
Supplement on lim sup and lim inf
Introduction

In order to make us understand the information more on approaches of a given real
sequence ann1

 , we give two definitions, thier names are upper limit and lower limit. It
is fundamental but important tools in analysis. We do NOT give them proofs. The reader
can see the book, Infinite Series by Chao Wen-Min, pp 84-103. (Chinese Version)

Definition of limit sup and limit inf
Definition Given a real sequence ann1

 , we define
bn  supam : m ≥ n

and
cn  infam : m ≥ n.

Example 1  −1nn1
  0,2, 0, 2, . . ., so we have

bn  2 and cn  0 for all n.

Example −1nnn1
  −1,2,−3,4, . . . , so we have

bn   and cn  − for all n.

Example −nn1
  −1,−2,−3, . . . , so we have

bn  −n and cn  − for all n.

Proposition Given a real sequence ann1
 , and thus define bn and cn as the same as

before.
1 bn ≠ −, and cn ≠  ∀n ∈ N.
2 If there is a positive integer p such that bp  , then bn   ∀n ∈ N.

If there is a positive integer q such that cq  −, then cn  − ∀n ∈ N.
3 bn is decreasing and cn is increasing.

By property 3, we can give definitions on the upper limit and the lower limit of a given
sequence as follows.
Definition Given a real sequence an and let bn and cn as the same as before.

(1) If every bn ∈ R, then
infbn : n ∈ N

is called the upper limit of an, denoted by
limn→ supan.

That is,
limn→ supan  inf

n
bn.

If every bn  , then we define
limn→ supan  .

(2) If every cn ∈ R, then
supcn : n ∈ N

is called the lower limit of an, denoted by



limn→ infan.

That is,
limn→ infan  sup

n
cn.

If every cn  −, then we define
limn→ infan  −.

Remark The concept of lower limit and upper limit first appear in the book (Analyse
Alge’brique) written by Cauchy in 1821. But until 1882, Paul du Bois-Reymond
gave explanations on them, it becomes well-known.

Example 1  −1nn1
  0,2, 0, 2, . . . , so we have

bn  2 and cn  0 for all n
which implies that

lim supan  2 and lim infan  0.

Example −1nnn1
  −1,2,−3,4, . . . , so we have

bn   and cn  − for all n
which implies that

lim supan   and lim infan  −.

Example −nn1
  −1,−2,−3, . . . , so we have

bn  −n and cn  − for all n
which implies that

lim supan  − and lim infan  −.

Relations with convergence and divergence for upper (lower) limit
Theorem Let an be a real sequence, then an converges if, and only if, the upper

limit and the lower limit are real with
limn→ supan  limn→ infan  limn→ an.

Theorem Let an be a real sequence, then we have
(1) limn→ supan    an has no upper bound.
(2) limn→ supan  −  for any M  0, there is a positive integer n0 such

that as n ≥ n0, we have
an ≤ −M.

(3) limn→ supan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a −   an

and (b) given any   0, there is a positive integer n0 such that as n ≥ n0, we have
an  a  .

Similarly, we also have
Theorem Let an be a real sequence, then we have



(1) limn→ infan  −  an has no lower bound.
(2) limn→ infan    for any M  0, there is a positive integer n0 such

that as n ≥ n0, we have
an ≥ M.

(3) limn→ infan  a if, and only if, (a) given any   0, there are infinite
many numbers n such that

a    an

and (b) given any   0, there is a positive integer n0 such that as n ≥ n0, we have
an  a − .

From Theorem 2 an Theorem 3, the sequence is divergent, we give the following
definitios.
Definition Let an be a real sequence, then we have

(1) If limn→ supan  −, then we call the sequence an diverges to −,
denoted by

limn→ an  −.

(2) If limn→ infan  , then we call the sequence an diverges to ,
denoted by

limn→ an  .

Theorem Let an be a real sequence. If a is a limit point of an, then we have
limn→ infan ≤ a ≤ limn→ supan.

Some useful results
Theorem Let an be a real sequence, then

(1) limn→ infan ≤ limn→ supan.
(2) limn→ inf−an  − limn→ supan and limn→ sup−an  − limn→ infan
(3) If every an  0, and 0  limn→ infan ≤ limn→ supan  , then we

have
limn→ sup 1

an
 1

limn→ infan
and limn→ inf 1

an
 1

limn→ supan
.

Theorem Let an and bnbe two real sequences.
(1) If there is a positive integer n0 such that an ≤ bn, then we have

limn→ infan ≤ limn→ infbn and limn→ supan ≤ limn→ supbn.

(2) Suppose that −  limn→ infan, limn→ infbn, limn→ supan,
limn→ supbn  , then

limn→ infan  limn→ infbn

≤ limn→ infan  bn

≤ limn→ infan  limn→ supbn (or limn→ supan  limn→ infbn )

≤ limn→ supan  bn

≤ limn→ supan  limn→ supbn.



In particular, if an converges, we have
limn→ supan  bn  limn→ an  limn→ supbn

and
limn→ infan  bn  limn→ an  limn→ infbn.

(3) Suppose that −  limn→ infan, limn→ infbn, limn→ supan,
limn→ supbn  , and an  0, bn  0 ∀n, then

limn→ infan limn→ infbn

≤ limn→ infanbn

≤ limn→ infan limn→ supbn (or limn→ infbn limn→ supan )

≤ limn→ supanbn

≤ limn→ supan limn→ supbn .

In particular, if an converges, we have
limn→ supanbn  limn→ an limn→ supbn

and
limn→ infan  bn  limn→ an limn→ infbn.

Theorem Let an be a positive real sequence, then
limn→ inf an1

an
≤ limn→ infan1/n ≤ limn→ supan1/n ≤ limn→ sup an1

an
.

Remark We can use the inequalities to show

limn→
n!1/n

n  1/e.

Theorem Let an be a real sequence, then
limn→ infan ≤ limn→ inf a1 . . .an

n ≤ limn→ sup a1 . . .an
n ≤ limn→ supan.

Exercise Let f : a,d → R be a continuous function, and an is a real sequence. If f is
increasing and for every n, limn→ infan, limn→ supan ∈ a,d, then

limn→ sup fan  f limn→ supan and limn→ inf fan  f limn→ infan .

Remark: (1) The condition that f is increasing cannot be removed. For
example,

fx  |x|,
and

ak 
1/k if k is even

−1 − 1/k if k is odd.

(2) The proof is easy if we list the definition of limit sup and limit inf. So, we
omit it.

Exercise Let an be a real sequence satisfying anp ≤ an  ap for all n, p. Show that
 an

n  converges.
Hint: Consider its limit inf.



Remark: The exercise is useful in the theory of Topological Entorpy.

Infinite Series And Infinite Products
Sequences

8.1 (a) Given a real-valed sequence an bounded above, let un  supak : k ≥ n.
Then un ↘ and hence U  limn→ un is either finite or −. Prove that

U  limn→ supan  limn→supak : k ≥ n.

Proof: It is clear that un ↘ and hence U  limn→ un is either finite or −.
If U  −, then given any M  0, there exists a positive integer N such that as n ≥ N,

we have
un ≤ −M

which implies that, as n ≥ N, an ≤ −M. So, limn→ an  −. That is, an is not bounded
below. In addition, if an has a finite limit supreior, say a. Then given   0, and given
m  0, there exists an integer n  m such that

an  a − 
which contradicts to limn→ an  −. From above results, we obtain

U  limn→ supan

in the case of U  −.
If U is finite, then given   0, there exists a positive integer N such that as n ≥ N, we

have
U ≤ un  U  .

So, as n ≥ N, un  U   which implies that, as n ≥ N, an  U  . In addition, given
′  0, and m  0, there exists an integer n  m,

U − ′  an

by U ≤ un  supak : k ≥ n if n ≥ N. From above results, we obtain
U  limn→ supan

in the case of U is finite.
(b)Similarly, if an is bounded below, prove that

V  limn→ infan  limn→infak : k ≥ n.

Proof: Since the proof is similar to (a), we omit it.
If U and V are finite, show that:
(c) There exists a subsequence of an which converges to U and a subsequence which

converges to V.
Proof: Since U  lim supn→ an by (a), then
(i) Given   0, there exists a positive integer N such that as n ≥ N, we have

an  U  .
(ii) Given   0, and m  0, there exists an integer Pm  m,

U −   aPm.
Hence, aPm is a convergent subsequence of an with limit U.

Similarly for the case of V.



(d) If U  V, every subsequnce of an converges to U.
Proof: By (a) and (b), given   0, then there exists a positive integer N1 such that as

n ≥ N1, we have
an  U  

and there exists a positive integer N2 such that as n ≥ N2, we have
U −   an.

Hence, as n ≥ maxN1,N2, we have
U −   an  U  .

That is, an is a convergent sequence with limit U. So, every subsequnce of an
converges to U.

8.2 Given two real-valed sequence an and bn bounded below. Prove hat
(a) lim supn→an  bn ≤ lim supn→ an  lim supn→ bn.

Proof: Note that an and bn bounded below, we have lim supn→ an   or is
finite. And lim supn→ bn   or is finite. It is clear if one of these limit superior is ,
so we may assume that both are finite. Let a  lim supn→ an and b  lim supn→ bn. Then
given   0, there exists a positive integer N such that as n ≥ N, we have

an  bn  a  b  /2.     *
In addition, let c  lim supn→an  bn, where c   by (*). So, for the same   0, and
given m  N there exists a positive integer K such that as K ≥ N, we have

c − /2  aK  bK.     **
By (*) and (**), we obtain that

c − /2  aK  bK  a  b  /2
which implies that

c ≤ a  b
since  is arbitrary. So,

lim sup
n→

an  bn ≤ lim sup
n→

an  lim sup
n→

bn.

Remark: (1) The equality may NOT hold. For example,
an  −1n and bn  −1n1.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on process of proof.

(b) lim supn→anbn ≤ lim supn→ anlim supn→ bn if an  0, bn  0 for all n, and
if both lim supn→ an and lim supn→ bn are finite or both are infinite.

Proof: Let lim supn→ an  a and lim supn→ bn  b. It is clear that we may assume
that a and b are finite. Given   0, there exists a positive integer N such that as n ≥ N,
we have

anbn  a  b    ab  a  b  .     *
In addition, let c  lim supn→anbn, where c   by (*). So, for the same   0, and
given m  N there exists a positive integer K such that as K ≥ N, we have

c −   aK  bK.     **
By (*) and (**), we obtain that

c −   aK  bK  a  b  a  b  



which implies that
c ≤ a  b

since  is arbitrary. So,

lim sup
n→

anbn ≤ lim sup
n→

an lim sup
n→

bn .

Remark: (1) The equality may NOT hold. For example,
an  1/n if n is odd and an  1 if n is even.

and
bn  1 if n is odd and bn  1/n if n is even.

(2) The reader should noted that the finitely many terms does NOT change the relation
of order. The fact is based on the process of the proof.

(3) The reader should be noted that if letting An  logan and Bn  logbn, then by (a)
and logx is an increasing function on 0,, we have proved (b).

8.3 Prove that Theorem 8.3 and 8.4.

(Theorem 8.3) Let an be a sequence of real numbers. Then we have:
(a) lim infn→ an ≤ lim supn→ an.

Proof: If lim supn→ an  , then it is clear. We may assume that
lim supn→ an  . Hence, an is bounded above. We consider two cases: (i)
lim supn→ an  a, where a is finite and (ii) lim supn→ an  −.

For case (i), if lim infn→ an  −, then there is nothing to prove it. We may assume
that lim infn→ an  a′, where a′ is finite. By definition of limit superior and limit inferior,
given   0, there exists a positive integer N such that as n ≥ N, we have

a′ − /2  an  a  /2
which implies that a′ ≤ a since  is arbitrary.

For case (ii), since lim supn→ an  −, we have an is not bounded below. If
lim infn→ an  −, then there is nothing to prove it. We may assume that
lim infn→ an  a′, where a′ is finite. By definition of limit inferior, given   0, there
exists a positive integer N such that as n ≥ N, we have

a′ − /2  an

which contradicts that an is not bounded below.
So, from above results, we have proved it.
(b) The sequence converges if and only if, lim supn→ an and lim infn→ an are both

finite and equal, in which case limn→ an  lim infn→ an  lim supn→ an.

