
Sequences of Functions
Uniform convergence

9.1 Assume that fn → f uniformly on S and that each fn is bounded on
S. Prove that {fn} is uniformly bounded on S.

Proof : Since fn → f uniformly on S, then given ε = 1, there exists a
positive integer n0 such that as n ≥ n0, we have

|fn (x)− f (x)| ≤ 1 for all x ∈ S. (*)

Hence, f (x) is bounded on S by the following

|f (x)| ≤ |fn0 (x)|+ 1 ≤ M (n0) + 1 for all x ∈ S. (**)

where |fn0 (x)| ≤ M (n0) for all x ∈ S.
Let |f1 (x)| ≤ M (1) , ..., |fn0−1 (x)| ≤ M (n0 − 1) for all x ∈ S, then by

(*) and (**),

|fn (x)| ≤ 1 + |f (x)| ≤ M (n0) + 2 for all n ≥ n0.

So,
|fn (x)| ≤ M for all x ∈ S and for all n

where M = max (M (1) , ...,M (n0 − 1) , M (n0) + 2) .

Remark: (1) In the proof, we also shows that the limit function f is
bounded on S.

(2) There is another proof. We give it as a reference.

Proof : Since Since fn → f uniformly on S, then given ε = 1, there exists
a positive integer n0 such that as n ≥ n0, we have

|fn (x)− fn+k (x)| ≤ 1 for all x ∈ S and k = 1, 2, ...

So, for all x ∈ S, and k = 1, 2, ...

|fn0+k (x)| ≤ 1 + |fn0 (x)| ≤ M (n0) + 1 (*)

where |fn0 (x)| ≤ M (n0) for all x ∈ S.
Let |f1 (x)| ≤ M (1) , ..., |fn0−1 (x)| ≤ M (n0 − 1) for all x ∈ S, then by

(*),
|fn (x)| ≤ M for all x ∈ S and for all n
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where M = max (M (1) , ...,M (n0 − 1) , M (n0) + 1) .

9.2 Define two sequences {fn} and {gn} as follows:

fn (x) = x

(
1 +

1

n

)
if x ∈ R, n = 1, 2, ...,

gn (x) =

{
1
n

if x = 0 or if x is irrational,
b + 1

n
if x is rational, say x = a

b
, b > 0.

Let hn (x) = fn (x) gn (x) .

(a) Prove that both {fn} and {gn} converges uniformly on every bounded
interval.

Proof : Note that it is clear that

lim
n→∞

fn (x) = f (x) = x, for all x ∈ R

and

lim
n→∞

gn (x) = g (x) =

{
0 if x = 0 or if x is irrational,

b if x is ratonal, say x = a
b
, b > 0.

In addition, in order to show that {fn} and {gn} converges uniformly
on every bounded interval, it suffices to consider the case of any compact
interval [−M, M ] , M > 0.

Given ε > 0, there exists a positive integer N such that as n ≥ N, we
have

M

n
< ε and

1

n
< ε.

Hence, for this ε, we have as n ≥ N

|fn (x)− f (x)| =
∣∣∣x
n

∣∣∣ ≤ M

n
< ε for all x ∈ [−M, M ]

and

|gn (x)− g (x)| ≤ 1

n
< ε for all x ∈ [−M, M ] .

That is, we have proved that {fn} and {gn} converges uniformly on every
bounded interval.

Remark: In the proof, we use the easy result directly from definition
of uniform convergence as follows. If fn → f uniformly on S, then fn → f
uniformly on T for every subset T of S.

2



(b) Prove that hn (x) does not converges uniformly on any bounded in-
terval.

Proof : Write

hn (x) =

{
x
n

(
1 + 1

n

)
if x = 0 or x is irrational

a + a
n

(
1 + 1

b
+ 1

bn

)
if x is rational, say x = a

b

.

Then

lim
n→∞

hn (x) = h (x) =

{
0 if x = 0 or x is irrational
a if x is rational, say x = a

b

.

Hence, if hn (x) converges uniformly on any bounded interval I, then hn (x)
converges uniformly on [c, d] ⊆ I. So, given ε = max (|c| , |d|) > 0, there is a
positive integer N such that as n ≥ N, we have

max (|c| , |d|) > |hn (x)− h (x)|

=

{ ∣∣x
n

(
1 + 1

n

)∣∣ = |x|
n

∣∣1 + 1
n

∣∣ if x ∈ Qc ∩ [c, d] or x = 0∣∣ a
n

(
1 + 1

b
+ 1

bn

)∣∣ if x ∈ Q ∩ [c, d] , x = a
b

which implies that (x ∈ [c, d] ∩Qc or x = 0)

max (|c| , |d|) >
|x|
n

∣∣∣∣1 +
1

n

∣∣∣∣ ≥ |x|
n
≥ max (|c| , |d|)

n

which is absurb. So, hn (x) does not converges uniformly on any bounded
interval.

9.3 Assume that fn → f uniformly on S, gn → f uniformly on S.

(a) Prove that fn + gn → f + g uniformly on S.

Proof : Since fn → f uniformly on S, and gn → f uniformly on S, then
given ε > 0, there is a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2
for all x ∈ S

and
|gn (x)− g (x)| < ε

2
for all x ∈ S.

Hence, for this ε, we have as n ≥ N,

|fn (x) + gn (x)− f (x)− g (x)| ≤ |fn (x)− f (x)|+ |gn (x)− g (x)|
< ε for all x ∈ S.
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That is, fn + gn → f + g uniformly on S.

Remark: There is a similar result. We write it as follows. If fn → f
uniformly on S, then cfn → cf uniformly on S for any real c. Since the proof
is easy, we omit the proof.

(b) Let hn (x) = fn (x) gn (x) , h (x) = f (x) g (x) , if x ∈ S. Exercise 9.2
shows that the assertion hn → h uniformly on S is, in general, incorrect.
Prove that it is correct if each fn and each gn is bounded on S.

Proof : Since fn → f uniformly on S and each fn is bounded on S, then
f is bounded on S by Remark (1) in the Exercise 9.1. In addition, since
gn → g uniformly on S and each gn is bounded on S, then gn is uniformly
bounded on S by Exercise 9.1.

Say |f (x)| ≤ M1 for all x ∈ S, and |gn (x)| ≤ M2 for all x and all n. Then
given ε > 0, there exists a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2 (M2 + 1)
for all x ∈ S

and
|gn (x)− g (x)| < ε

2 (M1 + 1)
for all x ∈ S

which implies that as n ≥ N, we have

|hn (x)− h (x)| = |fn (x) gn (x)− f (x) g (x)|
= |[fn (x)− f (x)] [gn (x)] + [f (x)] [gn (x)− g (x)]|
≤ |fn (x)− f (x)| |gn (x)|+ |f (x)| |gn (x)− g (x)|

<
ε

2 (M2 + 1)
M2 + M1

ε

2 (M1 + 1)

<
ε

2
+

ε

2
= ε

for all x ∈ S. So, hn → h uniformly on S.

9.4 Assume that fn → f uniformly on S and suppose there is a constant
M > 0 such that |fn (x)| ≤ M for all x in S and all n. Let g be continuous
on the closure of the disk B (0; M) and define hn (x) = g [fn (x)] , h (x) =
g [f (x)] , if x ∈ S. Prove that hn → h uniformly on S.
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Proof : Since g is continuous on a compact disk B (0; M) , g is uniformly
continuous on B (0; M) . Given ε > 0, there exists a δ > 0 such that as
|x− y| < δ, where x, y ∈ S, we have

|g (x)− g (y)| < ε. (*)

For this δ > 0, since fn → f uniformly on S, then there exists a positive
integer N such that as n ≥ N, we have

|fn (x)− f (x)| < δ for all x ∈ S. (**)

Hence, by (*) and (**), we conclude that given ε > 0, there exists a positive
integer N such that as n ≥ N, we have

|g (fn (x))− g (f (x))| < ε for all x ∈ S.

Hence, hn → h uniformly on S.

