1
lim sup(an) ™ < lim sup =3



If lim supn-.. - = +oo, then it is clear. In addition, since &L is positive,
lim SUPnow 221 # —o0. SO, we may assume that lim supn... <& = a, where a is finite.
Given ¢ > 0, then there exists a positive integer N such that as n > N, we have

dni1
an <a+ég

which implies that
anw < an(@+¢)*, wherek = 1,2,....
So,
(ana) T < (an) W (a+g) WF
which implies that
lim sup(any) ¥ < lim sup(ay) ¥ (a + £) ¥

a+e.
So,
Lim sup(an.) ™ < a

since ¢ is arbitrary. Note that the finitely many terms do NOT change the value of limit
superiror of a given sequence. So, we finally have

H 1/n I a.n 1

im sup(an)™ < & = Jim sup =37
Similarly for

C Al i 1n
lim inf === < lim inf(an) ™"

Remark: These ineqaulities is much important; we suggest that the reader keep it mind.
At the same time, these inequalities tells us that the root test is more powerful than the

ratio test. We give an example to say this point. Given a series
1.1 .1 1 1 1

2 T3 T ar Ty teton Y gt
where
a1 = (%)n and ap, = (%)n n=12,...
with
lim sup(an)*" = % <1
and

im i dnil H anil _
lim inf 3= =0, lim sup == = +o.

8.5 Let an = n"/n!. Show that limn.« an.1/an = € and use Exercise 8.4 to deduce that

i n —

Proof: Since

ang _ (n+1)"t 1\
an T T(n+L)inn -(1+h) -

by Exercise 8.4, we have

: in




Remark: There are many methods to show this. We do NOT give the detailed proof.
But there are hints.

(1) Taking log on (Q—A)U”, and thus consider
Llogl og ) - [ logxdx = 1
n(ogn+...+ogn> joogxx :

(2) Stirling’s Formula:
n! = n"e"/2zne, where 6 € (0,1).
Note: In general, we have
. I'x+1)
lim ——~ =1,
X2He xXe ™ 2mX
where I'(x) is the Gamma Function. The reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 192-195.

(3) Note that (1 + )* 7~ eand (L + 1) \_ e on (0,%). So,

(1+%>n <ec< <1+%>n+l

e(n"e™) < n! < g(n™le ™),

which implies that

(4) Using O-Stolz’s Theorem: Let liMp.cyn = +0 and yn . If

lim Xl — X0 _ 5 \where a is finite or + oo,
n—o0 yn+1 yn

then

Xn _
lim g =2
Let X, = log+ +...+log & and y, = n.

Note: For the proof of O-Stolz’s Theorem, the reader can see the book, An
Introduction to Mathematical Analysis by Loo-Keng Hua, pp 195. (Chinese Version)

(5) Note that, if {a,} is a positive sequence with limp..an = @, then

(@ +--an) > aasn - .

Takinga, = (1 ++)", then

e = (3) () -

Note: For the proof, it is easy from the Exercise 8.6. We give it a proof as follows. Say
lim.can = a. Ifa =0, thenby A.P.> G.P., we have

(@1« - an)" < 21t Hn g by Exercise 8.6.

So, we consider a + 0 as follows. Note that logan, — loga. So, by Exercise 8.6,

loga; +...+loga
98 +.. 77008  joga

)1/n

which implies that (a; - - -an - a.

8.6 Let {an} be real-valued sequence and let on = (a; +...+an)/n. Show that
liminfa, < liminfon < lim supon < lim supan.

Proof: By Theorem 8.3 (a), it suffices to show that
liminfa, < liminfoq and lim supon < lim supan.



We first prove
limsupon < lim supan.
If lim supn-an = +o0, there is nothing to prove it. We may assume that

lim supn-«an = —oo or @, where a is finite.
For the case, lim supn.«an = —oo, then by Theorem 8.3 (d), we have

liman = —o.
So, given M > 0, there exists a positive integer N such that as n > N, we have
an < -M.
Letn > N, we have
_ (ap +...+an) +..+an
n

_adp +...+an
= A +

ay +.r.l.+aN N ( n = N )(—M)

ang1 t...+an
n

IA

which implies that
limsupon < -M.
Since M is arbitrary, we finally have
limsupon = —.
For the case, lim supn-an = a, where a is finite. Given ¢ > 0, there exists a positive
integer N such thatas n > N, we have
dn < a-+eé.

Let n > N, we have

(a; +...+an) +..+an
O-n = n
a; +...+an ans1 ... +Han
n + n

a1+.r.].+aN i (nBN>(a+8)

AN

which implies that
limsupon <a+e
which implies that
limsupon < a
since ¢ is arbitrary.

Hence, from above results, we have proved that lim supn-«on < lim supn.« an.
Similarly for lim infp.c an < lim inf. on.

Remark: We suggest that the reader keep it in mind since it is the fundamental and
useful in the theory of Fourier Series.

8.7 Find lim supn-« an and lim inf,_. an if an is given by

(@) cosn

Proof: Note that, {a+ bz : a,b € Z} isdense in R. By cosn = cos(n + 2kr), we
know that

limsup cosn = 1and lim inf cosn = 1.



Remark: The reader may give it a try to show that

limsup sinn = 1 and lim infsinn = 1.
(b) (1 + +)cosnzx
Proof: Note that

<1+%>cosn7r{ lifn =2k

—lifn=2k-1
So, it is clear that

lim sup(l + %) cosnz = 1and lim inf(l + %) cosnzr = —1.
(c) nsin £

Proof: Note thatas n = 1 + 6k, nsin &= = (1 + 6k)sin %, and as n = 4 + 6Kk,
n = —(4 + 6k)sin Z-. So, it is clear that

lim supnsin 0Z — 4o and lim infnsin
Nn—oo 3 N—o0

=
(d) sin £ cos 7
Proof: Note that sin £ cos X2 = 2sinnz = 0, we have
i in D7 o5 N _ [im inf sin DZ cos DT —
lim sup sin 5 C0S 5 lim inf sin 5 C0S 5 0.
(e) (-1)"n/(L +n)"

Proof: Note that

lim(-1)"n/(1 +n)" = 0,
we know that

lim sup(=1)"n/(1 + n)" = lim inf(-1)"n/(1 + n)" = 0.
(f) 5-15)

Proof: Note that

Lifn=3k+1
2
3

3-[4]

So, it is clear that

ifn=3k+2 ,wherek =0,1,2,....
0ifn =3k

i n_[nij_-2 iminf -0 | =
lim sup 3 [ 3 } 3 and lim inf 3 [ 3 } 0.
Note. In (f), [x] denoted the largest integer < X.

8.8 Let an=2/n— ZL 1/Jk . Prove that the sequence {an} converges to a limit p
in the interval 1 < p < 2.

Proof: Consider | 1/JK := S, and j2x—1’2dx = Th, then

limd, exists, where dy = Sn — Th
by Integral Test. We denote the limit by d, then



0<d<1 *
by Theorem 8.23 (i). Note that {d, — f(n)} is a positive increasing sequence, so we have
d> 0. **
Since
Th=2/n-2

which implies that

LL@(M —ZWE) = lima, =2-d =p.
k=1
By (*) and (**), we have proved that 1 < p < 1.

Remark: (1) The use of Integral Test is very useful since we can know the behavior
of a given series by integral. However, in many cases, the integrand may be so complicated
that it is not easy to calculate. For example: Prove that the convergence of

#, where p > 1.

HXZ: n(logn)®

Of course, it can be checked by Integral Test. But there is the Theorem called Cauchy
Condensation Theorem much powerful than Integral Test in this sense. In addition, the
reader can think it twice that in fact, Cauchy condensation Theorem is equivalent to
Integral Test.

(Cauchy Condensation Theorem)Let {an} be a positive decreasing sequence. Then

D " an converges if, and only if, D 2%a,« converges.
n=1 k=0
Note: (1) The proof is not hard; the reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 61-63.

(2) There is an extension of Cauchy Condensation Theorem (Oskar Schlomilch):
Suppose that {ax} be a positive and decreasing sequence and {my}(< N) is a sequence. If

there exists a ¢ > 0 such that
0 < Mo — M1 < c(my,g — my) forall k,

then
D" ay converges if, and only if, Y (M1 — Mi)am,.
k=1 k=0
Note: The proof is similar with Cauchy Condensation Theorem, so we omit it.

(2) There is a similar Theorem, we write it as a reference. Ift > a, f(t) isa
non-negative increasing function, then as x > a, we have

> ) - [t

asn=<x

Proof: The proof is easy by drawing a graph. So, we omit it.

< f(x).

P.S.: The theorem is useful when we deal with some sums. For example,
f(t) = logt.
Then



D logn—xlogx +x—1| < logx.
1<n=<x
In particular, as x € N, we thus have
nlogn—n+1—-logn < logn! < nlogn—n+1+logn
which implies that
nnflefn+1 < n! < nn+1e—n+1.

In each of Exercise 8.9. through 8.14, show that the real-valed sequence {an} is
convergent. The given conditions are assumed to hold for all n > 1. In Exercise 8.10
through 8.14, show that {a,} has the limit L indicated.

89 [an| < 2, |ans2 — @nga| < %|aﬁ+1 - a%|
Proof: Since
|an2 — ans| < %|a%+1 - a%|

= %laml - an”an+1 + an|
%|an+1 — an| since |an| < 2

we know that
|%ﬂ_&ﬂ§(%>ﬁh2_%|§(%>n%

k

[k — an| < D Jany — Ansja
j=1

k 1 n+j—4
< JZl(E)

< (%)n_z — 00asn — oo,

So,

Hence, {a,} is a Cauchy sequence. So, {an} is a convergent sequence.