Proof: ()Given an a convergent sequence with limit a. So, given   0, there
exists a positive integer N such that as n ≥ N, we have

a −   an  a  .
By definition of limit superior and limit inferior, a  lim infn→ an  lim supn→ an.

()By definition of limit superior, given   0, there exists a positive integer N1 such
that as n ≥ N1, we have

an  a  
and by definition of limit superior, given   0, there exists a positive integer N2 such that
as n ≥ N2, we have



a −   an.
So, as n ≥ maxN1,N2, we have

a −   an  a  .
That is, limn→ an  a.

(c) The sequence diverges to  if and only if, lim infn→ an  lim supn→ an  .

Proof: ()Given a sequence an with limn→ an  . So, given M  0, there is a
positive integer N such that as n ≥ N, we have

M ≤ an.     *
It implies that an is not bounded above. So, lim supn→ an  . In order to show that
lim infn→ an  . We first note that an is bounded below. Hence, lim infn→ an ≠ −.
So, it suffices to consider that lim infn→ an is not finite. (So, we have
lim infn→ an  . ). Assume that lim infn→ an  a, where a is finite. Then given   1,
and an integer m, there exists a positive Km  m such that

aKm  a  1
which contradicts to (*) if we choose M  a  1. So, lim infn→ an is not finite.

(d) The sequence diverges to − if and only if, lim infn→ an  lim supn→ an  −.

Proof: Note that, lim supn→−an  − lim infn→ an. So, by (c), we have proved it.

(Theorem 8.4)Assume that an ≤ bn for each n  1,2, . . . . Then we have:
limn→ infan ≤ limn→ infbn and limn→ supan ≤ limn→ supbn.

Proof: If lim infn→ bn  , there is nothing to prove it. So, we may assume that
lim infn→ bn  . That is, lim infn→ bn  − or b, where b is finite.

For the case, lim infn→ bn  −, it means that the sequence an is not bounded
below. So, bn is also not bounded below. Hence, we also have lim infn→ an  −.

For the case, lim infn→ bn  b, where b is finite. We consider three cases as follows.
(i) if lim infn→ an  −, then there is nothing to prove it.
(ii) if lim infn→ an  a, where a is finite. Given   0, then there exists a positive

integer N such that as n ≥ N
a − /2  an ≤ bn  b  /2

which implies that a ≤ b since  is arbitrary.
(iii) if lim infn→ an  , then by Theorem 8.3 (a) and (c), we know that

limn→ an   which implies that limn→ bn  . Also, by Theorem 8.3 (c), we have
lim infn→ bn   which is absurb.

So, by above results, we have proved that lim infn→ an ≤ lim infn→ bn.
Similarly, we have lim supn→ an ≤ lim supn→ bn.

8.4 If each an  0, prove that
limn→ inf an1

an
≤ limn→ infan1/n ≤ limn→ supan1/n ≤ limn→ sup an1

an
.

Proof: By Theorem 8.3 (a), it suffices to show that
limn→ inf an1

an
≤ limn→ infan1/n and limn→ supan1/n ≤ limn→ sup an1

an
.

We first prove
limn→ supan1/n ≤ limn→ sup an1

an
.



If lim supn→
an1
an  , then it is clear. In addition, since an1

an is positive,
lim supn→

an1
an ≠ −. So, we may assume that lim supn→

an1
an  a, where a is finite.

Given   0, then there exists a positive integer N such that as n ≥ N, we have
an1
an

 a  

which implies that
aNk  aNa  k, where k  1,2, . . . .

So,
aNk

1
Nk  aN

1
Nk a  

k
Nk

which implies that
lim
k→

supaNk
1

Nk ≤ lim
k→

supaN
1

Nk a  
k

Nk

 a  .
So,

lim
k→

supaNk
1

Nk ≤ a

since  is arbitrary. Note that the finitely many terms do NOT change the value of limit
superiror of a given sequence. So, we finally have

limn→ supan1/n ≤ a  limn→ sup an1
an

.

Similarly for
limn→ inf an1

an
≤ limn→ infan1/n.

Remark: These ineqaulities is much important; we suggest that the reader keep it mind.
At the same time, these inequalities tells us that the root test is more powerful than the
ratio test. We give an example to say this point. Given a series

1
2  1

3  1
22  1

32 . . . 1
2n  1

3n . . .

where

a2n−1  1
2

n
, and a2n  1

3
n
, n  1,2, . . .

with

limn→ supan1/n  1
2  1

and
limn→ inf an1

an
 0, limn→ sup an1

an
 .

8.5 Let an  nn/n!. Show that limn→ an1/an  e and use Exercise 8.4 to deduce that
limn→

n
n!1/n  e.

Proof: Since
an1
an

 n  1n1n!
n  1!nn  1  1

n
n
→ e,

by Exercise 8.4, we have
limn→an1/n  limn→

n
n!1/n  e.



Remark: There are many methods to show this. We do NOT give the detailed proof.
But there are hints.

(1) Taking log on  n!
nn 

1/n, and thus consider
1
n log 1

n . . . log n
n → 

0

1
logxdx  −1.

(2) Stirling’s Formula:
n!  nne−n 2n e 

12n , where  ∈ 0,1.

Note: In general, we have

limx→
Γx  1

xxe−x 2x
 1,

where Γx is the Gamma Function. The reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 192-195.

(3) Note that 1  1
x 

x ↗ e and 1  1
x 

x1 ↘ e on 0,. So,

1  1
n

n
 e  1  1

n
n1

which implies that
enne−n  n!  enn1e−n.

(4) Using O-Stolz’s Theorem: Let limn→ yn   and yn ↗. If
limn→

xn1 − xn
yn1 − yn

 a, where a is finite or  ,

then
limn→

xn
yn

 a.

Let xn  log 1
n . . . log n

n and yn  n.
Note: For the proof of O-Stolz’s Theorem, the reader can see the book, An

Introduction to Mathematical Analysis by Loo-Keng Hua, pp 195. (Chinese Version)
(5) Note that, if an is a positive sequence with limn→ an  a, then

a1   an1/n → a as n → .
Taking an  1  1

n 
n, then

a1   an1/n  nn

n!
1/n

1  1
n → e.

Note: For the proof, it is easy from the Exercise 8.6. We give it a proof as follows. Say
limn→ an  a. If a  0, then by A.P.≥ G.P. , we have

a1   an1/n ≤ a1 . . .an
n → 0 by Exercise 8.6.

So, we consider a ≠ 0 as follows. Note that logan → loga. So, by Exercise 8.6,
loga1 . . . logan

n → loga
which implies that a1   an1/n → a.

8.6 Let an be real-valued sequence and let n  a1 . . .an/n. Show that
limn→ infan ≤ limn→ infn ≤ limn→ supn ≤ limn→ supan.

Proof: By Theorem 8.3 (a), it suffices to show that
limn→ infan ≤ limn→ infn and limn→ supn ≤ limn→ supan.



We first prove
limn→ supn ≤ limn→ supan.

If lim supn→ an  , there is nothing to prove it. We may assume that
lim supn→ an  − or a, where a is finite.

For the case, lim supn→ an  −, then by Theorem 8.3 (d), we have
limn→ an  −.

So, given M  0, there exists a positive integer N such that as n ≥ N, we have
an ≤ −M.     *

Let n  N, we have

n 
a1 . . .aN . .an

n
 a1 . . .aN

n  aN1 . . .an
n

≤ a1 . . .aN
n  n − N

n −M

which implies that
limn→ supn ≤ −M.

Since M is arbitrary, we finally have
limn→ supn  −.

For the case, lim supn→ an  a, where a is finite. Given   0, there exists a positive
integer N such that as n ≥ N, we have

an  a  .
Let n  N, we have

n 
a1 . . .aN . .an

n
 a1 . . .aN

n  aN1 . . .an
n

≤ a1 . . .aN
n  n − N

n a  

which implies that
limn→ supn ≤ a  

which implies that
limn→ supn ≤ a

since  is arbitrary.
Hence, from above results, we have proved that lim supn→n ≤ lim supn→ an.
Similarly for lim infn→ an ≤ lim infn→n.

Remark: We suggest that the reader keep it in mind since it is the fundamental and
useful in the theory of Fourier Series.

8.7 Find lim supn→ an and lim infn→ an if an is given by

(a) cosn

Proof: Note that, a  b : a,b ∈ Z is dense in R. By cosn  cosn  2k, we
know that

limn→ sup cosn  1 and limn→ inf cosn  −1.



Remark: The reader may give it a try to show that
limn→ sup sinn  1 and limn→ inf sinn  −1.

(b) 1  1
n cosn

Proof: Note that

1  1
n cosn 

1 if n  2k
−1 if n  2k − 1

.

So, it is clear that
limn→ sup 1  1

n cosn  1 and limn→ inf 1  1
n cosn  −1.

(c) n sin n
3

Proof: Note that as n  1  6k, n sin n
3  1  6k sin 

3 , and as n  4  6k,
n  −4  6k sin 

3 . So, it is clear that
limn→ supn sin n

3   and limn→ infn sin n
3  −.

(d) sin n
2 cos n

2

Proof: Note that sin n
2 cos n

2  1
2 sinn  0, we have

limn→ sup sin n
2 cos n

2  limn→ inf sin n
2 cos n

2  0.

(e) −1nn/1  nn

Proof: Note that
limn→−1

nn/1  nn  0,

we know that
limn→ sup−1nn/1  nn  limn→ inf−1nn/1  nn  0.

(f) n
3 − 

n
3 

Proof: Note that

n
3 −

n
3 

1
3 if n  3k  1
2
3 if n  3k  2

0 if n  3k

, where k  0,1, 2, . . . .

So, it is clear that
limn→ sup n

3 −
n
3  2

3 and limn→ inf n
3 −

n
3  0.

Note. In (f), x denoted the largest integer ≤ x.

8.8 Let an  2 n − ∑k1
n 1/ k . Prove that the sequence an converges to a limit p

in the interval 1  p  2.

Proof: Consider∑k1
n 1/ k : Sn and 

1

n
x−1/2dx : Tn, then

limn→ dn exists, where dn  Sn − Tn

by Integral Test. We denote the limit by d, then



0 ≤ d  1     *
by Theorem 8.23 (i). Note that dn − fn is a positive increasing sequence, so we have

d  0.     **
Since

Tn  2 n − 2
which implies that

limn→ 2 n −∑
k1

n

1/ k  limn→ an  2 − d  p.

By (*) and (**), we have proved that 1  p  1.
Remark: (1) The use of Integral Test is very useful since we can know the behavior

of a given series by integral. However, in many cases, the integrand may be so complicated
that it is not easy to calculate. For example: Prove that the convergence of

∑
n2


1

nlognp , where p  1.

Of course, it can be checked by Integral Test. But there is the Theorem called Cauchy
Condensation Theorem much powerful than Integral Test in this sense. In addition, the
reader can think it twice that in fact, Cauchy condensation Theorem is equivalent to
Integral Test.

(Cauchy Condensation Theorem)Let an be a positive decreasing sequence. Then

∑
n1



an converges if, and only if, ∑
k0



2ka2k converges.

Note: (1) The proof is not hard; the reader can see the book, Principles of
Mathematical Analysis by Walter Rudin, pp 61-63.

(2) There is an extension of Cauchy Condensation Theorem (Oskar Schlomilch):
Suppose that ak be a positive and decreasing sequence and mk⊆ N is a sequence. If
there exists a c  0 such that

0  mk2 − mk1 ≤ cmk1 − mk for all k,
then

∑
k1



ak converges if, and only if, ∑
k0



mk1 − mkamk .

Note: The proof is similar with Cauchy Condensation Theorem, so we omit it.
(2) There is a similar Theorem, we write it as a reference. If t ≥ a, ft is a

non-negative increasing function, then as x ≥ a, we have

∑
a≤n≤x

fn − 
a

x
ftdt ≤ fx.