9.5 (a) Let fn (x) = 1/ (nx + 1) if 0 < x < 1, n = 1, 2, ... Prove that {fn}
converges pointwise but not uniformly on (0, 1) .

Proof : First, it is clear that limn→∞ fn (x) = 0 for all x ∈ (0, 1) . Supppos
that {fn} converges uniformly on (0, 1) . Then given ε = 1/2, there exists a
positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| =
∣∣∣∣ 1

1 + nx

∣∣∣∣ < 1/2 for all x ∈ (0, 1) .

So, the inequality holds for all x ∈ (0, 1) . It leads us to get a contradiction
since

1

1 + Nx
<

1

2
for all x ∈ (0, 1) ⇒ lim

x→0+

1

1 + Nx
= 1 < 1/2.

That is, {fn} converges NOT uniformly on (0, 1) .

(b) Let gn (x) = x/ (nx + 1) if 0 < x < 1, n = 1, 2, ... Prove that gn → 0
uniformly on (0, 1) .

Proof : First, it is clear that limn→∞ gn (x) = 0 for all x ∈ (0, 1) . Given
ε > 0, there exists a positive integer N such that as n ≥ N, we have

1/n < ε
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which implies that

|gn (x)− g| =
∣∣∣∣ x

1 + nx

∣∣∣∣ =

∣∣∣∣ 1
1
x

+ n

∣∣∣∣ < 1

n
< ε.

So, gn → 0 uniformly on (0, 1) .

9.6 Let fn (x) = xn. The sequence {fn (x)} converges pointwise but not
uniformly on [0, 1] . Let g be continuous on [0, 1] with g (1) = 0. Prove that
the sequence {g (x) xn} converges uniformly on [0, 1] .

Proof : It is clear that fn (x) = xn converges NOT uniformly on [0, 1]
since each term of {fn (x)} is continuous on [0, 1] and its limit function

f =

{
0 if x ∈ [0, 1)
1 if x = 1.

is not a continuous function on [0, 1] by Theorem 9.2.
In order to show {g (x) xn} converges uniformly on [0, 1] , it suffices to

shows that {g (x) xn} converges uniformly on [0, 1). Note that

lim
n→∞

g (x) xn = 0 for all x ∈ [0, 1).

We partition the interval [0, 1) into two subintervals: [0, 1−δ] and (1− δ, 1) .
As x ∈ [0, 1− δ] : Let M = maxx∈[0,1] |g (x)| , then given ε > 0, there is a

positive integer N such that as n ≥ N, we have

M (1− δ)n < ε

which implies that for all x ∈ [0, 1− δ] ,

|g (x) xn − 0| ≤ M |xn| ≤ M (1− δ)n < ε.

Hence, {g (x) xn} converges uniformly on [0, 1− δ] .
As x ∈ (1− δ, 1) : Since g is continuous at 1, given ε > 0, there exists a

δ > 0 such that as |x− 1| < δ, where x ∈ [0, 1] , we have

|g (x)− g (1)| = |g (x)− 0| = |g (x)| < ε

which implies that for all x ∈ (1− δ, 1) ,

|g (x) xn − 0| ≤ |g (x)| < ε.
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Hence, {g (x) xn} converges uniformly on (1− δ, 1) .
So, from above sayings, we have proved that the sequence of functions

{g (x) xn} converges uniformly on [0, 1] .

Remark: It is easy to show the followings by definition. So, we omit the
proof.

(1) Suppose that for all x ∈ S, the limit function f exists. If fn → f
uniformly on S1 (⊆ S) , then fn → f uniformly on S, where # (S − S1) <
+∞.

(2) Suppose that fn → f uniformly on S and on T. Then fn → f uni-
formly on S ∪ T.

9.7 Assume that fn → f uniformly on S and each fn is continuous on S.
If x ∈ S, let {xn} be a sequence of points in S such that xn → x. Prove that
fn (xn) → f (x) .

Proof : Since fn → f uniformly on S and each fn is continuous on S, by
Theorem 9.2, the limit function f is also continuous on S. So, given ε > 0,
there is a δ > 0 such that as |y − x| < δ, where y ∈ S, we have

|f (y)− f (x)| < ε

2
.

For this δ > 0, there exists a positive integer N1 such that as n ≥ N1, we
have

|xn − x| < δ.

Hence, as n ≥ N1, we have

|f (xn)− f (x)| < ε

2
. (*)

In addition, since fn → f uniformly on S, given ε > 0, there exists a
positive integer N ≥ N1 such that as n ≥ N, we have

|fn (x)− f (x)| < ε

2
for all x ∈ S

which implies that

|fn (xn)− f (xn)| < ε

2
. (**)
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By (*) and (**), we obtain that given ε > 0, there exists a positie integer N
such that as n ≥ N, we have

|fn (xn)− f (x)| = |fn (xn)− f (xn)|+ |f (xn)− f (x)|

<
ε

2
+

ε

2
= ε.

That is, we have proved that fn (xn) → f (x) .

9.8 Let {fn} be a seuqnece of continuous functions defined on a compact
set S and assume that {fn} converges pointwise on S to a limit function f.
Prove that fn → f uniformly on S if, and only if, the following two conditions
hold.:

(i) The limit function f is continuous on S.
(ii) For every ε > 0, there exists an m > 0 and a δ > 0, such that n > m

and |fk (x)− f (x)| < δ implies |fk+n (x)− f (x)| < ε for all x in S and all
k = 1, 2, ...

Hint. To prove the sufficiency of (i) and (ii), show that for each x0 in S
there is a neighborhood of B (x0) and an integer k (depending on x0) such
that

|fk (x)− f (x)| < δ if x ∈ B (x0) .

By compactness, a finite set of integers, say A = {k1, ..., kr} , has the property
that, for each x in S, some k in A satisfies |fk (x)− f (x)| < δ. Uniform
convergence is an easy consequences of this fact.

Proof : (⇒) Suppose that fn → f uniformly on S, then by Theorem
9.2, the limit function f is continuous on S. In addition, given ε > 0, there
exists a positive integer N such that as n ≥ N, we have

|fn (x)− f (x)| < ε for all x ∈ S

Let m = N, and δ = ε, then (ii) holds.
(⇐) Suppose that (i) and (ii) holds. We prove fk → f uniformly on S as

follows. By (ii), given ε > 0, there exists an m > 0 and a δ > 0, such that
n > m and |fk (x)− f (x)| < δ implies |fk+n (x)− f (x)| < ε for all x in S
and all k = 1, 2, ...

Consider
∣∣fk(x0) (x0)− f (x0)

∣∣ < δ, then there exists a B (x0) such that as
x ∈ B (x0) ∩ S, we have ∣∣fk(x0) (x)− f (x)

∣∣ < δ
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by continuity of fk(x0) (x)− f (x) . Hence, by (ii) as n > m∣∣fk(x0)+n (x)− f (x)
∣∣ < ε if x ∈ B (x0) ∩ S. (*)

Note that S is compact and S = ∪x∈S (B (x) ∩ S) , then S = ∪p
k=1 (B (xk) ∩ S) .

So, let N = maxp
i=1 (k (xp) + m) , as n > N, we have

|fn (x)− f (x)| < ε for all x ∈ S

with help of (*). That is, fn → f uniformly on S.

9.9 (a) Use Exercise 9.8 to prove the following theorem of Dini: If
{fn} is a sequence of real-valued continuous functions converginf
pointwise to a continuous limit function f on a compact set S, and
if fn (x) ≥ fn+1 (x) for each x in S and every n = 1, 2, ..., then fn → f
uniformly on S.

Proof : By Exercise 9.8, in order to show that fn → f uniformly on S,
it suffices to show that (ii) holds. Since fn (x) → f (x) and fn+1 (x) ≤ fn (x)
on S, then fixed x ∈ S, and given ε > 0, there exists a positive integer
N (x) = N such that as n ≥ N, we have

0 ≤ fn (x)− f (x) < ε.

Choose m = 1 and δ = ε, then by fn+1 (x) ≤ fn (x) , then (ii) holds. We
complete it.