Remark: (1) If |an:1 —an| < bn forall n € N, and Db, converges, then > a,
converges.

Proof: Since the proof is similar with the Exercise, we omit it.

(2) In (1), the condition )_ b, converges CANNOT omit. For example,

(i) Leta, = sin(3>2, , L) Or
(ii) an is defined as follows:

ar=1a,=1/2, a3 =0, a4 = 1/4, a5 = 1/2, ag = 3/4, a; = 1, and so on.

810 a;>0,a, >0, ap2 = (anan+1)1/2a L= (ala%)l/g-

Proof: If one of a; or a, is 0, then a, = 0 for all n > 2. So, we may assume that
a; # 0and a; + 0. So, we have a, = 0 for all n. Let by, = -, then

bne1 = 1/,/bn foralln

which implies that



b1 = (bl)(?ly - lasn - oo.
Consider
M7ty = T17, (by) ™"
which implies that

213
12 —-2/3
<a1 az) an = ( 1 )

bn+l

which implies that

- 1/3
liman,1 = (a;a3)™".

Remark: There is another proof. We write it as a reference.

Proof: If one of a; or a, is 0, thena, = 0 for all n > 2. So, we may assume that

a, + 0and a, = 0. So, we have a, + 0 forall n. Leta, > a;. Since ans2 = (@nan.1)?,

then inductively, we have
a; <az <...<ag1 <...<ag, <...<ag < as.
So, both of {a,,} and {a,n_1} converge. Say
Hm a,, = X and !quI‘o anm1 =Y.
Note thata; + Oanda, + 0, sox = 0, andy # 0. In addition, x = y by
ani2 = (anani1)™. Hence, {an} converges to x.
By an2 = (@nan:1)"?, and thus
1_[Jn:laj2+2 = Hjnzlajajﬂ = (ala%an+1)HF:_12aj2+2
which implies that
Ans18f., = 2185
which implies that
. N N 2\ 1/3
liman = x = (aia3) .
Aopndon_:
8.11a; =2 a, =8, agu = +(@zn +az1), Qo2 = 22t L =4,

Proof: First, we note that
Qonit = % > [@mami by A.P.> G.P.
forn e N. So, by as,, = 22221 gnd (¥),

azn+1

dondan—
iz = g, 2 < J@xdxn-1 < az foralln e N.

Hence, by Mathematical Induction, it is easy to show that
s <ag <...<amp <...<ap <...<as < az
for all n € N. It implies that both of {a,,} and {a,,_1} converge, say
Lim a,, = X and !HQ anm1 =Y.

With help of a1 = 4 (azn + az-1), we know that x = y. In addition, by apn,, = 222,
a; = 2, and a, = 8, we know that x = 4.

8.12a; = 5%, 3a,1 = 2+a}, L = 1. Modify a; to make L = 2.

Proof: By Mathematical Induction, it is easy to show that
-2 <ap<1foralln.



So,
3@ —an) =a3-3a,+2>0
by (*)and f(x) = x3 —=3x+2 = (X — 1)%(x+2) > 0 on [-2,1]. Hence, {an} isan
increasing sequence with a upper bound 1. So, {an} is a convergent sequence with limit L.
So, by 3a,.1 = 2 + a,
L3-3L+2=0
which implies that
L=1or -2
So,L =1sinca, /anda; = -3/2.
In order to make L = -2, it suffices to leta; = -2, then a, = -2 for all n.

8.13a; = 3, Ay = &) | = /3.

3+an

Proof: By Mathematical Induction, it is easy to show that
an > /3 forall n.
So,
3-a?
3+ an <0

which implies that {a,} is a decreasing sequence. So, {an} is a convergent sequence with
limit L by (*). Hence,

dpnyl —an =

L 3a+L)
- 3+4L

L=+/3.

which implies that

So, L = /3 since a, > /3 forall n.

8.14 a, — 222, where by = by = 1, by = by + by, L = 255

Hint. Show that bn,,bn — b2,; = (—1)n+1 and deduce that |an — ans1| < n7?, if n > 4.

Proof: By Mathematical Induction, it is easy to show that
bns2bn — b2, = (-1)™ forall n

and
bn >N |f n>4
Thus, (Note that b, + 0 for all n)

1 1 .
S N+ D) < o2 ifn > 4.

n+l
@t — an| = | Loz _ Do | _ ‘ (1)

bn+1 bn bnbn+1

So, {an} is a Cauchy sequence. In other words, {a,} is a convergent sequence, say
limy.o by = L. Then by by, = bn + byy1, we have

bn+2 bn
e = =0 4]
bn+l bn+1
which implies that (Note that (0 =)L > 1 since a, > 1 for all n)
-1
L = t 1
which implies that
L _1+/5

2



So,L = “f since L > 1.

Remark: (1) The sequence {bn} is the famous sequence named Fabonacci sequence.
There are many researches around it. Also, it is related with so called Golden Section,

£1 - 0.618....

(2) The reader can see the book, An Introduction To The Theory Of Numbers by G.
H. Hardy and E. M. Wright, Chapter X. Then it is clear by continued fractions.

(3) There is another proof. We write it as a reference.

Proof: (STUDY) Since by;2 = bn + bpy1, we may think
Xn+2 — Xn + Xn+1’
and thus consider x> = x + 1. Say « and S are roots of x> = x + 1, with a < B. Then let
_proa
Fn - ﬂ —a [

we have
Fn = bn.
So, it is easy to show that L = % We omit the details.

Note: The reader should be noted that there are many methods to find the formula of
Fabonacci sequence like F,. For example, using the concept of Eigenvalues if we can
find a suitable matrix.

Series
8.15 Test for convergence (p and q denote fixed rela numbers).
@ X, ner
Proof: By Root Test, we have
lim sup(g—f])lm =1/e < 1.
So, the series converges.
(b) 3-, ,(logn)®

Proof: We consider 2 cases: (i) p > 0, and (ii) p < 0.

For case (i), the series diverges since (logn)P does not converge to zero.

For case (ii), the series diverges by Cauchy Condensation Theorem (or Integral
Test.)

(c) X, ,p"nP (p > 0)
Proof: By Root Test, we have
i n -\ ln
limsup(B5 )" = p.
So, asp > 1, the series diverges, and as p < 1, the series converges. For p = 1, itis clear
that the series > n diverges. Hence,

D p™P converges if p € (0,1)
n=1
and



D" p'ne diverges if p & [1,0).

n=1
(d) X, wiw 0 <a<p)
Proof: Note that 1= = = —~. We con5|der 2cases: ()p>1and (i)p < 1.

For case (i), by Limit Comparison Test with -3-,

n—oo

1
lim 02T =1
W
the series converges.
For case (ii), by Limit Comparison Test with -,
1
lim =5 = 1,
nP
the series diverges.
(e) Z(::l n*l*l/n
Proof: Since n-1-1" > n-1 for all n, the series diverges.
(f) Zn,“,n—fqn (0O<qg<p
Proof: Note that -~ qn = pn . ( ST . We consider 2 cases: (i) p > 1and (ii) p < 1.
For case (i), by Limit Comparison Test with W’

the series converges.
For case (ii), by Limit Comparison Test with pn ,
1

lim P — 1
n—oo L !
pn
the series diverges.

0 1
(@) 220t TrogcTmy

Proof: Since

; 1 _
i nlog(1+1/n)

we know that the series diverges.

()=, e
n=2 (logn)'°9"
Proof: Since the identity alo9b = bloga  we have
(|Ogn)|09n = nlog logn

> n2asn > no.

So, the series converges.

() xr, Toandos o

Proof: We consider 3 cases: (i) p <0, (ii)0 < p < 1 and (iii) p > 1.



For case (i), since

1 > 1 >
nlogn(log logn)® ~ nlogn forn =3,

we know that the series diverges by the divergence of
For case (ii), we consider (choose ng large enough)

© 1
n=3 nlogn

o0

Z _ . 2i _ __1 zw: 1
2ilog2i(log log2!)®  log2 &= j(logjlog2)”

J=no
ZOO 1
> - 7
~ & j(logj)”

then, by Cauchy Condensation Theorem, the series diverges since >~ —1— diverges

j=no j(logj)®
by using Cauchy Condensation Theorem again.
For case (iii), we consider (choose ng large enough)

0

Y21 i 1
2ilog2i(log log2/)?  log2 & j(logjlog2)°®

i=no

o0

1
=22 Jogilog2)?

i=no

<4y L
,-zznoj(logj)p

then, by Cauchy Condensation Theorem, the series converges since ij'ino J. (Iogj)p
converges by using Cauchy Condensation Theorem again.

Remark: There is another proof by Integral Test. We write it as a reference.

Proof: It is easy to check that f(x) = nglogx)p is continous, positive, and
decreasing to zero on [a,) where a > 0 for each fixed p. Consider

J.oo dX _ J.oo ﬂ
a X|OgX(|Og Iogx)p log loga yP
which implies that the series converges if p > 1 and diverges if p < 1 by Integral Test.

(J) Z::3<W> log logn

) log logn

Proof: Let a, = ( L

log logn forn > 3and by, = 1/n, then
an

log logn
(rghen)
bn log logn

= p—(ylogy—eY) _, Lop,
So, by Limit Comparison Test, the series diverges.