Proof: The proof is easy by drawing a graph. So, we omit it.
P.S.: The theorem is useful when we deal with some sums. For example,

ft  log t.
Then



∑
1≤n≤x

logn − x logx  x − 1 ≤ logx.

In particular, as x ∈ N, we thus have
n logn − n  1 − logn ≤ logn! ≤ n logn − n  1  logn

which implies that
nn−1e−n1 ≤ n! ≤ nn1e−n1.

In each of Exercise 8.9. through 8.14, show that the real-valed sequence an is
convergent. The given conditions are assumed to hold for all n ≥ 1. In Exercise 8.10
through 8.14, show that an has the limit L indicated.

8.9 |an |  2, |an2 − an1 | ≤ 1
8 |an1

2 − an
2 |.

Proof: Since
|an2 − an1 | ≤ 1

8 |an1
2 − an

2 |

 1
8 |an1 − an ||an1  an |

≤ 1
2 |an1 − an | since |an |  2

we know that

|an1 − an | ≤ 1
2

n−1
|a2 − a1 | ≤ 1

2
n−3

.

So,

|ank − an | ≤ ∑
j1

k

|anj − anj−1 |

≤ ∑
j1

k
1
2

nj−4

≤ 1
2

n−2
→  as n → .

Hence, an is a Cauchy sequence. So, an is a convergent sequence.
Remark: (1) If |an1 − an | ≤ bn for all n ∈ N, and∑ bn converges, then∑ an

converges.
Proof: Since the proof is similar with the Exercise, we omit it.
(2) In (1), the condition∑ bn converges CANNOT omit. For example,
(i) Let an  sin ∑k1

n 1
k Or

(ii) an is defined as follows:
a1  1, a2  1/2, a3  0, a4  1/4, a5  1/2, a6  3/4, a7  1, and so on.

8.10 a1 ≥ 0, a2 ≥ 0, an2  anan1
1/2, L  a1a2

21/3.

Proof: If one of a1 or a2 is 0, then an  0 for all n ≥ 2. So, we may assume that
a1 ≠ 0 and a2 ≠ 0. So, we have an ≠ 0 for all n. Let bn  an1

an , then
bn1  1/ bn for all n

which implies that



bn1  b1
−1
2

n

→ 1 as n → .
Consider

j2
n1bj  j1

n bj
−1/2

which implies that

a1
1/2a2

−2/3an1  1
bn1

2/3

which implies that
limn→ an1  a1a2

21/3.

Remark: There is another proof. We write it as a reference.
Proof: If one of a1 or a2 is 0, then an  0 for all n ≥ 2. So, we may assume that

a1 ≠ 0 and a2 ≠ 0. So, we have an ≠ 0 for all n. Let a2 ≥ a1. Since an2  anan1
1/2,

then inductively, we have
a1 ≤ a3 ≤. . .≤ a2n−1 ≤. . .≤ a2n ≤. . .≤ a4 ≤ a2.

So, both of a2n and a2n−1 converge. Say
limn→ a2n  x and limn→ a2n−1  y.

Note that a1 ≠ 0 and a2 ≠ 0, so x ≠ 0, and y ≠ 0. In addition, x  y by
an2  anan1

1/2. Hence, an converges to x.
By an2  anan1

1/2, and thus
j1

n aj2
2  j1

n ajaj1  a1a2
2an1j1

n−2aj2
2

which implies that
an1an2

2  a1a2
2

which implies that
limn→ an  x  a1a2

21/3.

8.11 a1  2, a2  8, a2n1  1
2 a2n  a2n−1, a2n2 

a2na2n−1
a2n1 , L  4.

Proof: First, we note that
a2n1 

a2n  a2n−1
2 ≥ a2na2n−1 by A.P.≥ G.P.     *

for n ∈ N. So, by a2n2 
a2na2n−1

a2n1 and (*),
a2n2 

a2na2n−1
a2n1

≤ a2na2n−1 ≤ a2n1 for all n ∈ N.

Hence, by Mathematical Induction, it is easy to show that
a4 ≤ a6 ≤. . .≤ a2n2 ≤. . .≤ a2n1 ≤. . .≤ a5 ≤ a3

for all n ∈ N. It implies that both of a2n and a2n−1 converge, say
limn→ a2n  x and limn→ a2n−1  y.

With help of a2n1  1
2 a2n  a2n−1, we know that x  y. In addition, by a2n2 

a2na2n−1
a2n1 ,

a1  2, and a2  8, we know that x  4.
8.12 a1  −3

2 , 3an1  2  an
3, L  1. Modify a1 to make L  −2.

Proof: By Mathematical Induction, it is easy to show that
− 2 ≤ an ≤ 1 for all n.     *



So,
3an1 − an  an

3 − 3an  2 ≥ 0
by (*) and fx  x3 − 3x  2  x − 12x  2 ≥ 0 on −2,1. Hence, an is an
increasing sequence with a upper bound 1. So, an is a convergent sequence with limit L.
So, by 3an1  2  an

3,
L3 − 3L  2  0

which implies that
L  1 or − 2.

So, L  1 sinc an ↗ and a1  −3/2.
In order to make L  −2, it suffices to let a1  −2, then an  −2 for all n.

8.13 a1  3, an1 
31an

3an
, L  3 .

Proof: By Mathematical Induction, it is easy to show that
an ≥ 3 for all n.     *

So,

an1 − an 
3 − an

2

3  an
≤ 0

which implies that an is a decreasing sequence. So, an is a convergent sequence with
limit L by (*). Hence,

L  31  L
3  L

which implies that
L   3 .

So, L  3 since an ≥ 3 for all n.

8.14 an  bn1
bn

, where b1  b2  1, bn2  bn  bn1, L  1 5
2 .

Hint. Show that bn2bn − bn1
2  −1n1 and deduce that |an − an1 |  n−2, if n  4.

Proof: By Mathematical Induction, it is easy to show that
bn2bn − bn1

2  −1n1 for all n
and

bn ≥ n if n  4
Thus, (Note that bn ≠ 0 for all n)

|an1 − an |  bn2
bn1

− bn1
bn

 −1n1

bnbn1
≤ 1

nn  1  1
n2 if n  4.

So, an is a Cauchy sequence. In other words, an is a convergent sequence, say
limn→ bn  L. Then by bn2  bn  bn1, we have

bn2
bn1

 bn
bn1

 1

which implies that (Note that 0 ≠L ≥ 1 since an ≥ 1 for all n)
L  1

L  1

which implies that

L  1  5
2 .



So, L  1 5
2 since L ≥ 1.

Remark: (1) The sequence bn is the famous sequence named Fabonacci sequence.
There are many researches around it. Also, it is related with so called Golden Section,

5 −1
2  0.618. . . .

(2) The reader can see the book, An Introduction To The Theory Of Numbers by G.
H. Hardy and E. M. Wright, Chapter X. Then it is clear by continued fractions.

(3) There is another proof. We write it as a reference.
Proof: (STUDY) Since bn2  bn  bn1, we may think

xn2  xn  xn1,
and thus consider x2  x  1. Say  and  are roots of x2  x  1, with   . Then let

Fn 
n − n

 −  ,

we have
Fn  bn.

So, it is easy to show that L  1 5
2 . We omit the details.

Note: The reader should be noted that there are many methods to find the formula of
Fabonacci sequence like Fn. For example, using the concept of Eigenvalues if we can
find a suitable matrix.

Series
8.15 Test for convergence (p and q denote fixed rela numbers).
(a)∑n1

 n3e−n

Proof: By Root Test, we have

limn→ sup n3

en
1/n

 1/e  1.

So, the series converges.
(b)∑n2

 lognp

Proof: We consider 2 cases: (i) p ≥ 0, and (ii) p  0.
For case (i), the series diverges since lognp does not converge to zero.
For case (ii), the series diverges by Cauchy Condensation Theorem (or Integral

Test.)
(c)∑n1

 pnnp (p  0)

Proof: By Root Test, we have

limn→ sup pn

np

1/n
 p.

So, as p  1, the series diverges, and as p  1, the series converges. For p  1, it is clear
that the series∑ n diverges. Hence,

∑
n1



pnnp converges if p ∈ 0,1

and



∑
n1



pnnp diverges if p ∈ 1,.

(d)∑n2
 1

np−nq (0  q  p)

Proof: Note that 1
np−nq  1

np
1

1−nq−p . We consider 2 cases: (i) p  1 and (ii) p ≤ 1.
For case (i), by Limit Comparison Test with 1

np ,

limn→

1
np−nq

1
np

 1,

the series converges.
For case (ii), by Limit Comparison Test with 1

np ,

limn→

1
np−nq

1
np

 1,

the series diverges.
(e)∑n1

 n−1−1/n

Proof: Since n−1−1/n ≥ n−1 for all n, the series diverges.
(f)∑n1

 1
pn−qn (0  q  p)

Proof: Note that 1
pn−qn  1

pn
1

1− q
p

n . We consider 2 cases: (i) p  1 and (ii) p ≤ 1.

For case (i), by Limit Comparison Test with 1
pn ,

limn→

1
pn−qn

1
pn

 1,

the series converges.
For case (ii), by Limit Comparison Test with 1

pn ,

limn→

1
pn−qn

1
pn

 1,

the series diverges.
(g)∑n1

 1
n log11/n

Proof: Since
limn→

1
n log1  1/n  1,

we know that the series diverges.

(h)∑n2
 1

lognlogn

Proof: Since the identity alogb  bloga, we have
lognlogn  nlog logn

≥ n2 as n ≥ n0.
So, the series converges.

(i)∑n3
 1

n lognlog lognp

Proof: We consider 3 cases: (i) p ≤ 0, (ii) 0  p  1 and (iii) p  1.



For case (i), since
1

n lognlog lognp ≥ 1
n logn for n ≥ 3,

we know that the series diverges by the divergence of∑n3
 1

n logn .
For case (ii), we consider (choose n0 large enough)

∑
jn0


2j

2j log2jlog log2jp  1
log2 ∑

jn0


1

jlog j log2p

≥ ∑
jn0


1

jlog jp ,

then, by Cauchy Condensation Theorem, the series diverges since∑jn0

 1
jlog jp diverges

by using Cauchy Condensation Theorem again.
For case (iii), we consider (choose n0 large enough)

∑
jn0


2j

2j log2jlog log2jp  1
log2 ∑

jn0


1

jlog j log2p

≤ 2∑
jn0


1

jlog j log2p

≤ 4∑
jn0


1

jlog jp ,

then, by Cauchy Condensation Theorem, the series converges since∑jn0

 1
jlog jp

converges by using Cauchy Condensation Theorem again.
Remark: There is another proof by Integral Test. We write it as a reference.
Proof: It is easy to check that fx  1

x logxlog logxp is continous, positive, and
decreasing to zero on a, where a  0 for each fixed p. Consider


a

 dx
x logxlog logxp  

log loga

 dy
yp

which implies that the series converges if p  1 and diverges if p ≤ 1 by Integral Test.

(j)∑n3
 1

log logn

log logn

Proof: Let an  1
log logn

log logn
for n ≥ 3 and bn  1/n, then

an
bn

 n 1
log logn

log logn

 e−y logy−ey → .
So, by Limit Comparison Test, the series diverges.

(k)∑n1
 1  n2 − n

Proof: Note that
1  n2 − n  1

1  n2  n
≥ 1

1  2 n
for all n.

So, the series diverges.



(l)∑n2
 np 1

n−1
− 1

n

Proof: Note that

np 1
n − 1

− 1
n

 1
n 3

2 −p
n

n − 1
1

1  n−1
n

.

So, as p  1/2, the series converges and as p ≥ 1/2, the series diverges by Limit
Comparison Test.

(m)∑n1
 n1/n − 1

n

Proof: With help of Root Test,

limn→ sup n1/n − 1
n 1/n

 0 1,

the series converges.
(n)∑n1

 np n  1 − 2 n  n − 1

Proof: Note that
np n  1 − 2 n  n − 1

 1
n 3

2 −p
n 3

2

n  n  1 n  n − 1 n − 1  n  1
.