Remark: (1) Dini’s Theorem is important in Analysis; we suggest the
reader to keep it in mind.

(2) There is another proof by using Cantor Intersection Theorem.
We give it as follows.

Proof : Let gn = fn− f, then gn is continuous on S, gn → 0 pointwise on
S, and gn (x) ≥ gn+1 (x) on S. If we can show gn → 0 uniformly on S, then
we have proved that fn → f uniformly on S.

Given ε > 0, and consider Sn := {x : gn (x) ≥ ε} . Since each gn (x) is
continuous on a compact set S, we obtain that Sn is compact. In addition,
Sn+1 ⊆ Sn since gn (x) ≥ gn+1 (x) on S. Then

∩Sn 6= φ (*)
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if each Sn is non-empty by Cantor Intersection Theorem. However (*)
contradicts to gn → 0 pointwise on S. Hence, we know that there exists a
positive integer N such that as n ≥ N,

Sn = φ.

That is, given ε > 0, there exists a positive integer N such that as n ≥ N,
we have

|gn (x)− 0| < ε.

So, gn → 0 uniformly on S.

(b) Use he sequence in Exercise 9.5(a) to show that compactness of S is
essential in Dini’s Theorem.

Proof : Let fn (x) = 1
1+nx

, where x ∈ (0, 1) . Then it is clear that each
fn (x) is continuous on (0, 1) , the limit function f (x) = 0 is continuous on
(0, 1) , and fn+1 (x) ≤ fn (x) for all x ∈ (0, 1) . However, fn → f not uniformly
on (0, 1) by Exercise 9.5 (a). Hence, compactness of S is essential in Dini’s
Theorem.

9.10 Let fn (x) = ncx (1− x2)
n

for x real and n ≥ 1. Prove that {fn}
converges pointwsie on [0, 1] for every real c. Determine those c for which the
convergence is uniform on [0, 1] and those for which term-by-term integration
on [0, 1] leads to a correct result.

Proof : It is clear that fn (0) → 0 and fn (1) → 0. Consider x ∈ (0, 1) ,
then |1− x2| := r < 1, then

lim
n→∞

fn (x) = lim
n→∞

ncrnx = 0 for any real c.

Hence, fn → 0 pointwise on [0, 1] .
Consider

f ′n (x) = nc
(
1− x2

)n−1
(2n− 1)

(
1

2n− 1
− x2

)
,

then each fn has the absolute maximum at xn = 1√
2n−1

.

As c < 1/2, we obtain that

|fn (x)| ≤ |fn (xn)|

=
nc

√
2n− 1

(
1− 1

2n− 1

)n

= nc− 1
2

[√
n

2n− 1

(
1− 1

2n− 1

)n]
→ 0 as n →∞. (*)
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In addition, as c ≥ 1/2, if fn → 0 uniformly on [0, 1] , then given ε > 0, there
exists a positive integer N such that as n ≥ N, we have

|fn (x)| < ε for all x ∈ [0, 1]

which implies that as n ≥ N,

|fn (xn)| < ε

which contradicts to

lim
n→∞

fn (xn) =

{ 1√
2e

if c = 1/2

∞ if c > 1/2
. (**)

From (*) and (**), we conclude that only as c < 1/2, the seqences of
functions converges uniformly on [0, 1] .

In order to determine those c for which term-by-term integration on [0, 1] ,
we consider ∫ 1

0

fn (x) dx =
nc

2 (n + 1)

and ∫ 1

0

f (x) dx =

∫ 1

0

0dx = 0.

Hence, only as c < 1, we can integrate it term-by-term.

9.11 Prove that
∑

xn (1− x) converges pointwise but not uniformly on
[0, 1] , whereas

∑
(−1)n xn (1− x) converges uniformly on [0, 1] . This illus-

trates that uniform convergence of
∑

fn (x) along with pointwise con-
vergence of

∑
|fn (x)| does not necessarily imply uniform conver-

gence of
∑
|fn (x)| .

Proof : Let sn (x) =
∑n

k=0 xk (1− x) = 1− xn+1, then

sn (x) →
{

1 if x ∈ [0, 1)
0 if x = 1

.

Hence,
∑

xn (1− x) converges pointwise but not uniformly on [0, 1] by The-
orem 9.2 since each sn is continuous on [0, 1] .

Let gn (x) = xn (1− x) , then it is clear that gn (x) ≥ gn+1 (x) for all x ∈
[0, 1] , and gn (x) → 0 uniformly on [0, 1] by Exercise 9.6. Hence, by Dirich-
let’s Test for uniform convergence, we have proved that

∑
(−1)n xn (1− x)

converges uniformly on [0, 1] .
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9.12 Assume that gn+1 (x) ≤ gn (x) for each x in T and each n = 1, 2, ...,
and suppose that gn → 0 uniformly on T. Prove that

∑
(−1)n+1 gn (x) con-

verges uniformly on T.

Proof : It is clear by Dirichlet’s Test for uniform convergence.

9.13 Prove Abel’s test for uniform convergence: Let {gn} be a sequence
of real-valued functions such that gn+1 (x) ≤ gn (x) for each x in T and for
every n = 1, 2, ... If {gn} is uniformly bounded on T and if

∑
fn (x) converges

uniformly on T, then
∑

fn (x) gn (x) also converges uniformly on T.

Proof : Let Fn (x) =
∑n

k=1 fk (x) . Then

sn (x) =
n∑

k=1

fk (x) gk (x) = Fng1 (x)+
n∑

k=1

(Fn (x)− Fk (x)) (gk+1 (x)− gk (x))

and hence if n > m, we can write

sn (x)−sm (x) = (Fn (x)− Fm (x)) gm+1 (x)+
n∑

k=m+1

(Fn (x)− Fk (x)) (gk+1 (x)− gk (x))

Hence, if M is an uniform bound for {gn} , we have

|sn (x)− sm (x)| ≤ M |Fn (x)− Fm (x)|+ 2M
n∑

k=m+1

|Fn (x)− Fk (x)| . (*)

Since
∑

fn (x) converges uniformly on T, given ε > 0, there exists a positive
integer N such that as n > m ≥ N, we have

|Fn (x)− Fm (x)| < ε

M + 1
for all x ∈ T (**)

By (*) and (**), we have proved that as n > m ≥ N,

|sn (x)− sm (x)| < ε for all x ∈ T.

Hence,
∑

fn (x) gn (x) also converges uniformly on T.

Remark: In the proof, we establish the lemma as follows. We write it
as a reference.
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(Lemma) If {an} and {bn} are two sequences of complex numbers, define

An =
n∑

k=1

ak.

Then we have the identity

n∑
k=1

akbk = Anbn+1 −
n∑

k=1

Ak (bk+1 − bk) (i)

= Anb1 +
n∑

k=1

(An − Ak) (bk+1 − bk) . (ii)

Proof : The identity (i) comes from Theorem 8.27. In order to show
(ii), it suffices to consider

bn+1 = b1 +
n∑

k=1

bk+1 − bk.

9.14 Let fn (x) = x/ (1 + nx2) if x ∈ R, n = 1, 2, ... Find the limit function
f of the sequence {fn} and the limit function g of the sequence {f ′n} .

(a) Prove that f ′ (x) exists for every x but that f ′ (0) 6= g (0) . For what
values of x is f ′ (x) = g (x)?

Proof : It is easy to show that the limit function f = 0, and by f ′n (x) =
1−nx2

(1+nx2)2
, we have

lim
n→∞

f ′n (x) = g (x) =

{
1 if x = 0
0 if x 6= 0

.

Hence, f ′ (x) exists for every x and f ′ (0) = 0 6= g (0) = 1. In addition, it is
clear that as x 6= 0, we have f ′ (x) = g (x) .

(b) In what subintervals of R does fn → f uniformly?

Proof : Note that
1 + nx2

2
≥
√

n |x|
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by A.P. ≥ G.P. for all real x. Hence,∣∣∣∣ x

1 + nx2

∣∣∣∣ ≤ 1

2
√

n

which implies that fn → f uniformly on R.