) X, (JT+nZ —n)
Proof: Note that

Jl1+n? —n= 1 > L
JI+nZ+n ~ (1+J/2)n

for all n.

So, the series diverges.



00 1 L
OZm (- 4)
Proof: Note that

1 1 \__1 n 1
() n%p<vn1 1+,/¥>'

So, as p < 1/2, the series converges and as p > 1/2, the series diverges by Limit
Comparison Test.

(m) > (¥ -1)"
Proof: With help of Root Test,
1/n

lim sup[ ()" -1)"]"" = 0(< 1),

the series converges.
m>- ne(n+1 -2/ +/n-1)
Proof: Note that
(¥l -2/ +/n—1)
_ 1 |: n? :|
ns? | (Wm+h+D)(m+/mh=-1)(\n=T+/n+1) |

So, as p < 1/2, the series converges and as p > 1/2, the series diverges by Limit
Comparison Test.

8.16 Let S = {nj,ny,...} denote the collection of those positive integers that do not
involve the digit 0 is their decimal representation. (For example, 7 € Sbut 101 ¢ S.)
Show that Zf:l 1/ny converges and has a sum less than 90.

Proof: Define Sj = {the j — digit number } (< S). Then #S; = 9 and S = U, S;. Note

that
0l
E l/nk < 10

kESj

So,

g Uny < 121 o = 9.

In addition, it is easy to know that Zle 1/ny # 90. Hence, we have proved that Zf:l 1/ny
converges and has a sum less than 90.

8.17 Given integers aj,ay,...suchthatl <a, <n-1, n=23,... Show that the
sum of the series >~ an/n! is rational if and only if there exists an integer N such that
an = n—1forall n > N. Hint: For sufficency, show that Z:;z(n —1)/nlis a telescoping
series with sum 1.

Proof: («<)Assume that there exists an integer N such thata, = n— 1 foralln > N.
Then



7
AN

o0 o0
an _ an an
Z n n! +Z n!
n=1 n=1 n=N
N-1 0 l
_ an n-—
- n! +Z n!
n=1 n=N
N-1 © 1 l
Sa.x
— —+ —_— =
| _ | |
e~ nl & (n-1)! nl
N-1 1
dn
=) oy 1 Q.
n! (N-=1)! Q

[N

n=
(=)Assume that ZL an/n! is rational, say % where g.c.d.(p,q) = 1. Then
- a
p! n—fl‘ e Z
n=1

Thatis, p! Y.~ 2 e Z. Note that

n=p+1 n!
oo

* |
pgz%gp! ”n——!lzﬁzlsincelsansn—l-
n=p+1 n=p+1

So,apn =n-1foralln > p+ 1. Thatis, there exists an integer N such that a, = n—1 for
alln > N.

Remark: From this, we have proved that e is irrational. The reader should be noted that
we can use Theorem 8.16 to show that e is irrational by considering e~. Since it is easy,
we omit the proof.

8.18 Let p and q be fixed integers, p > q > 1, and let

pn n k+1
Z Z -1
X n — 1 ’ S n = ( k)
k=gn+1 k=1

() Use formula (8) to prove that limp.. xn = log(p/q).
Proof: Since

n

Z% = Iogn+r+0(%>,

k=1
we know that

pn gn
SED I SO
k=1 k=1
= log(p/q) + O(%)

which implies that limn... X, = log(p/q).
(b) When g = 1,p = 2, show that s, = X, and deduce that

® n+1
> % = log2.
n=1

Proof: We prove it by Mathematical Induction as follows. As n = 1, it holds
trivially. Assume that n = m holds, i.e.,



consider n = m + 1 as follows.

2(m+1)
Xm+1 = Z %
k=(m+1)+1
_ 1 1 1
XMy Tt 2m+1 T 2m+2
= Som + 1 1

2m+1  2m+2
= So(m+1)-

So, by Mathematical Induction, we have proved that s,, = xn for all n.
By son = xn for all n, we have

. 0 (_1)k+l .
limsan = = log2 = limxn.
k=1

k

(c) rearrange the series in (b), writing alternately p positive terms followed by q
negative terms and use (a) to show that this rearrangement has sum

log2 + % log(p/q).

Proof: We prove it by using Theorem 8.13. So, we can consider the new series
>, & as follows:

[t ) (o - i)

Then
n
Sn = Zak
k=1
2np np nq
-yl 51 vy1
k=1 k k=1 2k k=1 2k

So,
limSn = log2 + % log(p/q)
by Theorem 8.13.

Remark: There is a reference around rearrangement of series. The reader can see the
book, Infinite Series by Chao Wen-Min, pp 216-220. (Chinese Version)

(d) Find the sum of 3~ " (-1)™*(1/(3n - 2) — 1/(3n - 1)).
Proof: Write



n
Sn = E(_l)m( 7 T

n n
_ R 1 L 1
S Sy

n n
N 311 N qy3k2 1
B k2=1:( 2 3k Z( 2 3k -2

1
n
- _ k-1__ 1 Can3k2 1
= 2D 3K 1+Z(1) 3K 2}
L k=1 k=1
o i (D) -an (—1)*
N k 3k
L k=1 k=1
[ 3
et (—1)1
L k=1 k 3 k=1 k
3 + +
k=1 k 3 k=1 k
L2
3 log 2.

So, the series has the sum % log 2.

Remark: There is a refernece around rearrangement of series. The reader can see the
book, An Introduction to Mathematical Analysis by Loo-Keng Hua, pp 323-325.
(Chinese Version)

8.19 Let cn = an + ibn, where a, = (-1)"//n, by = 1/n2. Show that _ c, is
conditioinally convergent.

Proof: It is clear that D c, converges. Consider
2lerl = 2t - XA 2 A
Hence, Y |cn| diverges. That is, D _ cn is conditioinally convergent.

Remark: We say Y_ ¢, converges if, and only if, the real part > a, converges and the
imaginary part >_ b, converges, where ¢, = an + ibn.

8.20 Use Theorem 8.23 to derive the following formulas:
@ >, 2 = Llog’n +A+ o( logn ) (Ais constant)

Proof: Let f(x) = "% define on [3,), then f'(x) = = '°9X < 0on[3,0). So, itis
clear that f(x) is a positive and continuous function on [3, oo) with

limfoo) = im 129X _ Jim L — 0 by L-Hospital Rule.
So, by Theorem 8.23, we have



n n
3 —IOE K _ I Io)g(;x dx + C + o( logn ) where C is a constant
3
k=3
logn
n

= % log®n — % log®3 + C + O( ) where C is a constant

which implies that

z”:logk 1| Iogn
K = 0g’n+A+0 ,

k=1

292 _ 1 log?3 is a constant.

where A = C +

Proof: Let f(x) = xlogx defined on [2,), then f'(x) = _<xlogx> (1 +1logx) < 0on

[2,00). So, it is clear that f(x) is a positive and continuous function on [3, ), with
limf(x) = lim 1 __o
© Xlogx

So, by Theorem 8.23, we have
n n
Zkll :I dx +C+O( 1 ),WhereCisaconstant
~ ogk 2> xlogx nlogn

= log logn + B + O( 1 ) where C is a constant
nlogn

where B = C — log log 2 is a constant.
8.211fo<a<1,s>1, define¢(s,a) = X7 (n+a)™.

(a) Show that this series converges absolutely for s > 1 and prove that

k
s, 1) = ks¢(s) ifk = 1,2,...
;¥<k> 4

where {(s) = {(s,1) is the Riemann zeta function.
Proof: First, it is clear that {(s,a) converges absolutely fors > 1. Consider

Sc ) - T3 ke

h=1 n=0




(b) Prove that >~ (-1)"'/ns = (1 - 21)¢(s) if s > 1.

Proof: Let {Sn = ij‘:l (—i_ﬂl} and thus consider its subsequence {S,} as follows:

2n n
S,=S'L_» 1
3 ,21:1 ,z_;(zns

2n n

=1 =1

which implies that
limSzn = (1= 212)(s).
Since {Sn} converges, we know that {S,,} also converges and has the same value. Hence,

i(—l)”_llns = (1 =25)¢(s).
n=1

8.22 Givena convergent series Y an, where each a, > 0. Prove that D /annP
converges if p > 1/2. Give a counterexample for p = 1/2.

Proof: Since
aan‘2p > Jan® = Jain-p,
we have »_ /annP converges if p > 1/2 since
D " aq converges and ) n-2 converges if p > 1/2.

For p = 1/2, we consider a, = —L—, then
n(logn)

Z an converges by Cauchy Condensation Theorem

and

Z Jann1?2 = Z - Igg - diverges by Cauchy Condensation Theorem.

8.23 Given that > an diverges. Prove that > na, also diverges.

Proof: Assume ) na, converges, then its partial sum 22:1 kay is bounded. Then by
Dirichlet Test, we would obtain

Z(ka@(%) = > ay converges

which contradicts to D a, diverges. Hence, D _ na, diverges.

8.24 Given that > an converges, where each a, > 0. Prove that

1/2
Z(anaml)

also converges. Show that the converse is also true if {a,} is monotonic.

Proof: Since
dn + adns1

1/2
) > (anans1)

1/2
Z(anaml)

we know that



converges by > an converges.
Conversly, since {an} is monotonic, it must be decreasing since Y an converges. So,
an > ap forall n. Hence,
(anans1)Y? > an forall n.

So, 3" an converges since Y (anan.1 )" converges.