So, as p  1/2, the series converges and as p ≥ 1/2, the series diverges by Limit
Comparison Test.

8.16 Let S  n1,n2, . . .  denote the collection of those positive integers that do not
involve the digit 0 is their decimal representation. (For example, 7 ∈ S but 101 ∉ S. )
Show that∑k1

 1/nk converges and has a sum less than 90.

Proof: Define Sj  the j − digit number ⊆ S. Then #Sj  9j and S  j1
 Sj. Note

that

∑
k∈Sj

1/nk  9j

10j−1 .

So,

∑
k1



1/nk ≤ ∑
j1


9j

10j−1  90.

In addition, it is easy to know that∑k1
 1/nk ≠ 90. Hence, we have proved that∑k1

 1/nk

converges and has a sum less than 90.

8.17 Given integers a1,a2, . . . such that 1 ≤ an ≤ n − 1, n  2,3, . . . Show that the
sum of the series∑n1

 an/n! is rational if and only if there exists an integer N such that
an  n − 1 for all n ≥ N. Hint: For sufficency, show that∑n2

 n − 1/n! is a telescoping
series with sum 1.

Proof: ()Assume that there exists an integer N such that an  n − 1 for all n ≥ N.
Then



∑
n1


an
n! ∑

n1

N−1
an
n! ∑

nN


an
n!

∑
n1

N−1
an
n! ∑

nN


n − 1

n!

∑
n1

N−1
an
n! ∑

nN


1

n − 1! −
1
n!

∑
n1

N−1
an
n!  1

N − 1! ∈ Q.

()Assume that∑n1
 an/n! is rational, say q

p , where g.c.d. p,q  1. Then

p!∑
n1


an
n! ∈ Z.

That is, p!∑np1
 an

n! ∈ Z. Note that

p!∑
np1


an
n! ≤ p!∑

np1


n − 1

n!  p!
p!  1 since 1 ≤ an ≤ n − 1.

So, an  n − 1 for all n ≥ p  1. That is, there exists an integer N such that an  n − 1 for
all n ≥ N.

Remark: From this, we have proved that e is irrational. The reader should be noted that
we can use Theorem 8.16 to show that e is irrational by considering e−1. Since it is easy,
we omit the proof.

8.18 Let p and q be fixed integers, p ≥ q ≥ 1, and let

xn  ∑
kqn1

pn
1
k , sn ∑

k1

n
−1k1

k .

(a) Use formula (8) to prove that limn→ xn  logp/q.
Proof: Since

∑
k1

n
1
k  logn  r  O 1

n ,

we know that

xn ∑
k1

pn
1
k −∑

k1

qn
1
k

 logp/q  O 1
n

which implies that limn→ xn  logp/q.
(b) When q  1,p  2, show that s2n  xn and deduce that

∑
n1


−1n1

n  log2.

Proof: We prove it by Mathematical Induction as follows. As n  1, it holds
trivially. Assume that n  m holds, i.e.,



s2m ∑
k1

2m
−1k1

k  ∑
km1

2m
1
k  xm

consider n  m  1 as follows.

xm1  ∑
km11

2m1
1
k

 xm − 1
m  1  1

2m  1  1
2m  2

 s2m  1
2m  1 −

1
2m  2

 s2m1.
So, by Mathematical Induction, we have proved that s2n  xn for all n.

By s2n  xn for all n, we have

limn→ s2n ∑
k1


−1k1

k  log2  limn→ xn.

(c) rearrange the series in (b), writing alternately p positive terms followed by q
negative terms and use (a) to show that this rearrangement has sum

log2  1
2 logp/q.

Proof: We prove it by using Theorem 8.13. So, we can consider the new series
∑k1
 ak as follows:

ak  1
2k − 1p  1 . . . 1

2kp − 1 − 1
2k − 1q . . . 1

2kq
Then

Sn ∑
k1

n

ak

∑
k1

2np
1
k −∑

k1

np
1
2k −∑

k1

nq
1
2k

 log2np    O 1
n − 1

2 lognp − 
2  O 1

n − 1
2 lognq − 

2  O 1
n

 log2np − logn pq  O 1
n

 log2 p
q  O 1

n .

So,
limn→ Sn  log2  1

2 logp/q

by Theorem 8.13.
Remark: There is a reference around rearrangement of series. The reader can see the

book, Infinite Series by Chao Wen-Min, pp 216-220. (Chinese Version)

(d) Find the sum of∑n1
 −1n11/3n − 2 − 1/3n − 1.

Proof: Write



Sn  ∑
k1

n

−1k1 1
3k − 2 −

1
3k − 1

 ∑
k1

n

−1k 1
3k − 1 ∑

k1

n

−1k1 1
3k − 2

 −∑
k1

n

−13k−1 1
3k − 1 −∑

k1

n

−13k−2 1
3k − 2

 − ∑
k1

n

−13k−1 1
3k − 1 ∑

k1

n

−13k−2 1
3k − 2

 − ∑
k1

3n
−1k

k −∑
k1

n
−13k

3k

 − ∑
k1

3n
−1k

k − 1
3 ∑

k1

n
−1k

k

 ∑
k1

3n
−1k1

k − 1
3 ∑

k1

n
−1k1

k

→ 2
3 log2.

So, the series has the sum 2
3 log2.

Remark: There is a refernece around rearrangement of series. The reader can see the
book, An Introduction to Mathematical Analysis by Loo-Keng Hua, pp 323-325.
(Chinese Version)

8.19 Let cn  an  ibn, where an  −1n/ n , bn  1/n2. Show that∑ cn is
conditioinally convergent.

Proof: It is clear that∑ cn converges. Consider

∑|cn | ∑ 1
n2  1

n4 ∑ 1
n 1  1

n2 ≥ ∑ 1
n

Hence,∑|cn | diverges. That is,∑ cn is conditioinally convergent.

Remark: We say∑ cn converges if, and only if, the real part∑ an converges and the
imaginary part∑ bn converges, where cn  an  ibn.

8.20 Use Theorem 8.23 to derive the following formulas:

(a)∑k1
n logk

k  1
2 log2n  A  O logn

n (A is constant)

Proof: Let fx  logx
x define on 3,, then f′x  1−logx

x2  0 on 3,. So, it is
clear that fx is a positive and continuous function on 3,, with

limx→ fx  limx→
logx

x  limx→
1
x  0 by L-Hospital Rule.

So, by Theorem 8.23, we have



∑
k3

n
logk

k  
3

n logx
x dx  C  O logn

n , where C is a constant

 1
2 log2n − 1

2 log23  C  O logn
n , where C is a constant

which implies that

∑
k1

n
logk

k  1
2 log2n  A  O logn

n ,

where A  C  log2
2 − 1

2 log23 is a constant.

(b)∑k2
n 1

k logk  loglogn  B  O 1
n logn (B is constant)

Proof: Let fx  1
x logx defined on 2,, then f′x  − 1

x logx

2
1  logx  0 on

2,. So, it is clear that fx is a positive and continuous function on 3,, with
limx→ fx  limx→

1
x logx  0.

So, by Theorem 8.23, we have

∑
k2

n
1

k logk  
2

n dx
x logx  C  O 1

n logn , where C is a constant

 log logn  B  O 1
n logn , where C is a constant

where B  C − log log2 is a constant.

8.21 If 0  a ≤ 1, s  1, define s,a  ∑n0
 n  a−s.

(a) Show that this series converges absolutely for s  1 and prove that

∑
h1

k

 s, h
k  kss if k  1,2, . . .

where s  s, 1 is the Riemann zeta function.
Proof: First, it is clear that s,a converges absolutely for s  1. Consider

∑
h1

k

 s, h
k ∑

h1

k

∑
n0


1

n  h
k 

s

∑
h1

k

∑
n0


ks

kn  hs

∑
n0



∑
h1

k
ks

kn  hs

 ks∑
n0



∑
h1

k
1

kn  hs

 ks∑
n0


1

n  1s

 kss.



(b) Prove that∑n1
 −1n−1/ns  1 − 21−ss if s  1.

Proof: Let Sn  ∑j1
n −1j−1

js , and thus consider its subsequence S2n as follows:

S2n ∑
j1

2n
1
js − 2∑

j1

n
1

2js

∑
j1

2n
1
js − 21−s∑

j1

n
1
js

which implies that
limn→ S2n  1 − 21−ss.

Since Sn converges, we know that S2n also converges and has the same value. Hence,

∑
n1



−1n−1/ns  1 − 21−ss.

8.22 Given a convergent series∑ an, where each an ≥ 0. Prove that∑ an n−p
converges if p  1/2. Give a counterexample for p  1/2.

Proof: Since
an  n−2p

2 ≥ ann−2p  an n−p,

we have∑ an n−p converges if p  1/2 since

∑ an converges and ∑ n−2p converges if p  1/2.

For p  1/2, we consider an  1
nlogn2 , then

∑ an converges by Cauchy Condensation Theorem

and

∑ an n−1/2 ∑ 1
n logn diverges by Cauchy Condensation Theorem.

8.23 Given that∑ an diverges. Prove that∑ nan also diverges.

Proof: Assume∑ nan converges, then its partial sum∑k1
n kak is bounded. Then by

Dirichlet Test, we would obtain

∑kak 1
k ∑ ak converges

which contradicts to∑ an diverges. Hence,∑ nan diverges.

8.24 Given that∑ an converges, where each an  0. Prove that

∑anan1
1/2

also converges. Show that the converse is also true if an is monotonic.
Proof: Since

an  an1
2 ≥ anan1

1/2,

we know that

∑anan1
1/2



converges by∑ an converges.
Conversly, since an is monotonic, it must be decreasing since∑ an converges. So,

an ≥ an1 for all n. Hence,
anan1

1/2 ≥ an1 for all n.
So,∑ an converges since∑anan1

1/2 converges.

8.25 Given that∑ an converges absolutely. Show that each of the following series
also converges absolutely:

(a)∑ an
2

Proof: Since∑ an converges, then an → 0 as n → . So, given   1, there exists a
positive integer N such that as n ≥ N, we have

|an |  1
which implies that

an
2  |an | for n ≥ N.

So,∑ an
2 converges if∑|an | converges. Of course,∑ an

2 converges absolutely.

(b)∑ an
1an

(if no an  −1)

Proof: Since∑|an | converges, we have limn→ an  0. So, there exists a positive
integer N such that as n ≥ N, we have

1/2  |1  an |.
Hence, as n ≥ N,

an
1  an

 2|an |

which implies that∑ an
1an

converges. So,∑ an
1an

converges absolutely.

(c)∑ an2

1an2

Proof: It is clear that
an

2

1  an
2 ≤ an

2.

By (a), we have proved that∑ an2

1an2
converges absolutely.

8.26 Determine all real values of x for which the following series converges.

∑
n1



1  1
2 . . . 1

n
sinnx

n .

Proof: Consider its partial sum

∑
k1

n 1  1
2 . . . 1

k 
k sinkx

as follows.
As x  2m, the series converges to zero. So it remains to consider x ≠ 2m as

follows. Define

ak 
1  1

2 . . . 1
k

k
and



bk  sinkx,
then

ak1 − ak 
1  1

2 . . . 1
k  1

k1
k  1 −

1  1
2 . . . 1

k
k


k1  1

2 . . . 1
k  1

k1  − k  11  1
2 . . . 1

k 
kk  1


k

k1 − 1 
1
2 . . . 1

k 
kk  1  0

and

∑
k1

n

bk ≤ 1
sin x

2 
.

So, by Dirichlet Test, we know that

∑
k1



akbk ∑
k1

 1  1
2 . . . 1

k 
k sinkx

converges.
From above results, we have shown that the series converges for all x ∈ R.
8.27. Prove that following statements:
(a)∑ anbn converges if∑ an converges and if∑bn − bn1 converges absolutely.

Proof: Consider summation by parts, i.e., Theorem 8.27, then

∑
k1

n

akbk  Anbn1 −∑
k1

n

Akbk1 − bk.