(c) In what subintervals of R does f ′n → g uniformly?

Proof : Since each f ′n = 1−nx2

(1+nx2)2
is continuous on R, and the limit function

g is continuous on R − {0} , then by Theorem 9.2, the interval I that we
consider does not contains 0. Claim that f ′n → g uniformly on such interval
I = [a, b] which does not contain 0 as follows.

Consider ∣∣∣∣ 1− nx2

(1 + nx2)2

∣∣∣∣ ≤ 1

1 + nx2
≤ 1

na2
,

so we know that f ′n → g uniformly on such interval I = [a, b] which does not
contain 0.

9.15 Let fn (x) = (1/n) e−n2x2
if x ∈ R, n = 1, 2, ... Prove that fn → 0

uniformly on R, that f ′n → 0 pointwise on R, but that the convergence of
{f ′n} is not uniform on any interval containing the origin.

Proof : It is clear that fn → 0 uniformly on R, that f ′n → 0 pointwise
on R. Assume that f ′n → 0 uniformly on [a, b] that contains 0. We will prove
that it is impossible as follows.

We may assume that 0 ∈ (a, b) since other cases are similar. Given ε = 1
e
,

then there exists a positive integer N ′ such that as n ≥ max
(
N ′, 1

b

)
:= N

(⇒ 1
N
≤ b), we have

|f ′n (x)− 0| < 1

e
for all x ∈ [a, b]

which implies that ∣∣∣∣2 Nx

e(Nx)2

∣∣∣∣ < 1

e
for all x ∈ [a, b]

which implies that, let x = 1
N

,
2

e
<

1

e

which is absurb. So, the convergence of {f ′n} is not uniform on any interval
containing the origin.
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9.16 Let {fn} be a sequence of real-valued continuous functions defined
on [0, 1] and assume that fn → f uniformly on [0, 1] . Prove or disprove

lim
n→∞

∫ 1−1/n

0

fn (x) dx =

∫ 1

0

f (x) dx.

Proof : By Theorem 9.8, we have

lim
n→∞

∫ 1

0

fn (x) dx =

∫ 1

0

f (x) dx. (*)

Note that {fn} is uniform bound, say |fn (x)| ≤ M for all x ∈ [0, 1] and all
n by Exercise 9.1. Hence,∣∣∣∣∫ 1

1−1/n

fn (x) dx

∣∣∣∣ ≤ M

n
→ 0. (**)

Hence, by (*) and (**), we have

lim
n→∞

∫ 1−1/n

0

fn (x) dx =

∫ 1

0

f (x) dx.

9.17 Mathematicinas from Slobbovia decided that the Riemann integral
was too complicated so that they replaced it by Slobbovian integral, de-
fined as follows: If f is a function defined on the set Q of rational numbers
in [0, 1] , the Slobbovian integral of f, denoted by S (f) , is defined to be the
limit

S (f) = lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
,

whenever the limit exists. Let {fn} be a sequence of functions such that
S (fn) exists for each n and such that fn → f uniformly on Q. Prove that
{S (fn)} converges, that S (f) exists, and S (fn) → S (f) as n →∞.

Proof : fn → f uniformly on Q, then given ε > 0, there exists a positive
integer N such that as n > m ≥ N, we have

|fn (x)− f (x)| < ε/3 (1)
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and
|fn (x)− fm (x)| < ε/2. (2)

So, if n > m ≥ N,

|S (fn)− S (fm)| =

∣∣∣∣∣ limk→∞

1

k

k∑
j=1

(
fn

(
j

k

)
− fm

(
j

k

))∣∣∣∣∣
= lim

k→∞

1

k

∣∣∣∣∣
k∑

j=1

(
fn

(
j

k

)
− fm

(
j

k

))∣∣∣∣∣
≤ lim

k→∞

1

k

k∑
j=1

ε/2 by (2)

= ε/2

< ε

which implies that {S (fn)} converges since it is a Cauchy sequence. Say its
limit S.

Consider, by (1) as n ≥ N,

1

k

k∑
j=1

[
fn

(
j

k

)
− ε/3

]
≤ 1

k

k∑
j=1

f

(
j

k

)
≤ 1

k

k∑
j=1

[
fn

(
j

k

)
+ ε/3

]
which implies that[

1

k

k∑
j=1

fn

(
j

k

)]
− ε/3 ≤ 1

k

k∑
j=1

f

(
j

k

)
≤

[
1

k

k∑
j=1

fn

(
j

k

)]
+ ε/3

which implies that, let k →∞

S (fn)− ε/3 ≤ lim
k→∞

sup
1

k

k∑
j=1

f

(
j

k

)
≤ S (fn) + ε/3 (3)

and

S (fn)− ε/3 ≤ lim
k→∞

inf
1

k

k∑
j=1

f

(
j

k

)
≤ S (fn) + ε/3 (4)
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which implies that∣∣∣∣∣ limk→∞
sup

1

k

k∑
j=1

f

(
j

k

)
− lim

k→∞
inf

1

k

k∑
j=1

f

(
j

k

)∣∣∣∣∣
≤

∣∣∣∣∣ limk→∞
sup

1

k

k∑
j=1

f

(
j

k

)
− S (fn)

∣∣∣∣∣+
∣∣∣∣∣ limk→∞

inf
1

k

k∑
j=1

f

(
j

k

)
− S (fn)

∣∣∣∣∣
≤ 2ε

3
by (3) and (4)

< ε. (5)

Note that (3)-(5) imply that the existence of S (f) . Also, (3) or (4) implies
that S (f) = S. So, we complete the proof.

9.18 Let fn (x) = 1/ (1 + n2x2) if 0 ≤ x ≤ 1, n = 1, 2, ... Prove that {fn}
converges pointwise but not uniformly on [0, 1] . Is term-by term integration
permissible?

Proof : It is clear that

lim
n→∞

fn (x) = 0

for all x ∈ [0, 1] . If {fn} converges uniformly on [0, 1] , then given ε = 1/3,
there exists a positive integer N such that as n ≥ N, we have

|fn (x)| < 1/3 for all x ∈ [0, 1]

which implies that ∣∣∣∣fN

(
1

N

)∣∣∣∣ =
1

2
<

1

3

which is impossible. So, {fn} converges pointwise but not uniformly on [0, 1] .
Since {fn (x)} is clearly uniformly bounded on [0, 1] , i.e., |fn (x)| ≤ 1

for all x ∈ [0, 1] and n. Hence, by Arzela’s Theorem, we know that the
sequence of functions can be integrated term by term.

9.19 Prove that
∑∞

n=1 x/nα (1 + nx2) converges uniformly on every finite
interval in R if α > 1/2. Is the convergence uniform on R?

Proof : By A.P. ≥ G.P., we have∣∣∣∣ x

nα (1 + nx2)

∣∣∣∣ ≤ 1

2nα+ 1
2

for all x.

17



So, by Weierstrass M-test, we have proved that
∑∞

n=1 x/nα (1 + nx2) con-
verges uniformly on R if α > 1/2. Hence,

∑∞
n=1 x/nα (1 + nx2) converges

uniformly on every finite interval in R if α > 1/2.

9.20 Prove that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n)) converges
uniformly on every compact subset of R.

Proof : It suffices to show that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n))
converges uniformly on [0, a] . Choose n large enough so that a/n ≤ 1/2, and
therefore sin

(
1 +

(
x

n+1

))
≤ sin

(
1 + x

n

)
for all x ∈ [0, a] . So, if we let fn (x) =

(−1)n /
√

n and gn (x) = sin
(
1 + x

n

)
, then by Abel’s test for uniform con-

vergence, we have proved that the series
∑∞

n=1 ((−1)n /
√

n) sin (1 + (x/n))
converges uniformly on [0, a] .

Remark: In the proof, we metion something to make the reader get
more. (1) since a compact set K is a bounded set, say K ⊆ [−a, a] , if we can
show the series converges uniformly on [−a, a] , then we have proved it. (2)
The interval that we consider is [0, a] since [−a, 0] is similar. (3) Abel’s test
for uniform convergence holds for n ≥ N, where N is a fixed positive
integer.