8.25 Given that Y an converges absolutely. Show that each of the following series
also converges absolutely:

(@) 2_ad
Proof: Since ) an converges, then a, - 0 asn — oo. So, given ¢ = 1, there exists a
positive integer N such that as n > N, we have
lan] < 1
which implies that
ai < |an| forn > N.
So, Y_aj converges if >_|an| converges. Of course, > _ aZ converges absolutely.

(b) 2 1= (ifnoa, = -1)

Proof: Since )_|an| converges, we have lim,..an = 0. So, there exists a positive
integer N such that as n > N, we have

1/2 < |1+ an.
Hence, asn > N,
dn
1+an < 2lan|

which implies that Z| li;n | converges. So, Z%{;n converges absolutely.
af
(C) 1+af

Proof: It is clear that
aj 2
< aj.
1+a2 — "
converges absolutely.

aj
1+a?

By (a), we have proved that >_

8.26 Determine all real values of x for which the following series converges.
- 1 1 sinnx
Z(l + ? ++W>T
n=1

Proof: Consider its partial sum
i L+3+..+1)

K sinkx

k=1
as follows.

As x = 2mr, the series converges to zero. So it remains to consider X # 2mr as
follows. Define

a, = 2 k

1+1 4.+
k

and



by = sinkx,

then
o 1+ 3+t +ggr 1+3+4g
Ak+1 — Ak K+ 1 K
_ K1+ 5+ 4+ 20) - k+DA+ 5 +..+1)
k(k+ 1)
_ -+ +40) -0
k(k+1)
and
n
Zbk‘ < | = lx ‘
= sm(;)

So, by Dirichlet Test, we know that

OO . (1+4L 4+ 4+L
Zakbkzz( +2:(r Jrk)Sil‘lkx
k=1

k=1

converges.
From above results, we have shown that the series converges for all x € R.

8.27. Prove that following statements:
(a) D_anbn converges if >_ an converges and if Y (b — bns1) converges absolutely.

Proof: Consider summation by parts, i.e., Theorem 8.27, then
n n
D &bk = Anbraa = D Ac(bii = bi).
k=1 k=1

Since Y an converges, then |A,| < M for all n. In addition, by Theorem 8.10, limn_... by
exists. So, we obtain that

(1). limAnbn,1 exists
and

(2)- D A1 = b )] < MD b — by < M D Jbs — byl.
k=1 k=1 k=1
(2) implies that

n
(3). ) Ax(bye — by) converges.

k=1
By (1) and (3), we have shown that 3", | axby converges.

Remark: In 1871, Paul du Bois Reymond (1831-1889) gave the result.

(b) > anbn converges if > an has bounded partial sums and if > (bn — bny1) converges
absolutely, provided that b, -~ 0asn — oo.

Proof: By summation by parts, we have

n n
Z akby = Anbpig — ZAk(bm - by).
pa)

k=1
Since b, > 0asn - o« and Y an has bounded partial sums, say |An| < M for all n. Then



Q). !\LrQAnbn+1 exists.
In addition,

n n 00
(2)- D _JAk(bres = bi)] < M D foies = bi] <MD Jby — byl.
k=1 k=1 k=1
(2) implies that

n
(3). D Ac(bie1 — by) converges.

By (1) and (3), we have shown that Z:=1 axby converges.

Remark: (1) The result is first discovered by Richard Dedekind (1831-1916).

(2) There is an exercise by (b), we write it as a reference. Show the convergence of the

. w  (=1)[¥]
series >,

PN
Proof: Leta, = <2 and by =

k2/3
ot 1)[ L it suffices to show that {,a =Sy } is bounded sequence. Given
neN, there eXIStSj e Nsuchthatj? <N < (j + 1) Consider
Sh=a;+a+az+ay+...+ag +ag +....+as +... 432 +...+an

then in order to show the convergence of

k1/3 !

3az + 5a4 + 7ais + 9a6 +. +(4k — 1)a(2k)2_1 + (4k + 1)a(2k)2 Ifj =2k, k>2
<
- 3as + 5a4 + 7a15 + 9a15 +. +(4k - 3)8.(2k_2)2 Ifj =2k-1, k>3
then as n large enough,
. - (—3ay +5a4) + (~7ags + 9ass) +...+(—(4k — D)agy, + (4k + 1)agy,: )
(~3as + 5a4) + (~7ags + 9ass) +...+(—(4k — 5)ay 2 + (4k = 3)ap ,)2 )

which implies that as n large enough,

o0

S”SZZa(ZJ')2 Z @ 4/3 =M
=2 2j)

=2

Similarly, we have
M, < S, foralln

By (*) and (**), we have shown that {3"' , a, = Sn } is bounded sequence.
Note: (1) By above method, it is easy to show that

3~ O
k=1 kP
converges forp > 1/2. For 0 < p < 1/2, the series diverges by
(n2)P +...+(n2+2n)p T m2+n)® T 2+n)? T m+n® T on+l >

(,1)['09 k]
k

(2) There is a similar question, show the divergence of the series 3"

Proof: We use Theorem 8.13 to show it by inserting parentheses as follows. We insert
parentheses such that the series 3 20— 1’ L forms 3 (-1)*by. If we can show 37(~1)b,

**



. _ 2y [logk] ; .
diverges, then " “2— also diverges. Consider

b = %J“-'er%rr’

where
(1). [logm] =N
(2). [loglm—-1)] = N-1 = [loge(m—-1)] = N
(3). [log(m+r)] =N
4. [logm+r+1)] =N+1= [log™+L] =N

By (2) and (4),

m+Tr+l >m-1=r+1>mifmis large enough.

By (1) and (3),
2m >r.
So, as k large enough (< m is large enough),

b > itk = = Loy (%),

It implies that Z(—l)"bk diverges since by does NOT tends to zero as k goes infinity.So,

; _ 1y [logk] ;
we have proved that the series 3" 2" diverges.

(3) There is a good exercise by summation by parts, we write it as a reference.
Assume that 3" axby converges and b,/ with limn..bs = . Show that b Y"" ay
converges.

Proof: First, we show that the convergence of 3" ay by Dirichlet Test as follows.
Since b, oo, there exists a positive integer no such that as n > ng, we have b, > 0. So,

o0
we have { L } is decreasing to zero. So
n=1

bn+n0
o0 o0
> = 2@nben)( 52 )
kel kel ko

converges by Dirichlet Test.
For the convergence of an:;n a, letn > ng, then

bn Z dx = Z akbk%
k=n k=n k
and define ¢, = ayby and dy = E—E Note that {dy} is decreasing to zero. Define
Ck = Z;‘:l cj and thus we have

m m
bn kZ:ak = kZ:akbkg—E
=n =n

m
= > (Cx - Cic)di
k=n

m-1

= > Cu(dk — dis1) + Cnlin — Cri_y0ln.

k=n

So,



bn Z g = Z akbk%
k=n k=n K
= Z Ck(dk — dk+l) + Coodoo - Cn—ldn
k=n

= Z Ci(dg — dis1) — Cpadn

k=n

by C. = limy.,, Cy and limy_,, dx = 0. In order to show the existence of limn.. bn Z:;n ay

it suffices to show the existence of limn.« Z:’:n Ck(dy — dis1). Since the series
> Cildy — dir) exists, limn., - Ci(di — di1) = 0. From above results, we have
proved the convergence of limn.. by Z:;n ay
Note: We also show that limn_. by, Zf:n ax = 0 by preceding sayings.
Supplement on the convergence of series.

(A) Show the divergence of > 1/k. We will give some methods listed below. If the
proof is easy, we will omit the details.

(1) Use Cauchy Criterion for series. Since it is easy, we omit the proof.
(2) Just consider

1.,1.,.1 1 1 1 n1_1
l+2+3+4+...+2n21+2+24+..+2 on
=1+%—>oo.
Remark: We can consider
9 , 90
“(2+ 10 ) (11+ +100 Tzl 95+ 300 ©

Note: The proof comes from Jing Yu.

(3) Use Mathematical Induction to show that

1 1 1 3
k—1+k+k+1 > kIfk23.

Then

1., 1.,1., 1.1 3,3,3
l+2+3+4+5+6+....21+3+6+9+

Remark: The proof comes from Bernoulli.

(4) Use Integral Test. Since the proof is easy, we omit it.

(5) Use Cauchy condensation Theorem. Since the proof is easy, we omit it.
(6) Euler Summation Formula, the reader can give it a try. We omit the proof.

(7) The reader can see the book, Princilpes of Mathematical Analysis by Walter
Rudin, Exercise 11-(b) pp 79.

Suppose an > 0, Sy = aj +...+an, and Y_ an diverges.
(a) Prove that 3 47 diverges.

Proof If a, > 0asn — oo, then by Limit Comparison Theorem, we know that

1+a diverges. If {an} does not tend to zero. Claim that =2 does not tend to zero.



Suppose NOT, it means that limpy_.« %gn = 0. That is,
lim —L
Moo ] 4 an
which contradicts our assumption. So, > - — diverges by claim.

(b) Prove that

=0=lima,=0
N—oo

an+1 aN+k SN
+.. >1-
SN+1 SN+k - SN+k
and deduce that 3 g™ diverges.

Proof: Consider

aANs ANtk < Ans1 +.. ANk Sn
+...+ > =1- ,
SN+l SN+k - SN+k SN+k
then >_ £ diverges by Cauchy Criterion with (*).

Remark: Leta, = 1, then 3 5= = 3 1/n diverges.
(c) Prove that

an o _1 1
Sg — Sn—l Sn

SN|IS

and deduce that 3 % converges.