Since∑ an converges, then |An | ≤ M for all n. In addition, by Theorem 8.10, limn→ bn

exists. So, we obtain that
(1). limn→Anbn1 exists

and

(2). ∑
k1

n

|Akbk1 − bk| ≤ M∑
k1

n

|bk1 − bk | ≤ M∑
k1



|bk1 − bk |.

(2) implies that

(3). ∑
k1

n

Akbk1 − bk converges.

By (1) and (3), we have shown that∑k1
n akbk converges.

Remark: In 1871, Paul du Bois Reymond (1831-1889) gave the result.
(b)∑ anbn converges if∑ an has bounded partial sums and if∑bn − bn1 converges

absolutely, provided that bn → 0 as n → .
Proof: By summation by parts, we have

∑
k1

n

akbk  Anbn1 −∑
k1

n

Akbk1 − bk.

Since bn → 0 as n →  and∑ an has bounded partial sums, say |An | ≤ M for all n. Then



(1). limn→Anbn1 exists.

In addition,

(2). ∑
k1

n

|Akbk1 − bk| ≤ M∑
k1

n

|bk1 − bk | ≤ M∑
k1



|bk1 − bk |.

(2) implies that

(3). ∑
k1

n

Akbk1 − bk converges.

By (1) and (3), we have shown that∑k1
n akbk converges.

Remark: (1) The result is first discovered by Richard Dedekind (1831-1916).
(2) There is an exercise by (b), we write it as a reference. Show the convergence of the

series∑k1
 −1 k

k .

Proof: Let ak 
−1 k

k2/3 and bk  1
k1/3 , then in order to show the convergence of

∑k1
 −1 k

k , it suffices to show that ∑k1
n ak : Sn is bounded sequence. Given

n ∈ N, there exists j ∈ N such that j2 ≤ N  j  12. Consider
Sn  a1  a2  a3  a4 . . .a8  a9 . . . .a15 . . .aj2 . . .an

≤
3a3  5a4  7a15  9a16 . .4k − 1a2k2−1  4k  1a2k2 if j  2k, k ≥ 2

3a3  5a4  7a15  9a16 . .4k − 3a2k−22 if j  2k − 1, k ≥ 3

then as n large enough,

Sn ≤
−3a4  5a4  −7a16  9a16 . . . −4k − 1a2k2  4k  1a2k2

−3a4  5a4  −7a16  9a16 . . . −4k − 5a2k−22  4k − 3a2k−22

which implies that as n large enough,

Sn ≤ 2∑
j2



a2j2  2∑
j2


1

2j4/3 : M1     *

Similarly, we have
M2 ≤ Sn for all n     **

By (*) and (**), we have shown that ∑k1
n ak : Sn is bounded sequence.

Note: (1) By above method, it is easy to show that

∑
k1


−1 k

kp

converges for p  1/2. For 0  p ≤ 1/2, the series diverges by
1

n2p . . . 1
n2  2np ≥ 2n  1

n2  np ≥ 2n  1
n2  np ≥ 2n  1

n  12p ≥
2n  1
n  1  1.

(2) There is a similar question, show the divergence of the series∑k1
 −1logk

k .

Proof: We use Theorem 8.13 to show it by inserting parentheses as follows. We insert
parentheses such that the series∑ −1logk

k forms∑−1kbk. If we can show∑−1kbk



diverges, then∑ −1logk

k also diverges. Consider

bk  1
m . . . 1

m  r ,     *
where

(1). logm  N
(2). logm − 1  N − 1  logem − 1  N
(3). logm  r  N
(4). logm  r  1  N  1  log mr1

e   N

.

By (2) and (4),
m  r  1

e  m − 1  r  1 ≥ m if m is large enough.
By (1) and (3),

2m ≥ r.
So, as k large enough ( m is large enough),

bk ≥ r  1
m  r ≥

m
3m  1

3 by (*).

It implies that∑−1kbk diverges since bk does NOT tends to zero as k goes infinity.So,
we have proved that the series∑ −1logk

k diverges.

(3) There is a good exercise by summation by parts, we write it as a reference.
Assume that∑k1

 akbk converges and bn ↗ with limn→ bn  . Show that bn∑kn
 ak

converges.
Proof: First, we show that the convergence of∑k1

 ak by Dirichlet Test as follows.
Since bn ↗ , there exists a positive integer n0 such that as n  n0, we have bn  0. So,
we have 1

bnn0 n1


is decreasing to zero. So

∑
k1



akn0 ∑
k1



akn0bkn0 
1

bkn0

converges by Dirichlet Test.
For the convergence of bn∑kn

 ak, let n  n0, then

bn∑
kn



ak ∑
kn



akbk
bn
bk

and define ck  akbk and dk  bn
bk

. Note that dk is decreasing to zero. Define
Ck  ∑j1

k cj and thus we have

bn∑
kn

m

ak ∑
kn

m

akbk
bn
bk

∑
kn

m

Ck − Ck−1dk

∑
kn

m−1

Ckdk − dk1  Cmdm − Cn−1dn.

So,



bn∑
kn



ak ∑
kn



akbk
bn
bk

∑
kn



Ckdk − dk1  Cd − Cn−1dn

∑
kn



Ckdk − dk1 − Cn−1dn

by C  limk→Ck and limk→ dk  0. In order to show the existence of limn→ bn∑kn
 ak,

it suffices to show the existence of limn→ ∑kn
 Ckdk − dk1. Since the series

∑kn
 Ckdk − dk1 exists, limn→ ∑kn

 Ckdk − dk1  0. From above results, we have
proved the convergence of limn→ bn∑kn

 ak.

Note: We also show that limn→ bn∑kn
 ak  0 by preceding sayings.

Supplement on the convergence of series.
A Show the divergence of∑ 1/k. We will give some methods listed below. If the

proof is easy, we will omit the details.
(1) Use Cauchy Criterion for series. Since it is easy, we omit the proof.
(2) Just consider

1  1
2  1

3  1
4 . . . 1

2n ≥ 1  1
2  2 1

4 . . .2n−1 1
2n

 1  n
2 → .

Remark: We can consider
1  1

2 . . . 1
10  1

11 . . . 1
100 . . .≥ 1  9

10  90
100 . . .

Note: The proof comes from Jing Yu.
(3) Use Mathematical Induction to show that

1
k − 1  1

k  1
k  1 ≥

3
k if k ≥ 3.

Then
1  1

2  1
3  1

4  1
5  1

6 . . . .≥ 1  3
3  3

6  3
9 . . .

Remark: The proof comes from Bernoulli.
(4) Use Integral Test. Since the proof is easy, we omit it.
(5) Use Cauchy condensation Theorem. Since the proof is easy, we omit it.
(6) Euler Summation Formula, the reader can give it a try. We omit the proof.
(7) The reader can see the book, Princilpes of Mathematical Analysis by Walter

Rudin, Exercise 11-(b) pp 79.
Suppose an  0, Sn  a1 . . .an, and∑ an diverges.

(a) Prove that∑ an
1an

diverges.

Proof: If an → 0 as n → , then by Limit Comparison Theorem, we know that
∑ an

1an
diverges. If an does not tend to zero. Claim that an

1an
does not tend to zero.



Suppose NOT, it means that limn→
an

1an
 0. That is,

limn→
1

1  1
an

 0  limn→ an  0

which contradicts our assumption. So,∑ an
1an

diverges by claim.

(b) Prove that
aN1
SN1

. . . aNk
SNk

≥ 1 − SN
SNk

and deduce that∑ an
Sn

diverges.

Proof: Consider
aN1
SN1

. . . aNk
SNk

≥ aN1 . . .aNk
SNk

 1 − SN
SNk

,     *

then∑ an
Sn

diverges by Cauchy Criterion with (*).

Remark: Let an  1, then∑ an
Sn

 ∑ 1/n diverges.

(c) Prove that
an
Sn

2 ≤
1

Sn−1
− 1

Sn

and deduce that∑ an
Sn2

converges.

Proof: Consider
1

Sn−1
− 1

Sn
 an

Sn−1Sn
≥ an

Sn
2 ,

and

∑ 1
Sn−1

− 1
Sn

converges by telescoping series with 1
Sn

→ 0.

So,∑ an
Sn2

converges.

(d) What can be said about

∑ an
1  nan

and ∑ an
1  n2an

?

Proof: For∑ an
1nan

: as an  1 for all n, the series∑ an
1nan

 ∑ 1
1n diverges. As

an 
0 if n ≠ k2

1 if n  k2
,

the series∑ an
1nan

 ∑ 1
1k2 converges.

For∑ an
1n2an

: Consider
an

1  n2an
 1

1
an  n2 ≤

1
n2 ,

so∑ an
1n2an

converges.

(8) Consider∑ sin 1
n diverges.

Proof: Since

limn→
sin 1

n
1
n

 1,

the series∑ 1
n diverges by Limit Comparison Theorem.



Remark: In order to show the series∑ sin 1
n diverges, we consider Cauchy Criterion

as follows.
n sin 1

2n ≤ sin 1
n  1 . . . sin 1

n  n
and given x ∈ R, for n  0,1, 2, . . . , we have

|sinnx| ≤ n|sinx|.
So,

sin 1
2 ≤ sin 1

n  1 . . . sin 1
n  n

for all n. Hence,∑ sin 1
n diverges.

Note: There are many methods to show the divergence of the series∑ sin 1
n . We can

use Cauchy Condensation Theorem to prove it. Besides, by (11), it also owrks.
(9) O-Stolz’s Theorem.
Proof: Let Sn  ∑j1

n 1
j and Xn  logn. Then by O-Stolz’s Theorem, it is easy to see

limn→ Sn  .

(10) Since k1
n 1  1

k diverges, the series∑ 1/k diverges by Theorem 8.52.

(11) Lemma: If an is a decreasing sequence and∑ an converges. Then
limn→ nan  0.

Proof: Since an → 0 and an is a decreasing sequence, we conclude that an ≥ 0.
Since∑ an converges, given   0, there exists a positive integer N such that as n ≥ N,
we have

an . .ank  /2 for all k ∈ N
which implies that

k  1ank  /2 since an ↘.
Let k  n, then as n ≥ N, we have

n  1a2n  /2
which implies that as n ≥ N

2n  1a2n  
which implies that

limn→ 2na2n  0 since limn→ an  0.     *

Similarly, we can show that
limn→2n  1a2n1  0.     **

So, by (*) adn (**), we have proved that limn→ nan  0.
Remark: From this, it is clear that∑ 1

n diverges. In addition, we have the convergence
of∑ nan − an1. We give it a proof as follows.

Proof: Write



Sn ∑
k1

n

kak − ak1

∑
k1

n

ak − nan1,

then
limn→ Sn exists

since

limn→ ∑
k1

n

ak exists and limn→ nan  0.

B Prove that∑ 1
p diverges, where p is a prime.

Proof: Given N, let p1, . . . ,pk be the primes that divide at least one integer≤ N. Then

∑
n1

N
1
n ≤ 

j1

k

1  1
pj

 1
pj

2 . . .


j1

k
1

1 − 1
pj

≤ exp ∑
j1

k
2
pj

by 1 − x−1 ≤ e2x if 0 ≤ x ≤ 1/2. Hence,∑ 1
p diverges since∑ 1

n diverges.

Remark: There are many proofs about it. The reader can see the book, An
Introduction To The Theory Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese
Version)

C Discuss some series related with∑ sink
k .

STUDY: (1) We have shown that the series∑ sin 1
k diverges.

(2) The series∑ sinna  b diverges where a ≠ n for all n ∈ Z and b ∈ R.

Proof: Suppose that∑ sinna  b converges, then limn→ sinna  b  0. Hence,
limn→|sinn  1a  b − sinna  b|  0. Consider

|sinn  1a  b − sinna  b|

 2cos na  b  a
2 sin a

2
 2 cosna  bcos a

2 − sinna  b sin a
2 sin a

2
which implies that



limn→|sinn  1a  b − sinna  b|

 limn→ sinn  1a  b − sinna  b

 limn→ sup2 cosna  bcos a
2 − sinna  b sin a

2 sin a
2

 limn→ sup2 cosna  bcos a
2 sin a

2
 |sina| ≠ 0

which is impossible. So,∑ sinna  b diverges.