9.21 Prove that the series
∑∞

n=0 (x2n+1/ (2n + 1)− xn+1/ (2n + 2)) con-
verges pointwise but not uniformly on [0, 1] .

Proof : We show that the series converges pointwise on [0, 1] by con-
sidering two cases: (1) x ∈ [0, 1) and (2) x = 1. Hence, it is trivial. De-
fine f (x) =

∑∞
n=0 (x2n+1/ (2n + 1)− xn+1/ (2n + 2)) , if the series converges

uniformly on [0, 1] , then by Theorem 9.2, f (x) is continuous on [0, 1] .
However,

f (x) =

{
1
2
log (1 + x) if x ∈ [0, 1)

log 2 if x = 1
.

Hence, the series converges not uniformly on [0, 1] .

Remark: The function f (x) is found by the following. Given x ∈ [0, 1),
then both

∞∑
n=0

t2n =
1

1− t2
and

1

2

∞∑
n=0

tn =
1

2 (1− t)

converges uniformly on [0, x] by Theorem 9.14. So, by Theorem 9.8, we
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have ∫ x

0

∞∑
n=0

t2n − 1

2

∞∑
n=0

tn =

∫ x

0

1

1− t2
− 1

2 (1− t)
dt

=

∫ x

0

1

2

(
1

1− t
+

1

1 + t

)
− 1

2

(
1

1− t

)
dt

=
1

2
log (1 + x) .

And as x = 1,

∞∑
n=0

(
x2n+1/ (2n + 1)− xn+1/ (2n + 2)

)
=

∞∑
n=0

1

2n + 1
− 1

2n

=
∞∑

n=0

(−1)n+1

n + 1
by Theorem8.14.

= log 2 by Abel’s Limit Theorem.

9.22 Prove that
∑

an sin nx and
∑

bn cos nx are uniformly convergent on
R if

∑
|an| converges.

Proof : It is trivial by Weierstrass M-test.

9.23 Let {an} be a decreasing sequence of positive terms. Prove that
the series

∑
an sin nx converges uniformly on R if, and only if, nan → 0 as

n →∞.

Proof : (⇒) Suppose that the series
∑

an sin nx converges uniformly on
R, then given ε > 0, there exists a positive integer N such that as n ≥ N,
we have ∣∣∣∣∣

2n−1∑
k=n

ak sin kx

∣∣∣∣∣ < ε. (*)

Choose x = 1
2n

, then sin 1
2
≤ sin kx ≤ sin 1. Hence, as n ≥ N, we always

19



have, by (*)

(ε >)

∣∣∣∣∣
2n−1∑
k=n

ak sin kx

∣∣∣∣∣ =
2n−1∑
k=n

ak sin kx

≥
2n−1∑
k=n

a2n sin
1

2
since ak > 0 and ak ↘

=

(
1

2
sin

1

2

)
(2na2n) .

That is, we have proved that 2na2n → 0 as n → ∞. Similarly, we also have
(2n− 1) a2n−1 → 0 as n →∞. So, we have proved that nan → 0 as n →∞.

(⇐) Suppose that nan → 0 as n → ∞, then given ε > 0, there exists a
positive integer n0 such that as n ≥ n0, we have

|nan| = nan <
ε

2 (π + 1)
. (*)

In order to show the uniform convergence of
∑∞

n=1 an sin nx on R, it suffices
to show the uniform convergence of

∑∞
n=1 an sin nx on [0, π] . So, if we can

show that as n ≥ n0∣∣∣∣∣
n+p∑

k=n+1

ak sin kx

∣∣∣∣∣ < ε for all x ∈ [0, π] , and all p ∈ N

then we complete it. We consider two cases as follows. (n ≥ n0)

As x ∈
[
0, π

n+p

]
, then∣∣∣∣∣

n+p∑
k=n+1

ak sin kx

∣∣∣∣∣ =

n+p∑
k=n+1

ak sin kx

≤
n+p∑

k=n+1

akkx by sin kx ≤ kx if x ≥ 0

=

n+p∑
k=n+1

(kak) x

≤ ε

2 (π + 1)

pπ

n + p
by (*)

< ε.
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And as x ∈
[

π
n+p

, π
]
, then∣∣∣∣∣

n+p∑
k=n+1

ak sin kx

∣∣∣∣∣ ≤
m∑

k=n+1

ak sin kx +

∣∣∣∣∣
n+p∑

k=m+1

ak sin kx

∣∣∣∣∣ , where m =
[π
x

]
≤

m∑
k=n+1

akkx +
2am+1

sin x
2

by Summation by parts

≤ ε

2 (π + 1)
(m− n) x +

2am+1

sin x
2

≤ ε

2 (π + 1)
mx + 2am+1

π

x
by

2x

π
≤ sin x if x ∈

[
0,

π

2

]
≤ ε

2 (π + 1)
π + 2am+1 (m + 1)

<
ε

2
+ 2

ε

2 (π + 1)

< ε.

Hence,
∑∞

n=1 an sin nx converges uniformly on R.

Remark: (1) In the proof (⇐), if we can make sure that nan ↘ 0, then
we can use the supplement on the convergnce of series in Ch8, (C)-
(6) to show the uniform convergence of

∑∞
n=1 an sin nx =

∑∞
n=1 (nan)

(
sin nx

n

)
by Dirichlet’s test for uniform convergence.

(2)There are similar results; we write it as references.

(a) Suppose an ↘ 0, then for each α ∈
(
0, π

2

)
,
∑∞

n=1 an cos nx and∑∞
n=1 an sin nx converges uniformly on [α, 2π − α] .

Proof: The proof follows from (12) and (13) in Theorem 8.30 and
Dirichlet’s test for uniform convergence. So, we omit it. The reader
can see the textbook, example in pp 231.

(b) Let {an} be a decreasing sequence of positive terms.
∑∞

n=1 an cos nx
uniformly converges on R if and only if

∑∞
n=1 an converges.

Proof: (⇒) Suppose that
∑∞

n=1 an cos nx uniformly converges on R, then
let x = 0, then we have

∑∞
n=1 an converges.

(⇐) Suppose that
∑∞

n=1 an converges, then by Weierstrass M-test, we
have proved that

∑∞
n=1 an cos nx uniformly converges on R.
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9.24 Given a convergent series
∑∞

n=1 an. Prove that the Dirichlet series∑∞
n=1 ann

−s converges uniformly on the half-infinite interval 0 ≤ s < +∞.
Use this to prove that lims→0+

∑∞
n=1 ann

−s =
∑∞

n=1 an.

Proof : Let fn (s) =
∑n

k=1 ak and gn (s) = n−s, then by Abel’s test for
uniform convergence, we have proved that the Dirichlet series

∑∞
n=1 ann

−s

converges uniformly on the half-infinite interval 0 ≤ s < +∞. Then by
Theorem 9.2, we know that lims→0+

∑∞
n=1 ann

−s =
∑∞

n=1 an.

9.25 Prove that the series ζ (s) =
∑∞

n=1 n−s converges uniformly on every
half-infinite interval 1 + h ≤ s < +∞, where h > 0. Show that the equation

ζ ′ (s) = −
∞∑

n=1

log n

ns

is valid for each s > 1 and obtain a similar formula for the kth derivative
ζ(k) (s) .

Proof : Since n−s ≤ n−(1+h) for all s ∈ [1 + h,∞), we know that ζ (s) =∑∞
n=1 n−s converges uniformly on every half-infinite interval 1+h ≤ s < +∞

by Weierstrass M-test. Define Tn (s) =
∑n

k=1 k−s, then it is clear that

1. For each n, Tn (s) is differentiable on [1 + h,∞),

2. lim
n→∞

Tn (2) =
π2

6
.

And

3. T ′
n (s) = −

n∑
k=1

log k

ks
converges uniformly on [1 + h,∞)

by Weierstrass M-test. Hence, we have proved that

ζ ′ (s) = −
∞∑

n=1

log n

ns

by Theorem 9.13. By Mathematical Induction, we know that

ζ(k) (s) = (−1)k
∞∑

n=1

(log n)k

ns
.
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0.1 Supplement on some results on Weierstrass M-
test.