Proof: Consider

1 _ L — L > dn
Sn-1 Sn Sn-1Sn T S

and

Z S converges by telescoping series with SN,
n-1 n

So, > ¢ converges.
(d) What can be said about

and
1+nan Zl+nan

Proof: For 3 2 :asan = 1 forall n, the series 3 5o~ = 3 51— diverges. As
0ifn = k2
T Llifn=k2
the series ) - ma = D T converges.
For 3~ 23— : Consider
an _ 1 1
1+n%a, L +n2 7 n?’
SO D ;28— converges.
(8) ConS|der > sint diverges.
Proof: Since
inL
lim 20—,
n—o0

the series Y + diverges by Limit Comparison Theorem.



Remark: In order to show the series > _sin < diverges, we consider Cauchy Criterion

as follows.
nsin(2—1n> < sin( . 1 T ) +...+sin(n—1n>

and givenx € R, forn =10,1,2,..., we have
[sinnx| < n|sinx]|.

So,

in 1 ; 1 ; 1
sin5 < sm(n+1> +...+sm(n+n>
for all n. Hence, Y_sin ¥ diverges.

Note: There are many methods to show the divergence of the series D _sin +. We can
use Cauchy Condensation Theorem to prove it. Besides, by (11), it also owrks.

(9) O-Stolz’s Theorem.
Proof: Let Sp = Zj”:l Ji and Xn = logn. Then by O-Stolz’s Theorem, it is easy to see

limSn = co.
(10) Since ITy_;1 + + diverges, the series > 1/k diverges by Theorem 8.52.

(11) Lemma: If {an} is a decreasing sequence and > an converges. Then
limp.onan = 0.

Proof: Since a, — 0 and {an} is a decreasing sequence, we conclude that a, > 0.
Since Y_ an converges, given ¢ > 0, there exists a positive integer N such thatasn > N,
we have

an +..+ank < gfl2forallk e N
which implies that
(k+ 1D)anx < €/2since an \,.
Letk = n, thenasn > N, we have
(n+1)az, < €2
which implies that as n > N
2(n+1)ay < ¢
which implies that
LL@ZnaZn = 0 since !]iman =0. *
Similarly, we can show that
!Lrg(Zn + 1Dagn = 0. fakad
So, by (*) adn (**), we have proved that limy..na, = 0.

Remark: From this, it is clear that D _ + diverges. In addition, we have the convergence
of > n(an — ans«). We give it a proof as follows.

Proof: Write



n
Sh = Z k(ak — ak1)
=)

n
= ) a— N,
k=1

then
LiIQ Sp exists

since
n

m

|
N—o0

ay exists and Lim nan = 0.
k=1

(B) Prove that ) + diverges, where p is a prime.
Proof: Given N, let py,...,pk be the primes that divide at least one integer< N. Then

- 1 ‘ 1 1

]

by (1-x)™ < e2if0 < x < 1/2. Hence, Y + diverges since > + diverges.

Remark: There are many proofs about it. The reader can see the book, An
Introduction To The Theory Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese
Version)

(C) Discuss some series related with 3, Sk,
STUDY: (1) We have shown that the series ) sin + diverges.
(2) The series D_sin(na + b) diverges where a = nz foralln € Zand b € R.

Proof: Suppose that D _ sin(na + b) converges, then limn... sin(na + b) = 0. Hence,
limn.w[sin[(n + 1)a+ b] —sin(na + b)| = 0. Consider
Isin[(n + 1)a + b] —sin(na + b)|

= |2cos(na+ b+ %) sin(%) |
= |2[cos(na + b)cos(%) —sin(na + b)sin(%) } sin(%) |
which implies that



lim|sin[(n + 1)a + b] — sin(na + b)|

= [lim sin[(n + 1)a + b] —sin(na + b) |

n—oo

lim sup 2[cos(na + b)cos(%) —sin(na + b)sin(%) J ‘ ‘sin(%) ‘

= ‘LL@O sup 2[cos(na + b)cos(%) } ‘ ‘sin(%) ‘
= |sina|] # O
which is impossible. So, D sin(na + b) diverges.

Remark: (1) By the same method, we can show the divergence of > cos(na + b) if
a=+nrforallne Zandb € R.

(2) The reader may give it a try to show that,
s op+l

p
sin—=b .
D cos(na+b) = —2— sm(a + Bb)
e sin & 2
and
p s optl
. sin—==b
D sin(na+b) = —2— cos(a + Rb)
— sin 2 2
by considering Zﬁzo e'(a+b) However, it is not easy to show the divergence by (*) and
(**)_
(3) The series 3 Sk converges conditionally.
Proof: First, it is clear that % converges by Dirichlet’s Test since
H 1
> sink| < ‘ T

partial sums as follows: Since
3n+3

n
sink | _ sin3k+1 sin3k + 2 sin3k + 3
|| - Sojsigdict | g2 . |

. In order to show that the divergence of 3|k |, we consider its

3k+1 3k+2 3k+3

and note that there is one value is bigger than 1/2 among three values [sin3k + 1],
|sin3k + 2|, and |sin3k + 3|. So,

3n+3 n

Z‘%‘z 3k+3

k=1 k=0
which implies the divergence of | Sk |,

Remark: The series is like Dirichlet Integral j: sinx dx, Also, we know that Dirichlet
Integral converges conditionally.

(4) The series 3" 2" diverges for any r  R.

Proof: We prove it by three cases as follows.

(@) Asr < 0, we have
|sink|" 1
Z T Z k'

So, 3~ P diverges in this case.
(b) AsO < r <1, we have



|sink|" sink|
2 Tk ° 2 Tk
inkl™ - . .
So, >~ L L diverges in this case by (3).
(c)Asr > 1, we have

3n+3 n . . .
Z smk Z lsin3k + 1|" N lsin3k + 2|" N lsin3k + 3|"
- 3k+1 3k+2 3k+3
r
S S (3)
- 3k+3°
k=0

So, 3" M diverges in this case.
(5) The series Y~ Sk where p € N, converges.
Proof: We will prove that there is a positive integer M(p) such that

i sin? 1k

k=1

So, if we can show (*), then by Dirichlet’s Test, we have proved it. In order to show (*),

we claim that sin?*~*k can be written as a linear combination of sink, sin3k, ...,

sin(2p — 1)k. So,
n

< M(p) for all n.

H 2p—1k _ ‘
) n n
< |a] Zsink +...Hap|| D sin(2p - 1)k‘
k=1
|a1| |a2p| — = M(p) by Theorem 8.30.
|sin | |s in=£=

We show the claim by Mathematical Inductlon as follows. As p = 1, it trivially holds.
Assume that as p = s holds, i.e.,

S
sin®k = > ajsin(2j — 1)k
j=1
thenasp = s+ 1, we have



sin®*k = sin?k(sink)*™*

S
— sin2k<2 ajsin(2j — 1)k> by induction hypothesis

=1

= > ay[sin?ksin(2j — 1)k]

=1

_ i a,-[—l = 02032k sin(2j — 1)k]

=1

S S
= %[ a;sin(2j —1)k—Zajc032ksin(2j —1)k}
j

j=1 =1

S S
= % {Z a;sin(2j — 1)k — % > ayfsin(2j + 1)k + sin(2j - 3)k]}

j=1 j=1
which is a linear combination of sink, ..., sin(2s + 1)k. Hence, we have proved the claim
by Mathematical Induction.

Remark: By the same argument, the series

n
Z cos2-1k
k=1

is also bounded, i.e., there exists a positive number M(p) such that
n

D "Jcos?1k| < M(p).
k=1

= Fn(x), then {Fn(x)} is boundedly convergent on R.

(6) Define >, Sk
Proof: Since Fn(x) is a periodic function with period 27, and F,(x) is an odd function.

So, it suffices to consider Fn(x) is defined on [0, z]. In addition, F (0) = 0 for all n.
Hence, the domain | that we consider is (0, z]. Note that S'”"X j cosktdt. So,

Fn(X) = Z sir|1(kx
k=1

X n

= | > cosktdt
"0

_esin(n+ $)t—sin()t dt
Jo 2sin($)t

Y jLUAS 2L j*(w}] . _%)(sin(n+%)t)dt_g
<[ e [ ) Gn(re )03

which implies that
(3% gint t—2sini
jo 2tsm (sm(n ) 2 >t>dt

FacOl < | t dt‘ +

n 7r




1 . o . .
For the part “[ngz)X S'T”tdt‘ : Since IO St dt converges, there exists a positive M; such

that
< My for all x € I and for all n.

($)x
J

Slntdt
0 t

For the part “ ( )(sm(n + 4 )t)dt‘ Consider

L(‘gé.i:“: )Gin(n=1)e

t—2sin
< I —dtsmcet—Zsm >0onl
0

2tsin +

2tsin 2
t—23|n L t—2sint
< | ———2dt:= M;since I|m.—2 =
jo 2tsin & 2 S0 2tsin L

Hence,

IFa(X)| < My + My + £ > for all x € I and for all n.

So, {Fn(x)} is uniformly bounded on I. It means that {Fn(x)} is uniformly bounded on R.
In addition, since

Fico = [ Stac [1( 2290 Y ain(n s 4 ))an- %,

fixed x € I, we have
_[ %dt exists.
0

and by Riemann-Lebesgue Lemma, in the text book, pp 313,

im [, (g ) (5o )0

So, we have proved that
limFn(x) = j S'ntdt X where x € (0, 7].