Remark: (1) By the same method, we can show the divergence of∑ cosna  b if
a ≠ n for all n ∈ Z and b ∈ R.

(2) The reader may give it a try to show that,

∑
n0

p

cosna  b 
sin p1

2 b
sin b

2
sin a  p

2 b     *

and

∑
n0

p

sinna  b 
sin p1

2 b
sin b

2
cos a  p

2 b     **

by considering∑n0
p einab. However, it is not easy to show the divergence by (*) and

(**).

(3) The series∑ sink
k converges conditionally.

Proof: First, it is clear that∑ sink
k converges by Dirichlet’s Test since

|∑ sink| ≤ 1
sin 1

2
. In order to show that the divergence of∑ sink

k , we consider its
partial sums as follows: Since

∑
k1

3n3
sink

k ∑
k0

n
sin3k  1

3k  1  sin3k  2
3k  2  sin3k  3

3k  3

and note that there is one value is bigger than 1/2 among three values |sin3k  1|,
|sin3k  2|, and |sin3k  3|. So,

∑
k1

3n3
sink

k ≥ ∑
k0

n 1
2

3k  3

which implies the divergence of∑ sink
k .

Remark: The series is like Dirichlet Integral 
0

 sinx
x dx. Also, we know that Dirichlet

Integral converges conditionally.

(4) The series∑ |sink|r

k diverges for any r ∈ R.

Proof: We prove it by three cases as follows.
(a) As r ≤ 0, we have

∑ |sink|r
k ≥ ∑ 1

k .

So,∑ |sink|r

k diverges in this case.
(b) As 0  r ≤ 1, we have



∑ |sink|r
k ≥ ∑ |sink|

k .

So,∑ |sink|r

k diverges in this case by (3).
(c) As r  1, we have

∑
k1

3n3
|sink|r

k ∑
k0

n
|sin3k  1|r

3k  1  |sin3k  2|r
3k  2  |sin3k  3|r

3k  3

≥ ∑
k0

n  1
2 

r

3k  3 .

So,∑ |sink|r

k diverges in this case.

(5) The series∑ sin2p−1k
k , where p ∈ N, converges.

Proof: We will prove that there is a positive integer Mp such that

∑
k1

n

sin2p−1k ≤ Mp for all n.     *

So, if we can show (*), then by Dirichlet’s Test, we have proved it. In order to show (*),
we claim that sin2p−1k can be written as a linear combination of sink, sin3k, . . . ,
sin2p − 1k. So,

∑
k1

n

sin2p−1k  ∑
k1

n

a1 sink  a2 sin3k . . .ap sin2p − 1k

≤ |a1 |∑
k1

n

sink . . .|ap |∑
k1

n

sin2p − 1k

≤ |a1 |
sin 1

2

. . . |ap |
sin 2p−1

2

: Mp by Theorem 8.30.

We show the claim by Mathematical Induction as follows. As p  1, it trivially holds.
Assume that as p  s holds, i.e.,

sin2s−1k ∑
j1

s

aj sin2j − 1k

then as p  s  1, we have



sin2s1k  sin2ksink2s−1

 sin2k ∑
j1

s

aj sin2j − 1k by induction hypothesis

∑
j1

s

ajsin2k sin2j − 1k

∑
j1

s

aj
1 − cos2k

2 sin2j − 1k

 1
2 ∑

j1

s

aj sin2j − 1k −∑
j1

s

aj cos2k sin2j − 1k

 1
2 ∑

j1

s

aj sin2j − 1k − 1
2 ∑

j1

s

ajsin2j  1k  sin2j − 3k

which is a linear combination of sink, . . . , sin2s  1k. Hence, we have proved the claim
by Mathematical Induction.

Remark: By the same argument, the series

∑
k1

n

cos2p−1k

is also bounded, i.e., there exists a positive number Mp such that

∑
k1

n

|cos2p−1k| ≤ Mp.

(6) Define∑k1
n sinkx

k : Fnx, then Fnx is boundedly convergent on R.

Proof: Since Fnx is a periodic function with period 2, and Fnx is an odd function.
So, it suffices to consider Fnx is defined on 0,. In addition, Fn0  0 for all n.
Hence, the domain I that we consider is 0,. Note that sinkx

k  
0

x
cosktdt. So,

Fnx ∑
k1

n
sinkx

k

 
0

x
∑
k1

n

cosktdt

 
0

x sinn  1
2 t − sin 1

2 t
2sin 1

2 t
dt

 
0

x sinn  1
2 t

t dt  
0

x 1
2sin t

2
− 1

t sin n  1
2 t dt − x

2

 
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt − x

2
which implies that

|Fnx| ≤ 
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt  

2 .



For the part 
0

n 1
2 x sin t

t dt : Since 
0

 sin t
t dt converges, there exists a positive M1 such

that


0

n 1
2 x sin t

t dt ≤ M1 for all x ∈ I and for all n.

For the part 
0

x t−2sin t
2

2t sin t
2

sinn  1
2 tdt : Consider


0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt

≤ 
0

x t − 2sin t
2

2t sin t
2

dt since t − 2sin t
2  0 on I

≤ 
0

 t − 2sin t
2

2t sin t
2

dt : M2 since lim
t→0

t − 2sin t
2

2t sin t
2

 0.

Hence,
|Fnx| ≤ M1  M2  

2 for all x ∈ I and for all n.

So, Fnx is uniformly bounded on I. It means that Fnx is uniformly bounded on R.
In addition, since

Fnx  
0

n 1
2 x sin t

t dt  
0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt − x

2 ,

fixed x ∈ I, we have


0

 sin t
t dt exists.

and by Riemann-Lebesgue Lemma, in the text book, pp 313,

limn→ 0

x t − 2sin t
2

2t sin t
2

sin n  1
2 t dt  0.

So, we have proved that

limn→Fnx  
0

 sin t
t dt − x

2 where x ∈ 0,.

Hence, Fnx is pointwise convergent on I. It means that Fnx is pointwise
convergent on R.

Remark: (1) For definition of being boundedly convergent on a set S, the reader can
see the text book, pp 227.

(2) In the proof, we also shown the value of Dirichlet Integral


0

 sin t
t dt  

2
by letting x  .

(3) There is another proof on uniform bound. We write it as a reference.
Proof: The domain that we consider is still 0,. Let   0, and consider two cases as

follows.
(a) x ≥   0 : Using summation by parts,



∑
k1

n
sinkx

k ≤ 1
n  1 ∑

k1

n
sinkx

k  ∑
k1

n

∑
j1

k

sin jx 1
k  1 −

1
k

≤ 1
n  1

1
sin 2 

 1
sin 2 

1 − 1
n  1

 1
sin 2 

.

(b) 0  x ≤  : Let N   1
x , consider two cases as follows.

As n  N, then

∑
k1

n
sinkx

k ≤ n|x|  N|x| ≤ 1     *

and as n ≥ N, then

∑
k1

n
sinkx

k

≤ ∑
k1

N−1
sinkx

k  ∑
kN

n
sinkx

k

≤ 1  ∑
kN

n
sinkx

k by (*)

≤ 1  1
n  1 ∑

k1

n
sinkx

k  1
N ∑

k1

N−1
sinkx

k  ∑
kN

n

∑
j1

k

sin jx 1
k  1 −

1
k

by summation by parts

≤ 1  1
n  1 sin x

2
 1

N sin x
2
 1

N −
1

n  1
1

sin x
2

 1  2
 1

x  sin x
2

.

Note that limx→0
2

 1
x  sin x

2
 4. So, we may choose a ′   such that

2
 1

x  sin x
2
≤ 5 for all x ∈ 0,′.

By preceding sayings, we have proved that Fnx is uniformly bounded on I. It means
that Fnx is uniformly bounded on R.

D In 1911, Otto Toeplitz proves the following. Let an and xn be two sequences
such that an  0 for all n with limn→

1
a1...an  0 and limn→ xn  x. Then

limn→
a1x1 . . .anxn

a1 . . .an
 x.

Proof: Let Sn  ∑k1
n ak and Tn  ∑k1

n akxk, then

limn→
Tn1 − Tn
Sn1 − Sn

 limn→
an1xn1

an1
 limn→ xn1  x.

So, by O-Stolz’s Theorem, we have prove it.
Remark: (1) Let an  1, then it is an extension of Theorem 8.48.
(2) Show that



limn→
sin . . . sin 

n
1 . . . 1

n
 .

Proof: Write
sin . . . sin 

n
1 . . . 1

n

 1

1 1sin . . . 1
n n sin 

n

1 . . . 1
n

,

the by Toeplitz’s Theorem, we have proved it.

E Theorem 8.16 emphasizes the decrease of the sequence an, we may ask if we
remove the condition of decrease, is it true? The answer is NOT necessary. For example,
let

an  1
n  −1n1

2n .  0

F Some questions on series.
(1) Show the convergence of the series∑n1

 logn sin 1
n .

Proof: Since n sin 1
n  1 for all n, logn sin 1

n  0 for all n. Hence, we consider the
new series

∑
n1



− logn sin 1
n ∑

n1



log sin1/n
1/n

as follows. Let an  log sin1/n
1/n and bn  log 1  1

n2 , then

limn→
an
bn

 1
6 .

In addition,

∑ bn ≤ ∑ 1
n2

by ex ≥ 1  x for all x ∈ R. From the convergence of∑ bn, we have proved that the
convergence of∑ an by Limit Comparison Test.

(2) Suppose that an ∈ R, and the series∑n1
 an

2 converges. Prove that the series
∑n1
 an

n converges absolutely.

Proof: By A.P.≥ G.P. , we have
an

2  1
n2

2 ≥ an
n

which implies that∑n1
 an

n converges absolutely.

Remark: We metion that there is another proof by using Cauchy-Schwarz inequality.
the difference of two proofs is that one considers an, and another considers the partial
sums Sn.

Proof: By Cauchy-Schwarz inequality,

∑
k1

n
|an |
k

2

≤ ∑
k1

n

ak
2 ∑

k1

n
1
k2

which implies that∑n1
 an

n converges absolutely.

Double sequences and series
8.28 Investigate the existence of the two iterated limits and the double limit of the



double sequence f defined by the followings. Answer. Double limit exists in (a), (d), (e),
(g). Both iterated limits exists in (a), (b), (h). Only one iterated limit exists in (c), (e).
Neither iterated limit exists in (d), (f).

(a) fp,q  1
pq

Proof: It is easy to know that the double limit exists with limp,q→ fp,q  0 by
definition. We omit it. In addition, limp→ fp,q  0. So, limq→limp→ fp,q  0.
Similarly, limp→limq→ fp,q  0. Hence, we also have the existence of two iterated
limits.

(b) fp,q  p
pq

Proof: Let q  np, then fp,q  1
n1 . It implies that the double limit does not exist.

However, limp→ fp,q  1, and limq→ fp,q  0. So, limq→limp→ fp,q  1, and
limp→limq→ fp,q  0.

(c) fp,q  −1pp
pq

Proof: Let q  np, then fp,q  −1p

n1 . It implies that the double limit does not exist.
In addition, limq→ fp,q  0. So, limp→limq→ fp,q  0. However, since
limp→ fp,q does not exist, limq→limp→ fp,q does not exist.

(d) fp,q  −1pq 1
p  1

q 

Proof: It is easy to know limp,q→ fp,q  0. However, limq→ fp,q and limp→ fp,q
do not exist. So, neither iterated limit exists.

(e) fp,q  −1p

q

Proof: It is easy to know limp,q→ fp,q  0. In addition, limq→ fp,q  0. So,
limp→limq→ fp,q  0. However, since limp→ fp,q does not exist,
limq→limp→ fp,q does not exist.