1. In the textbook, pp 224-223, there is a surprising result called Space-
filling curve. In addition, note the proof is related with Cantor set in
exercise 7. 32 in the textbook.

2. There exists a continuous function defined on R which is nowhere
differentiable. The reader can see the book, Principles of Mathematical
Analysis by Walter Rudin, pp 154.

Remark: The first example comes from Bolzano in 1834, however, he
did NOT give a proof. In fact, he only found the function f : D → R that
he constructed is not differentiable on D′ (⊆ D) where D′ is countable and
dense in D. Although the function f is the example, but he did not find the
fact.

In 1861, Riemann gave

g (x) =
∞∑

n=1

sin (n2πx)

n2

as an example. However, Reimann did NOT give a proof in his life until
1916, the proof is given by G. Hardy.

In 1860, Weierstrass gave

h (x) =
∞∑

n=1

an cos (bnπx) , b is odd, 0 < a < 1, and ab > 1 +
3π

2
,

until 1875, he gave the proof. The fact surprises the world of Math, and
produces many examples. There are many researches related with it until
now 2003.

Mean Convergence

9.26 Let fn (x) = n3/2xe−n2x2
. Prove that {fn} converges pointwise to 0

on [−1, 1] but that l.i.m.n→∞fn 6= 0 on [−1, 1] .

Proof : It is clear that {fn} converges pointwise to 0 on [−1, 1] , so it
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remains to show that l.i.m.n→∞fn 6= 0 on [−1, 1] . Consider∫ 1

−1

f 2
n (x) dx = 2

∫ 1

0

n3x2e−2n2x2

dx since f 2
n (x) is an even function on [−1, 1]

=
1√
2

∫ √
2n

0

y2e−y2

dy by Change of Variable, let y =
√

2nx

=
1

−2
√

2

∫ √
2n

0

yd
(
e−y2

)
=

1

−2
√

2

[
ye−y2

∣∣∣√2n

0
−
∫ √

2n

0

e−y2

dy

]

→
√

π

4
√

2
since

∫ ∞

0

e−x2

dx =

√
π

2
by Exercise 7. 19.

So, l.i.m.n→∞fn 6= 0 on [−1, 1] .

9.27 Assume that {fn} converges pointwise to f on [a, b] and that
l.i.m.n→∞fn = g on [a, b] . Prove that f = g if both f and g are continuous
on [a, b] .

Proof : Since l.i.m.n→∞fn = g on [a, b] , given εk = 1
2k , there exists a nk

such that ∫ b

a

|fnk
(x)− g (x)|p dx ≤ 1

2k
, where p > 0

Define

hm (x) =
m∑

k=1

∫ x

a

|fnk
(t)− g (t)|p dt,

then

a. hm (x) ↗ as x ↗
b. hm (x) ≤ hm+1 (x)

c. hm (x) ≤ 1 for all m and all x.

So, we obtain hm (x) → h (x) as m →∞, h (x) ↗ as x ↗, and

h (x)− hm (x) =
∞∑

k=m+1

∫ x

a

|fnk
(t)− g (t)|p dt ↗ as x ↗
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which implies that

h (x + t)− h (x)

t
≥ hm (x + t)− hm (x)

t
for all m. (*)

Since h and hm are increasing, we have h′ and h′m exists a.e. on [a, b] . Hence,
by (*)

h′m (x) =
m∑

k=1

|fnk
(t)− g (t)|p ≤ h′ (x) a.e. on [a, b]

which implies that

∞∑
k=1

|fnk
(t)− g (t)|p exists a.e. on [a, b] .

So, fnk
(t) → g (t) a.e. on [a, b] . In addition, fn → f on [a, b] . Then we

conclude that f = g a.e. on [a, b] . Since f and g are continuous on [a, b] , we
have ∫ b

a

|f − g| dx = 0

which implies that f = g on [a, b] . In particular, as p = 2, we have f = g.

Remark: (1) A property is said to hold almost everywhere on a set
S (written: a.e. on S) if it holds everywhere on S except for a set of measurer
zero. Also, see the textbook, pp 254.

(2) In this proof, we use the theorem which states: A monotonic function
h defined on [a, b] , then h is differentiable a.e. on [a, b] . The reader can
see the book, The reader can see the book, Measure and Integral (An
Introduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 113.

(3) There is another proof by using Fatou’s lemma: Let {fk} be a
measruable function defined on a measure set E. If fk ≥ φ a.e. on E and
φ ∈ L (E) , then ∫

E

lim
k→∞

inf fk ≤ lim
k→∞

inf

∫
E

fk.

Proof : It suffices to show that fnk
(t) → g (t) a.e. on [a, b] . Since

l.i.m.n→∞fn = g on [a, b] , and given ε > 0, there exists a nk such that∫ b

a

|fnk
− g|2 dx <

1

2k
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which implies that ∫ b

a

m∑
k=1

|fnk
− g|2 dx <

m∑
k=1

1

2k

which implies that, by Fatou’s lemma,∫ b

a

lim
m→∞

inf
m∑

k=1

|fnk
− g|2 dx ≤ lim

m→∞
inf

∫ b

a

m∑
k=1

|fnk
− g|2 dx

=
∞∑

k=1

∫ b

a

|fnk
− g|2 dx < 1.

That is, ∫ b

a

∞∑
k=1

|fnk
− g|2 dx < 1

which implies that

∞∑
k=1

|fnk
− g|2 < ∞ a.e. on [a, b]

which implies that fnk
→ g a.e. on [a, b] .

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 75.

(4) There is another proof by using Egorov’s Theorem: Let {fk} be a
measurable functions defined on a finite measurable set E with finite limit
function f. Then given ε > 0, there exists a closed set F (⊆ E) , where
|E − F | < ε such that

fk → f uniformly on F.

Proof : If f 6= g on [a, b] , then h := |f − g| 6= 0 on [a, b] . By continuity
of h, there exists a compact subinterval [c, d] such that |f − g| 6= 0. So, there
exists m > 0 such that h = |f − g| ≥ m > 0 on [c, d] . Since∫ b

a

|fn − g|2 dx → 0 as n →∞,
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we have ∫ d

c

|fn − g|2 dx → 0 as n →∞.

then by Egorov’s Theorem, given ε > 0, there exists a closed susbet F of
[c, d] , where |[c, d]− F | < ε such that

fn → f uniformly on F

which implies that

0 = lim
n→∞

∫
F

|fn − g|2 dx

=

∫
F

lim
n→∞

|fn − g|2 dx

=

∫
F

|f − g|2 dx ≥ m2 |F |

which implies that |F | = 0. If we choose ε < d−c, then we get a contradiction.
Therefore, f = g on [a, b] .

Note: The reader can see the book, Measure and Integral (An In-
troduction to Real Analysis) written by Richard L. Wheeden and
Antoni Zygmund, pp 57.

9.28 Let fn (x) = cosn x if 0 ≤ x ≤ π.

(a) Prove that l.i.m.n→∞fn = 0 on [0, π] but that {fn (π)} does not
converge.

Proof : It is clear that {fn (π)} does not converge since fn (π) = (−1)n .
It remains to show that l.i.m.n→∞fn = 0 on [0, π] . Consider cos2n x := gn (x)
on [0, π] , then it is clear that {gn (x)} is boundedly convergent with limit
function

g =

{
0 if x ∈ (0, π)
1 if x = 0 or π

.

Hence, by Arzela’s Theorem,

lim
n→∞

∫ π

0

cos2n xdx =

∫ π

0

g (x) dx = 0.

So, l.i.m.n→∞fn = 0 on [0, π] .
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(b) Prove that {fn} converges pointwise but not uniformly on [0, π/2] .

Proof : Note that each fn (x) is continuous on [0, π/2] , and the limit
function

f =

{
0 if x ∈ (0, π/2]

1 if x = 0
.