Hence, {Fn(x)} is pointwise convergent on I. It means that {F,(x)} is pointwise
convergent on R.

Remark: (1) For definition of being boundedly convergent on a set S, the reader can
see the text book, pp 227.

(2) In the proof, we also shown the value of Dirichlet Integral

“sint gy _ &
IO g dt=7

by letting x = .
(3) There is another proof on uniform bound. We write it as a reference.

Proof: The domain that we consider is still (0,7z]. Let § > 0, and consider two cases as
follows.
(@) x > 0 > 0 : Using summation by parts,



IA

+

- sinkx
2

n
1 sinkx
n+1§ k

(et )

1 1 1 1
< — + 1-
~n+l S|n(%) S|n(%) ( n+1>

n
k=1

__1
sin($)
(b) 0 < x <5 :LetN = [1], consider two cases as follows.
Asn < N, then
n -
S'T(kx < x| < Njx| < 1
k=1
and asn > N, then
n
sinkx
k=1 K
N-1 K n ink
< sinkx | sinkx
k=1 k k=N k
n -
<1+ SIrILkX by (*)
k=N
1\ sink 1 N sink b 11
sinkx 1 sinkx o 1
e k| TN k|7 (ZS'”JX>(k+1 k)‘
k=1 k=1 k=N \_j=1
by summation by parts
1 1 1l __1 1
=1+ (n+1)sin3 * Nsin - +<N n+1>sin§
2
=1+ —5c—.
[+]sin %

Note that lim,_¢+ ——2— = 4. So, we may choose a 5’ = § such that

[%]sin%

— 2 <sforall 0,0’
sint = x e @5,

By preceding sayings, we have proved that {Fn(x)} is uniformly bounded on I. It means
that {Fn(x)} is uniformly bounded on R.

(D) In 1911, Otto Toeplitz proves the following. Let {a,} and {x»} be two sequences
such that an > 0 for all n with limn.., z2% = 0 and limy-.. X, = x. Then

A1 X1 +...+anXp

m=a+ v =*
Proof: Let Sy = > acand T = X, Xy, then
lim ot = Tn iy BnetXmed _ iy = x
n—oo Sn+1 — Sn n—oo arH_j_ n—oo

So, by O-Stolz’s Theorem, we have prove it.

Remark: (1) Let an = 1, then it is an extension of Theorem 8.48.
(2) Show that



sing +...+sin 4

lim = 0.
oo ] 4+ E
Proof: Write
sin +...+sin & _ ($)1sin6 +...+(+)nsin &
1+...+1 1+...+1 '

the by Toeplitz’s Theorem, we have proved it.

(E) Theorem 8.16 emphasizes the decrease of the sequence {an}, we may ask if we
remove the condition of decrease, is it true? The answer is NOT necessary. For example,
let

n+1
an =1+ %.@ 0)

(F) Some questions on series.
(1) Show the convergence of the series 2;11 lognsin L.

Proof: Since nsini < 1 forall n, lognsini < 0 for all n. Hence, we consider the
new series

o0

. = in1/n
—Iognsml = Iog&
- ~lognsin 3 log

n=1

as follows. Let a, = log =22 and by, = log(1+ %), then

lim&n - 1
N—o0 bn 6

dib<d L

by ex > 1 + x for all x € R. From the convergence of > by, we have proved that the
convergence of Y an by Limit Comparison Test.

In addition,

(2) Suppose that an € R, and the series >~ a3 converges. Prove that the series
> 2 converges absolutely.

Proof: By A.P.> G.P., we have
af+
2
which implies that Z:’:l 2o converges absolutely.

= 1%

Remark: We metion that there is another proof by using Cauchy-Schwarz inequality.
the difference of two proofs is that one considers an, and another considers the partial
sums S.

Proof: By Cauchy-Schwarz inequality,

n 2 n n
a
(%) < (5)(z#)
k=1 k=1 k=1
which implies that Z;il 20 converges absolutely.

Double sequences and series

8.28 Investigate the existence of the two iterated limits and the double limit of the



double sequence f defined by the followings. Answer. Double limit exists in (a), (d), (e),
(9). Both iterated limits exists in (a), (b), (h). Only one iterated limit exists in (c), (e).
Neither iterated limit exists in (d), (f).

(@) f(p,q) =

Proof: It is easy to know that the double limit exists with limp 4. f(p,q) = 0 by
definition. We omit it. In addition, limp..f(p,q) = 0. So, limg-..(limp-.. f(p,q)) = 0.
Similarly, limp..(limg-. f(p,q)) = 0. Hence, we also have the existence of two iterated
limits.

(b) f(p,q) = pq

Proof: Let q = np, then f(p,q) = 1. Itimplies that the double limit does not exist.

However, limp..f(p,q) = 1, and limg.»f(p,q) = 0. So, limg-«(limp-»f(p,q)) = 1, and
liMpo(limg-e f(p, q)) = 0.

1P
(C) f(p,CI) = p+qp
LP

Proof: Let g = np, then f(p,q) = 4. Itimplies that the double limit does not exist.
In addition, limg-. f(p,q) = 0. So, limp-(limg-f(p,q)) = 0. However, since
limp... f(p, q) does not exist, limg-.(limp- f(p,q)) does not exist.

(@) f(p,a) = 1 (3 + )

Proof: It is easy to know limp 4 f(p,q) = 0. However, limg... f(p,q) and limp-. f(p,q)
do not exist. So, neither iterated limit exists.

(&) f(p,a) = -

Proof: It is easy to know limp 4. f(p,q) = 0. In addition, limq.f(p,q) = 0. So,
limp.o (limg-e f(p,q)) = 0. However, since limp.. f(p,q) does not exist,
lim g (limp-e f(p, q) ) does not exist.

() f(p.a) = (-1)*"

Proof: Let p = ng, then f(p,q) = (=1)™™. It means that the double limit does not
exist. Also, since limp.. f(p,q) and limg. f(p,q) do not exist, limg-..(limp-. f(p,q)) and
limp-o(limg-e f(p, q)) do not exist.

(9) f(p,q) = <3~

Proof: Since [f(p,q)| < &, then limp g f(p,q) = 0, and limp..(limg-..f(p,q)) = 0.
However, since {cosp : p € N} dense in [-1,1], we know that limg-..(limp-. f(p,q)) does
not exist.

(h) f(p.q) = 37 sind

qZ

Proof: Rewrite
00 .. OH1
psin 5 sin 5~

f(p.q) = —=
q25|n2—1IO
in-L sin( 4L
and thus let p = nq, f(p,q) = sm;;;‘:f”q) . It means that the double limit does not exist.

2nq

&2 since sinx~x as x — 0. S0, liMg-.(limp-f(p,q)) = L.

However, limp- f(p,q) = %



sin -3 gin &L

Also, limg... f(p,q) = Iimqﬂw(psin 2—1p> (%) = 0 since [sinx| < 1. So,

8.29 Prove the following statements:

(a) A double series of positive terms converges if, and only if, the set of partial sums is
bounded.

Proof: (=)Suppose that Zm’n f(m,n) converges, say Zm’n f(m,n) = A;, then it means
that limp 4. S(p,q) = A1. Hence, given ¢ = 1, there exists a positive integer N such that as
p,g > N, we have

Is(p, Q)| < |A1] + 1.
So, let A, = max<{s(p,q) : 1 < p,q < N}, we have |s(p,q)| < max(A1,A;) forall p,q.
Hence, we have proved the set of partial sums is bounded.
(<)Suppose that the set of partial sums is bounded by M, i.e., if

S ={s(p,q) : p,q € N}, thensupS := A < M. Hence, given ¢ > 0, then there exists a
s(p1,q1) € S such that

A—-¢& <s(p1,0q1) <A
Choose N = max(p1,q1), then
A—¢g <s(p,q) <Aforallp,qg>N
since every term is positive. Hence, we have proved limp .- S(p,q) = A. That is,
2= f(m,n) converges.

(b) A double series converges if it converges absolutely.

Proof: Let sy (p,q) = .0, > [f(m,n)|and sa(p,q) = >0, >°F f(m,n), we want

to show that the existence of limp - S2(p,q) by the existence of limpg-.S1(p,q) as
follows.

Since limp g-S1(p, ) exists, say its limit a. Then limp... S1(p,p) = a. It implies that
limp. S2(p, p) converges, say its limit b. So, given ¢ > 0, there exists a positive integer N
such thatas p,q > N

|s1(p,p) —s1(0,9)| < &2

and
Is2(N,N) —b| < &/2.
So,asp>q >N,
[s2(p,q) — b| = [[s2(N,N) — b] + [s2(p,q) — s2(N,N)]|

< &l2 +s2(p.q) — s2(N,N)|

< &l2+s1(p,p) —S1(N,N)

< &l2+¢l2

= ¢&.
Similarly for g > p > N. Hence, we have shown that

Jim s2(p,q) = b.
That is, we have prove that a double series converges if it converges absolutely.
(©) X2, 8™+ converges.

Proof: Let f(m,n) = e~ then by Theorem 8.44, we have proved that



—(m?+n? i —(m?+n?) _ -m? -n?
D mn €M) converges since 35 M = 37 ey e,

Remark: 377, , e = 37 e 37 e = (2

e2-1

8.30 Asume that the double series 3 _a(n)x™ converges absolutely for |x| < 1. Call

its sum S(x). Show that each of the following series also converges absolutely for x| < 1
and has sum S(x) :

Za(n) T x” : ZA(n)x” where A(n) = Za(d)

djn
Proof: By Theorem 8.42,

EZaUDWm::EZam)EZXW::EZam)lxkniﬂﬂ<<L
m,n n=1 m=1 n=1 B

So, ZL a(n) converges absolutely for x| < 1 and has sum S(x).