(f) fp,q  −1pq

Proof: Let p  nq, then fp,q  −1n1q. It means that the double limit does not
exist. Also, since limp→ fp,q and limq→ fp,q do not exist, limq→limp→ fp,q and
limp→limq→ fp,q do not exist.

(g) fp,q  cosp
q

Proof: Since |fp,q| ≤ 1
q , then limp,q→ fp,q  0, and limp→limq→ fp,q  0.

However, since cosp : p ∈ N dense in −1,1, we know that limq→limp→ fp,q does
not exist.

(h) fp,q  p
q2 ∑n1

q sin n
p

Proof: Rewrite

fp,q 
p sin q

2p sin q1
2p

q2 sin 1
2p

and thus let p  nq, fp,q 
sin 1

2n sin q1
2nq

nq sin 1
2nq

. It means that the double limit does not exist.

However, limp→ fp,q  q1
2q since sinx~x as x → 0. So, limq→limp→ fp,q  1

2 .



Also, limq→ fp,q  limq→ p sin 1
2p

sin q
2p sin q1

2p

q2  0 since |sinx| ≤ 1. So,

limp→limq→ fp,q  0.

8.29 Prove the following statements:
(a) A double series of positive terms converges if, and only if, the set of partial sums is

bounded.
Proof: ()Suppose that∑m,n fm,n converges, say∑m,n fm,n  A1, then it means

that limp,q→ sp,q  A1. Hence, given   1, there exists a positive integer N such that as
p,q ≥ N, we have

|sp,q| ≤ |A1 |  1.
So, let A2  maxsp,q : 1 ≤ p,q  N, we have |sp,q| ≤ maxA1,A2 for all p,q.
Hence, we have proved the set of partial sums is bounded.

()Suppose that the set of partial sums is bounded by M, i.e., if
S  sp,q : p,q ∈ N, then supS : A ≤ M. Hence, given   0, then there exists a
sp1,q1 ∈ S such that

A −   sp1,q1 ≤ A.
Choose N  maxp1,q1, then

A −   sp,q ≤ A for all p,q ≥ N
since every term is positive. Hence, we have proved limp,q→ sp,q  A. That is,
∑m,n fm,n converges.

(b) A double series converges if it converges absolutely.
Proof: Let s1p,q  ∑m1

p ∑n1
q |fm,n| and s2p,q  ∑m1

p ∑n1
q fm,n, we want

to show that the existence of limp,q→ s2p,q by the existence of limp,q→ s1p,q as
follows.

Since limp,q→ s1p,q exists, say its limit a. Then limp→ s1p,p  a. It implies that
limp→ s2p,p converges, say its limit b. So, given   0, there exists a positive integer N
such that as p,q ≥ N

|s1p,p − s1q,q|  /2
and

|s2N,N − b|  /2.
So, as p ≥ q ≥ N,

|s2p,q − b|  |s2N,N − b  s2p,q − s2N,N|
 /2  |s2p,q − s2N,N|
 /2  s1p,p − s1N,N
 /2  /2
 .

Similarly for q ≥ p ≥ N. Hence, we have shown that
limp,q→ s2p,q  b.

That is, we have prove that a double series converges if it converges absolutely.
(c)∑m,n e−m2n2 converges.

Proof: Let fm,n  e−m2n2, then by Theorem 8.44, we have proved that



∑m,n e−m2n2 converges since∑m,n e−m2n2  ∑m e−m2∑n e−n2 .

Remark:∑m,n1
 e−m2n2  ∑m1

 e−m2∑n1
 e−n2  e

e2−1

2
.

8.30 Asume that the double series∑m,n anxmn converges absolutely for |x|  1. Call
its sum Sx. Show that each of the following series also converges absolutely for |x|  1
and has sum Sx :

∑
n1



an xn

1 − xn , ∑
n1



Anxn, where An ∑
d|n

ad.

Proof: By Theorem 8.42,

∑
m,n

anxmn ∑
n1



an∑
m1



xmn ∑
n1



an xn

1 − xn if |x|  1.

So,∑n1
 an xn

1−xn converges absolutely for |x|  1 and has sum Sx.
Since every term in∑m,n anxmn, the term appears once and only once in

∑n1
 Anxn. The converse also true. So, by Theorem 8.42 and Theorem 8.13, we know

that

∑
n1



Anxn ∑
m,n

anxmn  Sx.

8.31 If  is real, show that the double series∑m,nm  in− converges absolutely if,
and only if,   2. Hint. Let sp,q  ∑m1

p ∑n1
q |m  in|−. The set

m  in : m  1,2, . . .p,n  1,2, . . . ,p
consists of p2 complex numbers of which one has absolute value 2 , three satisfy
|1  2i| ≤ |m  in| ≤ 2 2 , five satisfy |1  3i| ≤ |m  in| ≤ 3 2 , etc. Verify this
geometricall and deduce the inequlity

2−/2∑
n1

p
2n − 1

n ≤ sp,p ≤ ∑
n1

p
2n − 1

n2  1/2 .

Proof: Since the hint is trivial, we omit the proof of hint. From the hint, we have

∑
n1

p
2n − 1
n 2  ≤ sp,p ∑

m1

p

∑
n1

p

|m  in|− ≤ ∑
n1

p
2n − 1

1  n2/2 .

Thus, it is clear that the double series∑m,nm  in− converges absolutely if, and only if,
  2.

8.32 (a) Show that the Cauchy product of∑n0
 −1n1/ n  1 with itself is a

divergent series.
Proof: Since



cn ∑
k0

n

akbn−k

∑
k0

n
−1k

k  1
−1n−k

n − k  1

 −1n∑
k0

n
1

k  1 n − k  1

and let fk  n − k  1k  1  −k − n
2 

2
  n2

2 
2 ≤ n2

2 for k  0,1, . . . ,n.
Hence,

|cn | ∑
k0

n
1

k  1 n − k  1

≥ 2n  1
n  2 → 2 as n → .

That is, the Cauchy product of∑n0
 −1n1/ n  1 with itself is a divergent series.

(b) Show that the Cauchy product of∑n0
 −1n1/n  1 with itself is the series

2∑
n1


−1n1

n  1 1  1
2 . . . 1

n .

Proof: Since

cn ∑
k0

n

akbn−k

∑
k0

n
−1n

n − k  1k  1

 −1n∑
k0

n
1

n  2
1

k  1  1
n − k  1

 2−1n

n  2 ∑
k0

n
1

k  1 ,

we have

∑
n0



cn ∑
n0

 2−1n

n  2 ∑
k0

n
1

k  1

 2∑
n0


−1n

n  2 1  1
2 . . . 1

n  1

 2∑
n1


−1n1

n  1 1  1
2 . . . 1

n .

(c) Does this converge ? Why?
Proof: Yes by the same argument in Exercise 8.26.
8.33 Given two absolutely convergent power series, say∑n0

 anxn and∑n0
 bnxn,

having sums Ax and Bx, respectively, show that∑n0
 cnxn  AxBx where



cn ∑
k0

n

akbn−k.

Proof: By Theorem 8.44 and Theorem 8.13, it is clear.
Remark: We can use Mertens’ Theorem, then it is clear.

8.34 A series of the form∑n1
 an/ns is called a Dirichlet series. Given two absolutely

convergent Dirichlet series, say∑n1
 an/ns and∑n1

 bn/ns, having sums As and Bs,
respectively, show that∑n1

 cn/ns  AsBs, where cn  ∑d|n adbn/d.

Proof: By Theorem 8.44 and Theorem 8.13, we have

∑
n1



an/ns ∑
n1



bn/ns  ∑
n1



Cn

where
Cn ∑

d|n
add−sbn/dn/d−s

 n−s∑
d|n

adbn/d

 cn/ns.
So, we have proved it.

8.35 s  ∑n1
 1/ns, s  1, show that 2s  ∑n1

 dn/ns, where dn is the
number of positive divisors of n (including 1 and n).

Proof: It is clear by Exercise 8.34. So, we omit the proof.

Ces’aro summability
8.36 Show that each of the following series has C, 1 sum 0 :
(a) 1 − 1 − 1  1  1 − 1 − 1  1  1 − −     .
Proof: It is clear that |s1 . . .sn | ≤ 1 for all n, where sn means that the nth partial sum

of given series. So,
s1 . . .sn

n ≤ 1
n

which implies that the given series has C, 1 sum 0.
(b) 1

2 − 1  1
2  1

2 − 1  1
2  1

2 − 1   −   .

Proof: It is clear that |s1 . . .sn | ≤ 1
2 for all n, where sn means that the nth partial

sum of given series. So,
s1 . . .sn

n ≤ 1
2n

which implies that the given series has C, 1 sum 0.
(c) cosx  cos3x  cos5x     (x real, x ≠ m).
Proof: Let sn  cosx . . .cos2n − 1x, then



sn ∑
j1

n

cos2k − 1x

 sin2nx
2sinx .

So,
∑j1

n sj

n 
∑j1

n sin2jx
2n sinx

 sinnx sinn  1x
2n sinx sinx

≤ 1
2nsinx2 → 0

which implies that the given series has C, 1 sum 0.
8.37 Given a series∑ an, let

sn ∑
k1

n

ak, tn ∑
k1

n

kak, n  1
n ∑

k1

n

sk.

Prove that:
(a) tn  n  1sn − nn

Proof: Define S0  0, and thus

tn ∑
k1

n

kak

∑
k1

n

ksk − sk−1

∑
k1

n

ksk −∑
k1

n

ksk−1

∑
k1

n

ksk −∑
k1

n−1

k  1sk

∑
k1

n

ksk −∑
k1

n

k  1sk  n  1sn

 n  1sn −∑
k1

n

sk

 n  1sn − nn.

(b) If∑ an is C, 1 summable, then∑ an converges if, and only if, tn  on as
n → .

Proof: Assume that∑ an converges. Then limn→ sn exists, say its limit a. By (a), we
have

tn
n  n  1

n sn − n.
Then by Theorem 8.48, we also have limn→n  a. Hence,



limn→
tn
n  limn→

n  1
n sn − n

 limn→
n  1

n limn→ sn − limn→n

 1  a − a
 0

which is tn  on as n → .
Conversely, assume that tn  on as n → , then by (a), we have

n
n  1

tn
n  n

n  1 n  sn

which implies that (note that limn→n exists by hypothesis)
limn→ sn  limn→

n
n  1

tn
n  n

n  1 n

 limn→
n

n  1 limn→
tn
n  limn→

n
n  1 limn→n

 1  0  1  limn→n

 limn→n

That is,∑ an converges.

(c)∑ an is C, 1 summable if, and only if,∑ tn/nn  1 converges.

Proof: Consider
tn

nn  1  sn
n −

n
n  1

 nn − n − 1n−1
n − n

n  1
 n

n  1 n − n − 1
n n−1

which implies that

∑
k1

n
tk

kk  1  n
n  1 n.     *

()Suppose that∑ an is C, 1 summable, i.e., limn→n exists. Then
limn→ ∑k1

n tk
kk1 exists by (*).

()Suppose that limn→ ∑k1
n tk

kk1 exists. Then limn→n exists by (*). Hence,∑ an

is C, 1 summable.
8.38 Given a monotonic an of positive terms, such that limn→ an  0. Let

sn ∑
k1

n

ak, un ∑
k1

n

−1kak, vn ∑
k1

n

−1ksk.

Prove that:
(a) vn  1

2 un  −1nsn/2.

Proof: Define s0  0, and thus consider



un ∑
k1

n

−1kak

∑
k1

n

−1ksk − sk−1

∑
k1

n

−1ksk ∑
k1

n

−1k1sk−1

∑
k1

n

−1ksk ∑
k1

n

−1ksk  −1n1sn

 2vn  −1n1sn

which implies that
vn  1

2 un  −1nsn/2.

(b)∑n1
 −1nsn is C, 1 summable and has Ces’aro sum 1

2 ∑n1
 −1nan.

Proof: First, limn→ un exists since it is an alternating series. In addition, since
limn→ an  0, we know that limn→ sn/n  0 by Theorem 8.48. Hence,

vn
n  un

2n  −1n sn
2n → 0 as n → .