Hence, by Theorem9.2, we know that {fn} converges pointwise but not
uniformly on [0, π/2] .

9.29 Let fn (x) = 0 if 0 ≤ x ≤ 1/n or 2/n ≤ x ≤ 1, and let fn (x) = n if
1/n < x < 2/n. Prove that {fn} converges pointwise to 0 on [0, 1] but that
l.i.m.n→∞fn 6= 0 on [0, 1] .

Proof : It is clear that {fn} converges pointwise to 0 on [0, 1] . In order
to show that l.i.m.n→∞fn 6= 0 on [0, 1] , it suffices to note that∫ 1

0

fn (x) dx = 1 for all n.

Hence, l.i.m.n→∞fn 6= 0 on [0, 1] .

Power series

9.30 If r is the radius of convergence if
∑

an (z − z0)
n , where each an 6= 0,

show that

lim
n→∞

inf

∣∣∣∣ an

an+1

∣∣∣∣ ≤ r ≤ lim
n→∞

sup

∣∣∣∣ an

an+1

∣∣∣∣ .
Proof : By Exercise 8.4, we have

1

limn→∞ sup
∣∣∣an+1

an

∣∣∣ ≤ r =
1

limn→∞ sup |an|
1
n

≤ 1

limn→∞ inf
∣∣∣an+1

an

∣∣∣ .
Since

1

limn→∞ sup
∣∣∣an+1

an

∣∣∣ = lim
n→∞

inf

∣∣∣∣ an

an+1

∣∣∣∣
and

1

limn→∞ inf
∣∣∣an+1

an

∣∣∣ = lim
n→∞

sup

∣∣∣∣ an

an+1

∣∣∣∣ ,
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we complete it.

9.31 Given that two power series
∑

anz
n has radius of convergence 2.

Find the radius convergence of each of the following series: In (a) and (b), k
is a fixed positive integer.

(a)
∑∞

n=0 ak
nz

n

Proof : Since

2 =
1

limn→∞ sup |an|1/n
, (*)

we know that the radius of
∑∞

n=0 ak
nz

n is

1

limn→∞ sup |ak
n|

1/n
=

1(
limn→∞ sup |an|1/n

)k
= 2k.

(b)
∑∞

n=0 anz
kn

Proof : Consider

lim
n→∞

sup
∣∣anz

kn
∣∣1/n

= lim
n→∞

sup |an|1/n |z|k < 1

which implies that

|z| <

(
1

limn→∞ sup |an|1/n

)1/k

= 21/k by (*).

So, the radius of
∑∞

n=0 anz
kn is 21/k.

(c)
∑∞

n=0 anz
n2

Proof : Consider

lim sup
∣∣∣anz

n2
∣∣∣1/n

= lim
n→∞

sup |an|1/n |z|n

and claim that the radius of
∑∞

n=0 anz
n2

is 1 as follows.
If |z| < 1, it is clearly seen that the series converges. However, if |z| > 1,

lim
n→∞

sup |an|1/n lim
n→∞

inf |z|n ≤ lim
n→∞

sup |an|1/n |z|n
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which impliest that
lim

n→∞
sup |an|1/n |z|n = +∞.

so, the series diverges. From above, we have proved the claim.

9.32 Given a power series
∑

anx
n whose coefficents are related by an

equation of the form

an + Aan−1 + Ban−2 = 0 (n = 2, 3, ...).

Show that for any x for which the series converges, its sum is

a0 + (a1 + Aa0) x

1 + Ax + Bx2
.

Proof : Consider
∞∑

n=2

(an + Aan−1 + Ban−2) xn = 0

which implies that

∞∑
n=2

anx
n + Ax

∞∑
n=2

an−1x
n−1 + Bx2

∞∑
n=2

an−2x
n−2 = 0

which implies that

∞∑
n=0

anx
n + Ax

∞∑
n=0

anx
n + Bx2

∞∑
n=0

anx
n = a0 + a1x + Aa0x

which implies that

∞∑
n=0

anx
n =

a0 + (a1 + Aa0) x

1 + Ax + Bx2
.

Remark: We prove that for any x for which the series converges, then
1 + Ax + Bx2 6= 0 as follows.

Proof : Consider(
1 + Ax + Bx2

) ∞∑
n=0

anx
n = a0 + (a1 + Aa0) x,
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if x = λ (6= 0) is a root of 1 + Ax + Bx2, and
∑∞

n=0 anλ
n exists, we have

1 + Aλ + Bλ2 = 0 and a0 + (a1 + Aa0) λ = 0.

Note that a1 + Aa0 6= 0, otherwise, a0 = 0 (⇒ a1 = 0) , and therefore, an =
0 for all n. Then there is nothing to prove it. So, put λ = −a0

a1+Aa0
into

1 + Aλ + Bλ2 = 0, we then have

a2
1 = a0a2.

Note that a0 6= 0, otherwise, a1 = 0 and a2 = 0. Similarly, a1 6= 0, otherwise,
we will obtain a trivial thing. Hence, we may assume that all an 6= 0 for all
n. So,

a2
2 = a1a3.

And it is easy to check that an = a0
1

λn for all n ≥ N. Therefore,
∑

anλ
n =∑

a0 diverges. So, for any x for whcih the series converges, we have 1+Ax+
Bx2 6= 0.

9.33 Let f (x) = e−1/x2
if x 6= 0, f (0) = 0.

(a) Show that f (n) (0) exists for all n ≥ 1.

Proof : By Exercise 5.4, we complete it.

(b) Show that the Taylor’s series about 0 generated by f converges ev-
erywhere on R but that it represents f only at the origin.

Proof : The Taylor’s series about 0 generated by f is

∞∑
n=0

f (n) (0)

n!
xn =

∞∑
n=0

0xn = 0.

So, it converges everywhere on R but that it represents f only at the origin.

Remark: It is an important example to tell us that even for functions
f ∈ C∞ (R) , the Taylor’s series about c generated by f may NOT represent
f on some open interval. Also see the textbook, pp 241.

9.34 Show that the binomial series (1 + x)α =
∑∞

n=0 (α
n) xn exhibits the

following behavior at the points x = ±1.

(a) If x = −1, the series converges for α ≥ 0 and diverges for α < 0.
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Proof : If x = −1, we consider three cases: (i) α < 0, (ii) α = 0, and (iii)
α > 0.

(i) As α < 0, then

∞∑
n=0

(α
n) (−1)n =

∞∑
n=0

(−1)n α (α− 1) · · · (α− n + 1)

n!
,

say an = (−1)n α(α−1)···(α−n+1)
n!

, then an ≥ 0 for all n, and

an

1/n
=
−α (−α + 1) · · · (−α + n− 1)

(n− 1)!
≥ −α > 0 for all n.

Hence,
∑∞

n=0 (α
n) (−1)n diverges.

(ii) As α = 0, then the series is clearly convergent.
(iii) As α > 0, define an = n (−1)n (α

n) , then

an+1

an

=
n− α

n
≥ 1 if n ≥ [α] + 1. (*)

It means that an > 0 for all n ≥ [α]+1 or an < 0 for all n ≥ [α]+1. Without
loss of generality, we consider an > 0 for all n ≥ [α] + 1 as follows.

Note that (*) tells us that

an > an+1 > 0 ⇒ lim
n→∞

an exists.

and
an − an+1 = α (−1)n (α

n) .

So,
m∑

n=[α]+1

(−1)n (α
n) =

1

α

m∑
n=[α]+1

(an − an+1) .

By Theorem 8.10, we have proved the convergence of the series
∑∞

n=0 (α
n) (−1)n .

(b) If x = 1, the series diverges for α ≤ −1, converges conditionally for α
in the interval −1 < α < 0, and converges absolutely for α ≥ 0.

Proof : If x = 1, we consider four cases as follows: (i) α ≤ −1, (ii)
−1 < −α < 0, (iii) α = 0, and (iv) α > 0 :

(i) As α ≤ −1, say an = α(α−1)···(α−n+1)
n!

. Then

|an| =
−α (−α + 1) · · · (−α + n− 1)

n!
≥ 1 for all n.