Since every term in Zm La(n)xm™, the term appears once and only once in
Z:zl A(n)x". The converse also true. So, by Theorem 8.42 and Theorem 8.13, we know
that

fiAmyn=§:mmwm=suy
n=1 m,n

8.31 If a is real, show that the double serles Z (m+in)~® converges absolutely if,
and only if, @ > 2. Hint. Lets(p,q) = 1|m + |n| ~*. The set
{m+in:m= 1,2,...p,n =12,...,p}

consists of p2 complex numbers of which one has absolute value ¥2, three satisfy
|1+ 2i] < |m+in| < 22, five satisfy |1 + 3i| < |m +in| < 32, etc. Verify this
geometricall and deduce the inequlity

a/2 2I‘1 1 <s < 2n —
Z (p.p) Z I
Proof: Since the hint is tr|V|aI, we omlt the proof of hint. From the hint, we have

- <s(p.p) = m+in@ <y —2n=1_
23(«7) 2:2:

2
m=1 n=1 n=1 (1 nz)a

Thus, it is clear that the double series > (m +in)™ converges absolutely if, and only if,
a > 2.

8.32 (a) Show that the Cauchy product of Z:zo(—l)"”/,/n +1 with itself is a
divergent series.

Proof: Since



D* D™
Z Jk+1 Jn—k+1

_ 1
e kz(; Jk+1Jn-k+1

and let f(k) = J(n—k+ D(k+ 1) = [~(k—2)° + (22)" < 22 fork = 0,1,...,n
Hence,

n

1
cnl =
il ;Jk+1\/n—k+l

_ 2n+1)
- n+2
That is, the Cauchy product of " (-1)™*/J/n+ T with itself is a divergent series.

(b) Show that the Cauchy product of 7, (-1)™/(n + 1) with itself is the series

> T (e d o)

- 2asn - oo.

Proof: Since

_ (-1)
- k; n—Kk+1)(k+1)

n
_ 1 1 1
B n§n+2(k+1+n—k+l)

|
N
-
N—

we have

n=0 n=0 k=0
_on (D" 1 1
‘2§ n+2(1+2+ +n+1>
B (_1)n+l l l
‘an1 n+1 (“2+ n

(c) Does this converge ? Why?

Proof: Yes by the same argument in Exercise 8.26.

8.33 Given two absolutely convergent power series, say Z:;O anX" and Z.io bnX
having sums A(x) and B(x), respectively, show that Z‘::O cnX" = A(X)B(x) where



n
Cn = ) &bk
k=0

Proof: By Theorem 8.44 and Theorem 8.13, it is clear.
Remark: We can use Mertens’ Theorem, then it is clear.
8.34 A series of the form >~ an/n* is called a Dirichlet series. Given two absolutely

convergent Dirichlet series, say >~ an/n®and > ba/ns, having sums A(s) and B(s),
respectively, show that Z:;lcn/nS = A(s)B(s), where ¢cn = de agbng-

Proof: By Theorem 8.44 and Theorem 8.13, we have
(Z an/ns> (Z bn/ns> = (Z Cn>
n=1 n=1 n=1

Cn = Y agdbyq(n/d)~

din
== aghyq
djn
= Cn/ns.

where

So, we have proved it.

8.35¢(s) = >, 1/n%, s > 1, show that {?(s) = 3~ d(n)/n®, where d(n) is the
number of positive divisors of n (including 1 and n).

Proof: It is clear by Exercise 8.34. So, we omit the proof.

Ces’aro summability
8.36 Show that each of the following series has (C,1) sum O :
@1-1-14+1+1-1-1+1+1——++---

Proof: Itis clear that |s; +...+Sn| < 1 for all n, where s, means that the nth partial sum
of given series. So,
| S1 + .+Sn |

IA

1

n

which implies that the given series has (C, 1) sum
(b)%—1+7+7—1+7+7—1++—---

Proof: Itis clear that |s; +...+sn| < 3 for all n, where s, means that the nth partial
sum of given series. So,
Si+...+Sn| o 1
n - 2n
which implies that the given series has (C,1) sum 0.
(C) cosX + €c0S3X + COS5X + « « « (x real, X = mx).

Proof: Let s, = cosx +...+cos(2n — 1)x, then



n
Snh = Zcos(Zk— 1)x
=1
_ sin2nx
2sinx
So,
>asi| | X sin2ix
n B 2nsinx

| sinnxsin(n + 1)x
2nsinxsinx

2n(sinx)?

which implies that the given series has (C,1) sum 0.
8.37 Given a series > _ ay, let

n

n n
Sn= D A th = Y kay, on = % Sy.
k=1 k=1

k=1
Prove that:

@ty = (n+1)sph —non
Proof: Define Sp = 0, and thus

n
tn = Z kak
P}
n
= Z K(Sk — Sk_1)
P}

n n
= Z ks — Z KSk_1
k=1 k=1

n n-1
= Z ksy — Z(k + 1)Sk
k=1 k=1

= Z ksx — Z(k +1)sx + (n+ 1)sy
k=1

k=1

n
= (n+1)sn— D s
k=1

= (n+1)Sh) — non.

(b) If >_an is (C,1) summable, then > an converges if, and only if, t, = o(n) as

n - oo.
Proof: Assume that D an converges. Then limp... Sy exists, say its limit a. By (a), we

have

t
L R

Then by Theorem 8.48, we also have limn.. on = a. Hence,



S T

Im 7 = Im "5=8n —on
— lim D+l _ i
= im "= limsn - liman
= a—a

which ist, = o(n) asn - oo.
Conversely, assume that t, = o(n) as n — oo, then by (a), we have
n_tn n
n+t1n " n+1°
which implies that (note that limn_. o exists by hypothesis)

n = Sn

t n
lims, = lim n_1n , c
n n+1 N " ny1”"

_ n tn n
=lmo g im g+ im - limon
= 0+l || On
N—oo
= limon

That is, D _ an converges.
(c) D an is (C,1) summable if, and only if, > ta/n(n + 1) converges.
Proof: Consider

[ :S_n_ On
nin+1) N n+1
_ Gn—(n—l)Gn,l_ O'n
n n+1
_ _n n—1
T he1%nT T 90t

which implies that

n
Zk(k+1) n+1°

(:>)Suppose that > an is (C,1) summable, i.e., limg... on exists. Then
liMnoo Zk ) k(k+1) exists by (*).

(<)Suppose that limp_e Zk L k(k D exists. Then limy... o exists by (*). Hence, > an
is (C,1) summable.

8.38 Given a monotonic {an} of positive terms, such that limy..an = 0. Let

n n n
Sn= D Un = Y (-D)a, vo = D (-1)'s.
k=1 k=1 k=1
Prove that:
(a) Vn = %Un + (—l)nSn/z

Proof: Define s; = 0, and thus consider



n

Un = D (1)

k=1

= > (D"~ Sk1)
k=1

n n
= D D s+ D (D) sy
k=1 k=1

= DD+ Y (Dfsic+ (D)™ sy
k=1 k=1

= 2vp + (-1)™s,
which implies that

Vi = %un +(=1)"sn/2.

(b) 3= ,(-1)"sn is (C,1) summable and has Ces’aro sum £ >~ (-1)"an.

Proof: First, limn.. Un exists since it is an alternating series. In addition, since

limpwan = 0, we know that limn... Sn/n = 0 by Theorem 8.48. Hence,
VMo _ Un o q\"Sn >
A 2n+(1) N Oasn — oo.

Consider by (a),

Z::l Vi %(2:4 uk) + %<Z:=1(_1)ksk>
n - n

_; Uk v
_ k=1 n
B on 2n
1 .
= 5 Hmu
- %Z(—l)”an
n=1

by Theorem 8.48.
© X D"A+4+..+%) = -logJ2 (C,1).
Proof: By (b)and 37 2~ = —log2, it is clear.
Infinite products

8.39 Determine whether or not the following infinite products converges. Find the
value of each convergent product.

@I, (1~ +5)
Proof: Consider
2 (=1 (n+2)
nn+1)  nnh+1) '

we have



>

2 7 k=D(k+2)
2(1_k(k+1))_H k(k + 1)

_1.42.53.6 .. (n-1)(n+2)
2:.33-:44.5 nin+1)
_n+2
3n
which implies that
n(n+1) 3

(o) [T ,(1-n"?)

Proof: Consider

-1 1
1_n2— (n r)"(1n+ )

we have

n

. o1 k=1)(k+1)
Ik:z[(l—kz)—l_[ &

k=2

which implies that

[Ja-n2 =12
n=2

(©) I, 52
Proof: Consider
nd—1 _ (=112 +n+1)
n+1  (+1N"2-n+1)
_ (n-1)((n2+n+1)
+)[(n-1)2+(n-1)+1]
we have (let f(k) = (k—1)* + (k—1) + 1),

K1 211[ (k—1)(K2 + Kk + 1)
w2 KB+l k+D[k-1)7+ (k-1) +1]
_2n2+n+1
3 nin+1)

which implies that

ﬁn3—1 2
nd+1 3
n=2

)1 ,@+z@)if|z| < 1.