Consider by (a),
∑k1

n vk
n 

1
2 ∑k1

n uk  1
2 ∑k1

n −1ksk
n


∑k1

n uk

2n  vn
2n

→ 1
2 limn→ uk

 1
2 ∑

n1



−1nan

by Theorem 8.48.
(c)∑n1

 −1n1  1
2 . . . 1

n   − log 2 C, 1.

Proof: By (b) and∑n1
 −1n

n  − log2, it is clear.

Infinite products
8.39 Determine whether or not the following infinite products converges. Find the

value of each convergent product.

(a)n2
 1 − 2

nn1

Proof: Consider

1 − 2
nn  1  n − 1n  2

nn  1 ,

we have




n2

n

1 − 2
kk  1 

n2

n
k − 1k  2

kk  1

 1  4
2  3

2  5
3  4

3  6
4  5    

n − 1n  2
nn  1

 n  2
3n

which implies that


n2



1 − 2
nn  1  1

3 .

(b)n2

1 − n−2

Proof: Consider

1 − n−2  n − 1n  1
nn ,

we have


k2

n

1 − k−2 
k2

n
k − 1k  1

kk

 n  1
2n

which implies that


n2



1 − n−2  1/2.

(c)n2
 n3−1

n31

Proof: Consider
n3 − 1
n3  1  n − 1n2  n  1

n  1n2 − n  1

 n − 1n2  n  1
n  1 n − 12  n − 1  1

we have (let fk  k − 12  k − 1  1),


k2

n
k3 − 1
k3  1 

k2

n
k − 1k2  k  1

k  1 k − 12  k − 1  1

 2
3

n2  n  1
nn  1

which implies that


n2


n3 − 1
n3  1  2

3 .

(d)n0

1  z2n  if |z|  1.

Proof: Consider


k0

n

1  z2k  1  z1  z2   1  z2n 



which implies that

1 − z
k0

n

1  z2k  1 − z2n1

which implies that (if |z|  1)


k0

n

1  z2k  1 − z2n1

1 − z → 1
1 − z as n → .

So,


n0



1  z2n   1
1 − z .

8.40 If each partial sum sn of the convergent series∑ an is not zero and if the sum
itself is not zero, show that the infinite product a1 n2


1 − an/sn−1 converges and has the

value∑n1
 an.

Proof: Consider

a1
k2

n

1  ak/sk−1  a1
k2

n
sk−1  ak

sk−1

 a1
k2

n
sk

sk−1

 sn →∑ an ≠ 0.

So, the infinite product a1 n2

1 − an/sn−1 converges and has the value∑n1

 an.

8.41 Find the values of the following products by establishing the following identities
and summing the series:

(a)n2

1 − 1

2n−2   2∑n1
 2−n.

Proof: Consider
1 − 1

2n − 2  2n − 1
2n − 2  1

2
2n − 1

2n−1 − 1 ,

we have


k2

n

1 − 1
2k − 2


k2

n
1
2

2k − 1
2k−1 − 1

 2−n−1
k2

n
2k − 1

2k−1 − 1

 2−n−12n − 1
 2−n−12n−1 . . .1

 1 . . . 1
2n−1

∑
k1

n
1

2k−1

 2∑
k1

n
1
2k .



So,


n2



1 − 1
2n − 2  2∑

n1



2−n

 2.

(b)n2
 1  1

n2−1  2∑n1
 1

nn1 .

Proof: Consider
1  1

n2 − 1  n2

n2 − 1  nn
n − 1n  1 ,

we have


k2

n

1  1
k2 − 1 

k2

n
kk

k − 1k  1

 2 n
n  1

 2 1 − 1
n  1

 2∑
k1

n
1

kk  1 .

So,


n2



1  1
n2 − 1  2∑

n1


1

nn  1

 2.

8.42 Determine all real x for which the productn1
 cosx/2n converges and find the

value of the product when it does converge.
Proof: If x ≠ m, where m ∈ Z, then sin x

2n ≠ 0 for all n ∈ N. Hence,


k1

n

cosx/2k 
2n sin x

2n

2n sin x
2n

k1

n

cosx/2k  sinx
2n sin x

2n
→ sinx

x .

If x  m, where m ∈ Z. Then as m  0, it is clear that the product converges to 1. So,
we consider m ≠ 0 as follows. Since x  m, choosing n large enough, i.e., as n ≥ N so
that sin x

2n ≠ 0. Hence,


k1

n

cosx/2k 
k1

N−1

cosx/2k
kN

n

cosx/2k


k1

N−1

cosx/2k
sinx/2N−1

2n−N1 sinx/2n

and note that

limn→
sinx/2N−1

2n−N1 sinx/2n


sinx/2N−1
x/2N−1 .

Hence,


k1



cosx/2k 
sinx/2N−1

x/2N−1 
k1

N−1

cosx/2k.



So, by above sayings, we have prove that the convergence of the product for all x ∈ R.
8.43 (a) Let an  −1n/ n for n  1,2, . . . Show that1  an diverges but that

∑ an converges.

Proof: Clearly,∑ an converges since it is alternating series. Consider


k2

2n

1  ak 
k2

2n

1  −1k

k

 1  1
2

1 − 1
3

1  1
4

   1 − 1
2n − 1

1  1
2n

≤ 1  1
2

1 − 1
4

1  1
4

   1 − 1
2n

1  1
2n

 1  1
2

1 − 1
4    1 − 1

2n     *

and note that


k2

n

1 − 1
2k : pn

is decreasing. From the divergence of∑ 1
2k , we know that pn → 0. So,


k2



1  ak  0.

That is,k2
 1  ak diverges to zero.

(b) Let a2n−1  −1/ n , a2n  1/ n  1/n for n  1,2, . . . Show that1  an
converges but∑ an diverges.

Proof: Clearly,∑ an diverges. Consider


k2

2n

1  ak  1  a21  a31  a4   1  a2n

 31  a31  a4   1  a2n

 3 1 − 1
2 2

   1 − 1
n n

    *

and


k2

2n1

1  ak  1  a21  a31  a4   1  a2n1  a2n1

 3 1 − 1
2 2

   1 − 1
n n

1 − 1
n  1

    **

By (*) and (**), we know that

1  an converges

sincek2
n 1 − 1

k k
converges.

8.44 Assume that an ≥ 0 for each n  1,2, . . . Assume further that



a2n2
1  a2n2

 a2n1 
a2n

1  a2n
for n  1,2, . . .

Show thatk1
 1  −1kak converges if, and only if,∑k1

 −1kak converges.

Proof: First, we note that if a
1a  b, then 1  a1 − b  1, and if b  1c

c , then
1  1 − b1  c. Hence, by hypothesis, we have

1  1  a2n1 − a2n1     *
and

1  1  a2n21 − a2n1.     **
()Suppose that∑k1

 −1kak converges, then limk→ ak  0. Consider Cauchy
Condition for product,

1  −1p1ap1 1  −1p2ap2   1  −1pqapq − 1 for q  1,2, 3, . . . .
If p  1  2m, and q  2l, then

1  −1p1ap1 1  −1p2ap2   1  −1pqapq − 1
 |1  a2m1 − a2m1   1  a2m2l − 1|
≤ 1  a2m − 1 by (*) and (**)
 a2m → 0.

Similarly for other cases, so we have proved thatk1
 1  −1kak converges by

Cauchy Condition for product.
()This is a counterexample as follows. Let an  −1n exp −1n

n − 1 ≥ 0 for all
n, then it is easy to show that

a2n2
1  a2n2

 a2n1 
a2n

1  a2n
for n  1,2, . . .

In addition,


k1

n

1  −1kak 
k1

n

exp −1k

k
 exp ∑

k1

n
−1k

k
→ exp− log2 as n → .

However, consider

∑
k1

n

a2k − a2k−1

∑
k1

n

exp 1
2k

− exp −1
2k − 1

∑
k1

n

expbk 1
2k

 1
2k − 1

, where bk ∈ −1
2k − 1

, 1
2k

≥ ∑
k1

n

exp−1 1
2k

 1
2k − 1

→  as n → .

So, by Theorem 8.13, we proved the divergence of∑k1
 −1kak.

8.45 A complex-valued sequence fn is called multiplicative if f1  1 and if
fmn  fmfn whenever m and n are relatively prime. (See Section 1.7) It is called
completely multiplicative if

f1  1 and if fmn  fmfn for all m and n.



(a) If fn is multiplicative and if the series∑ fn converges absolutely, prove that

∑
n1



fn 
k1



1  fpk  fpk
2 . . . ,

where pk denote the kth prime, the product being absolutely convergent.
Proof: We consider the partial product Pm  k1

m
1  fpk  fpk

2 . . .  and show
that Pm → ∑n1

 fn as m → . Writing each factor as a geometric series we have

Pm 
k1

m

1  fpk  fpk
2 . . . ,

a product of a finite number of absolutely convergent series. When we multiple these series
together and rearrange the terms such that a typical term of the new absolutely convergent
series is

fn  fp1
a1    fpm

am , where n  p1
a1   pm

am ,
and each ai ≥ 0. Therefore, we have

Pm ∑
1

fn,

where∑1 is summed over those n having all their prime factors ≤ pm. By the unique
factorization theorem (Theorem 1.9), each such n occors once and only once in∑1.
Substracting Pm from∑n1

 fn, we get

∑
n1



fn − Pm ∑
n1



fn −∑
1

fn ∑
2

fn

where∑2 is summed over those n having at least one prime factor  pm. Since these n
occors among the integers  pm, we have

∑
n1



fn − Pm ≤ ∑
npm

|fn|.

As m →  the last sum tends to 0 because∑n1
 fn converges, so Pm → ∑n1

 fn.
To prove that the product converges absolutely we use Theorem 8.52. The product has

the form1  ak, where
ak  fpk  fpk

2 . . . .
The series∑|ak | converges since it is dominated by∑n1

 |fn|. Thereofore,1  ak
also converges absolutely.

Remark: The method comes from Euler. By the same method, it also shows that there
are infinitely many primes. The reader can see the book, An Introduction To The Theory
Of Numbers by Loo-Keng Hua, pp 91-93. (Chinese Version)

(b) If, in addition, fn is completely multiplicative, prove that the formula in (a)
becomes

∑
n1



fn 
k1


1

1 − fpk
.

Note that Euler’s product for s (Theorem 8.56) is the special case in which fn  n−s.
Proof: By (a), if fn is completely multiplicative, then rewrite



1  fpk  fpk
2 . . .  ∑

n0



fpk
n

 1
1 − fpk

since |fpk|  1 for all pk. (Suppose NOT, then |fpk| ≥ 1  |fpk
n|  |fpk|n ≥ 1

contradicts to limn→ fn  0. ).
Hence,

∑
n1



fn 
k1


1

1 − fpk
.

8.46 This exercise outlines a simple proof of the formula 2  2/6. Start with the
inequality sinx  x  tanx, valid for 0  x  /2, taking recipocals, and square each
member to obtain

cot2x  1
x2  1  cot2x.

Now put x  k/2m  1, where k and m are integers, with 1 ≤ k ≤ m, and sum on k to
obtain

∑
k1

m

cot2 k
2m  1  2m  12

2 ∑
k1

m
1
k2  m ∑

k1

m

cot2 k
2m  1 .

Use the formula of Exercise 1.49(c) to deduce the ineqaulity
m2m − 12

32m  12 ∑
k1

m
1
k2  2mm  12

32m  12

Now let m →  to obtain 2  2/6.
Proof: The proof is clear if we follow the hint and Exercise 1.49 (c), so we omit it.

8.47 Use an argument similar to that outlined in Exercise 8.46 to prove that
4  4/90.

Proof: The proof is clear if we follow the Exercise 8.46 and Exercise 1.49 (c), so we
omit it.

Remark: (1) From this, it is easy to compute the value of 2s, where
s ∈ n : n ∈ N. In addition, we will learn some new method such as Fourier series and
so on, to find the value of Riemann zeta function.

(2) Ther is an open problem that 2s − 1, where s ∈ n ∈ N : n  1.