Proof: Consider

n
[[1+29 = @+)@+22) - - (1 +22Y)
k=0



which implies that

n
A-2)[]1+2® =1-z2"
k=0
which implies that (if |z| < 1)
n

on+l
Hl+z<2k):1—2( L o1 _asnow
k=0

1-z 1-z
So,

o0

@y = -1
[[a+z®) = 1.

n=0

8.40 If each partial sum s, of the convergent series D _ an is not zero and if the sum
itself is not zero, show that the infinite product a; H:iz(l — an/sy-1) converges and has the
value 3~ an.

Proof: Consider

n n
Sk-1 +a
ai H(l +au/Sk1) = ax H %
k=2 k=2
- S
_ k
=& H Sk-1
k=2
= Sr] i :EE:: Ein * ().

So, the infinite product a; [ ], (1 — an/sn-1) converges and has the value 3~ a.

8.41 Find the values of the following products by establishing the following identities
and summing the series:

@[1,Q-55)=2>" 2"

Proof: Consider

1 1 _2n—1 _ 1 2n-1
2n_2 2n_2 22n—1_1’
we have
" 1 T ko1
H( _2k—2):1k_2[§2k—1—1

_ 1
=1+...+ =

n
_ 1

k-1
o 2
n

--o%" 1



So,

(b) H::;Z (1 + n21—1 ) - 22:10:1 n(n1+1) '

Proof: Consider

1 _ 2 _
R M M (n—lr)]?n+1)’
we have
ll:zl( ) 1_[(k 1)(k+1)
_2n+1
_ 1
_2<1_ n+1>
Zk(k+1)
So,
- _ 1
B( - T&in(n+1)

= 2.

8.42 Determine all real x for which the product ]_[::1 cos(x/2") converges and find the
value of the product when it does converge.

Proof: If x #+ mz, where m € Z, then sm + 0 for all n € N. Hence,

2"sin X X . ;
K Ky _ _sinx__ _ sinx
Hcos(x/Z ) = hgn i X Hcos(xlz = Jrsin & AX.

If X = mz, wherem € Z. Thenasm = O, |t is clear that the product converges to 1. So,
we consider m = 0 as follows. Since x = mz, choosing n large enough, i.e.,asn > N so
that sin - + 0. Hence,

N-1 n
H cos(x/2) = [ Jcos(x/2) | ] cos(x/2¥)
k1 kel kN

N-1 .
_ o Sin(x/2N-1)
[ [ eos02) 5 amy

and note that
sin(x/2N-1) sin(x/2N-1)

oo pn-Nelgin(x/2n) — x/2N-1

Hence,

o0 . N-1 N-1
[ Jcosxi2¥) = % [ Jcosxi2%).
k=1 k=1



So, by above sayings, we have prove that the convergence of the product for all x € R.

8.43 (a) Leta, = (-1)"/yn forn = 1,2,... Show that | [(1 + an) diverges but that
D" an converges.

Proof: Clearly, > a, converges since it is alternating series. Consider

That is, H:;z 1 + a diverges to zero.

(b) Letaz g = —-1/J/n, az = 1/ /0 + Unforn =1,2,... Show that [ [(1 + an)
converges but > _ aj diverges.

Proof: Clearly, )" an diverges. Consider

2n
[J1+a=@+a)@+as)@+as) - (1+az)
k=2

=3(1+ag)(l+ag) -+ +(1+az,)

_gf1-—L )...(1-—L_
_3(1 2ﬁ> (1 nJﬁ>
[[1+ac=(+a)@+as)@+an) -« (1+aum)l+azmi)

~a(1- g ) (1-55 ) (- )

By (*) and (**), we know that

and

[ J@ +an) converges
since ]_[::2(1 - ﬁ) converges.

8.44 Assume that a, > 0 for each n = 1,2,... Assume further that



Aony2 azn
— < a < forn=1,2,...
1 + a2n+2 2n+l 1 + aZn

show that [ ], (1 + (~1)*a,) converges if, and only if, 3-" (~1)“a, converges.
Proof: First, we note that if -2 > b, then (1+a)(1-b) > 1, andifb > Lic then
1> (1-b)(1+c). Hence, by hypothesis, we have
1< (@+axn)(l-azmu)

and
1> (1+az2)(d—azm).
(<)Suppose that Z:’zl(—l)kak converges, then limy_.,ax = 0. Consider Cauchy
Condition for product,
|(1+ (-1)"ap ) (1+ (-1)"%ap.2) « (1 + (-1)*%apiq) — 1] forq = 1,2,3,....
Ifp+1=2m, and g = 2, then
|(1+ (1) apa) (1 + (-1)"%ap2) « + «(1+ (-1)P%ap.q) — 1
= |(1+azm)(1 —azm1) «+ «(1+aomszr) — 1
< 1+azm—1by (*)and (**)
= ayy — O.
Similarly for other cases, so we have proved that ]_[f:l(l + (—1)"ak> converges by
Cauchy Condition for product.

(=)This is a counterexample as follows. Let an = (—1)”[ (exp % - 1} > 0 for all

n, then it is easy to show that

dons2

don
<a < forn=1,2,...
1 + a2n+2 2n+1

1+a2n

In addition,

n n k n k
1+ (—1)ka = exp& = exp( &> - exp(—log2) asn - oo.
L€ )= 11w g 2R

However, consider

n
D (@ — azc1)
1

IR 1) =

_kz;[exp(m> exp(mﬂ

- n 1 1 € =1 L

- kz;exp(bk)(m + k1 ) where by (m \/ﬁ>

n
1 1
> exp(-1 + - o0asn — oo.
2ot (m 1 )
So, by Theorem 8.13, we proved the divergence of Z:’zl(—l)"ak.

8.45 A complex-valued sequence {f(n)} is called multiplicative if f(1) = 1 and if
f(mn) = f(m)f(n) whenever m and n are relatively prime. (See Section 1.7) It is called
completely multiplicative if

f(1) = L and if f{(mn) = f(m)f(n) for all m and n.

**



(a) If {f(n)} is multiplicative and if the series Y f(n) converges absolutely, prove that
D f) = [ [{1+ 1o +f(d) +.. ),
n=1 k=1

where py denote the kth prime, the product being absolutely convergent.

Proof: We consider the partial product P, = ]_[L”:l{l + f(pk) + f(p2) +... } and show
that P — - f(n) asm — oo. Writing each factor as a geometric series we have

Pm = [ [41+ (o) +f(PE) +...},
k=1

a product of a finite number of absolutely convergent series. When we multiple these series
together and rearrange the terms such that a typical term of the new absolutely convergent
series is

f(n) = f(p1*) - - -f(pfi), where n = p3* - - -pfr,
and each a; > 0. Therefore, we have

Pm = > _f(n),
1

where Zl Is summed over those n having all their prime factors < pm. By the unique
factorization theorem (Theorem 1.9), each such n occors once and only once in Zl.
Substracting Py, from ZL f(n), we get

D () —Pm =) ()= D_f(n) = D_f(n)
n=1 n=1 1 2

where Zz is summed over those n having at least one prime factor > pm. Since these n
occors among the integers > pm, we have

if(n) ~Pnm
n=1

Asm - oo the last sum tends to 0 because 3" f(n) converges, so Pn — >~ f(n).

To prove that the product converges absolutely we use Theorem 8.52. The product has
the form [ [(1 + ax), where

< D[],

n>pm

ai = f(pi) + f(pE) +.....
The series D _|ax| converges since it is dominated by Z::1|f(n)|. Thereofore, [ (1 + ax)
also converges absolutely.

Remark: The method comes from Euler. By the same method, it also shows that there
are infinitely many primes. The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese Version)

(b) If, in addition, {f(n)} is completely multiplicative, prove that the formula in (a)

becomes
fny=[]-—L—.
; ll:l[ 1 —f(px)

Note that Euler’s product for {(s) (Theorem 8.56) is the special case in which f(n) = n-s,
Proof: By (a), if {f(n)} is completely multiplicative, then rewrite



0

1+f(p) +f(P) +... = D_[f(p)]"

n=0

_ 1
1-1f(pw)

since [f(px)| < 1 for all py. (Suppose NOT, then [f(p)| > 1 = [f(pD)| = If(pr)|" > 1

contradicts to limp... f(n) = 0.).

Hence,
f(n) = 1
; H 1 —f(px)

8.46 This exercise outlines a simple proof of the formula {(2) = #2/6. Start with the
inequality sinx < x < tanx, valid for 0 < x < #/2, taking recipocals, and square each
member to obtain

1

cot?x < S < 1 + cot?x.

Now put x = kz/(2m + 1), where k and m are integers, with 1 < k < m, and sum on k to

obtain
) (2m+1) 2
E cot 2m+1< E k2<m+§ cot 2m+l

Use the formula of Exercise 1.49(c) to deduce the ineqaulity

_ 2 m 2
m(2m 1)72 < Z % < 2m(m + 1)72
32m+1) k 32m+1)
Now let m — oo to obtain (2) = =2/6.
Proof: The proof is clear if we follow the hint and Exercise 1.49 (c), so we omit it.

8.47 Use an argument similar to that outlined in Exercise 8.46 to prove that
{(4) = n4190.

Proof: The proof is clear if we follow the Exercise 8.46 and Exercise 1.49 (c), so we
omit it.

Remark: (1) From this, it is easy to compute the value of £(2s), where
s € {n : n € N}. In addition, we will learn some new method such as Fourier series and
so on, to find the value of Riemann zeta function.

(2) Ther is an open problem that {(2s — 1), wheres € {ne N : n > 1}.