32



So, the series diverges.
(ii) As −1 < α < 0, say an = α(α−1)···(α−n+1)

n!
. Then an = (−1)n bn, where

bn =
−α (−α + 1) · · · (−α + n− 1)

n!
> 0.

with
bn+1

bn

=
n− α

n
< 1 since − 1 < −α < 0

which implies that {bn} is decreasing with limit L. So, if we can show L = 0,
then

∑
an converges by Theorem 8.16.

Rewrite

bn =
n∏

k=1

(
1− α + 1

k

)
and since

∑
α+1

k
diverges, then by Theroem 8.55, we have proved L = 0.

In order to show the convergence is conditionally, it suffices to show the
divergence of

∑
bn. The fact follows from

bn

1/n
=
−α (−α + 1) · · · (−α + n− 1)

(n− 1)!
≥ −α > 0.

(iii) As α = 0, it is clearly that the series converges absolutely.
(iv) As α > 0, we consider

∑
|(α

n)| as follows. Define an = |(α
n)| , then

an+1

an

=
n− α

n + 1
< 1 if n ≥ [α] + 1.

It implies that nan − (n + 1) an = αan and (n + 1) an+1 < nan. So, by
Theroem 8.10, ∑

an =
1

α

∑
nan − (n + 1) an

converges since limn→∞ nan exists. So, we have proved that the series con-
verges absolutely.

9.35 Show that
∑

anx
n converges uniformly on [0, 1] if

∑
an converges.

Use this fact to give another proof of Abel’s limit theorem.

Proof : Define fn (x) = an on [0, 1] , then it is clear that
∑

fn (x) con-
verges uniformly on [0, 1] . In addition, let gn (x) = xn, then gn (x) is unifom-
rly bouned with gn+1 (x) ≤ gn (x) . So, by Abel’s test for uniform convergence,
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∑
anx

n converges uniformly on [0, 1] . Now, we give another proof of Abel’s
Limit Theorem as follows. Note that each term of

∑
anx

n is continuous
on [0, 1] and the convergence is uniformly on [0, 1] , so by Theorem 9.2, the
power series is continuous on [0, 1] . That is, we have proved Abel’s Limit
Theorem:

lim
x→1−

∑
anx

n =
∑

an.

9.36 If each an > 0 and
∑

an diverges, show that
∑

anx
n → +∞ as

x → 1−. (Assume
∑

anx
n converges for |x| < 1.)

Proof : Given M > 0, if we can find a y near 1 from the left such that∑
any

n ≥ M, then for y ≤ x < 1, we have

M ≤
∑

any
n ≤

∑
anx

n.

That is, limx→1−
∑

anx
n = +∞.

Since
∑

an diverges, there is a positive integer p such that

p∑
k=1

ak ≥ 2M > M. (*)

Define fn (x) =
∑n

k=1 akx
k, then by continuity of each fn, given 0 < ε (< M) ,

there exists a δn > 0 such that as x ∈ [δn, 1), we have

n∑
k=1

ak − ε <
n∑

k=1

akx
k <

n∑
k=1

ak + ε (**)

By (*) and (**), we proved that as y = δp

M ≤
p∑

k=1

ak − ε <

p∑
k=1

aky
k.

Hence, we have proved it.

9.37 If each an > 0 and if limx→1−
∑

anx
n exists and equals A, prove

that
∑

an converges and has the sum A. (Compare with Theorem 9.33.)

Proof : By Exercise 9.36, we have proved the part,
∑

an converges. In
order to show

∑
an = A, we apply Abel’s Limit Theorem to complete it.
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9.38 For each real t, define ft (x) = xext/ (ex − 1) if x ∈ R, x 6= 0,
ft (0) = 1.

(a) Show that there is a disk B (0; δ) in which ft is represented by a power
series in x.

Proof : First, we note that ex−1
x

=
∑∞

n=0
xn

(n+1)!
:= p (x) , then p (0) = 1 6=

0. So, by Theorem 9. 26, there exists a disk B (0; δ) in which the reciprocal
of p has a power series exapnsion of the form

1

p (x)
=

∞∑
n=0

qnx
n.

So, as x ∈ B (0; δ) by Theorem 9.24.

ft (x) = xext/ (ex − 1)

=

(
∞∑

n=0

(xt)n

n!

)(
∞∑

n=0

xn

(n + 1)!

)

=
∞∑

n=0

rn (t) xn.

(b) Define P0 (t) , P1 (t) , P2 (t) , ..., by the equation

ft (x) =
∞∑

n=0

Pn (t)
xn

n!
, if x ∈ B (0; δ) ,

and use the identity

∞∑
n=0

Pn (t)
xn

n!
= etx

∞∑
n=0

Pn (0)
xn

n!

to prove that Pn (t) =
∑n

k=0 (n
k) Pk (0) tn−k.

Proof : Since

ft (x) =
∞∑

n=0

Pn (t)
xn

n!
= etx x

ex − 1
,
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and

f0 (x) =
∞∑

n=0

Pn (0)
xn

n!
=

x

ex − 1
.

So, we have the identity

∞∑
n=0

Pn (t)
xn

n!
= etx

∞∑
n=0

Pn (0)
xn

n!
.

Use the identity with etx =
∑∞

n=0
tn

n!
xn, then we obtain

Pn (t)

n!
=

n∑
k=0

tn−k

(n− k)!

Pk (0)

k!

=
1

n!

n∑
k=0

(n
k) Pk (0) tn−k

which implies that

Pn (t) =
n∑

k=0

(n
k) Pk (0) tn−k.

This shows that each function Pn is a polynomial. There are the Bernoulli
polynomials. The numbers Bn = Pn (0) (n = 0, 1, 2, ...) are called the
Bernoulli numbers. Derive the following further properties:

(c) B0 = 1, B1 = −1
2
,
∑n−1

k=0 (n
k) Bk = 0, if n = 2, 3, ...

Proof : Since 1 = p(x)
p(x)

, where p (x) :=
∑∞

n=0
xn

(n+1)!
, and 1

p(x)
:=
∑∞

n=0 Pn (0) xn

n!
.

So,

1 = p (x)
1

p (x)

=
∞∑

n=0

xn

(n + 1)!

∞∑
n=0

Pn (0)
xn

n!

=
∞∑

n=0

Cnx
n

where

Cn =
1

(n + 1)!

n∑
k=0

(
n+1
k

)
Pk (0) .
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So,
B0 = P0 (0) = C0 = 1,

B1 = P1 (0) =
C1 − P0 (0)

2
= −1

2
, by C1 = 0

and note that Cn = 0 for all n ≥ 1, we have

0 = Cn−1

=
1

n!

n−1∑
k=0

(n
k) Pk (0)

=
1

n!

n−1∑
k=0

(n
k) Bk for all n ≥ 2.

(d) P ′
n (t) = nPn−1 (t) , if n = 1, 2, ...

Proof : Since

P ′
n (t) =

n∑
k=0

(n
k) Pk (0) (n− k) tn−k−1

=
n−1∑
k=0

(n
k) Pk (0) (n− k) tn−k−1

=
n−1∑
k=0

n! (n− k)

k! (n− k)!
Pk (0) t(n−1)−k

=
n−1∑
k=0

n
(n− 1)!

k! (n− 1− k)!
Pk (0) t(n−1)−k

= n
n−1∑
k=0

(
n−1
k

)
Pk (0) t(n−1)−k

= nPn−1 (t) if n = 1, 2, ...

(e) Pn (t + 1)− Pn (t) = ntn−1 if n = 1, 2, ...
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Proof : Consider

ft+1 (x)− ft (x) =
∞∑

n=0

[Pn (t + 1)− Pn (t)]
xn

n!
by (b)

= xext by ft (x) = xext/ (ex − 1)

=
∞∑

n=0

(n + 1) tn
xn+1

(n + 1)!
,

so as n = 1, 2, ..., we have

Pn (t + 1)− Pn (t) = ntn−1.

(f) Pn (1− t) = (−1)n Pn (t)

Proof : Note that
ft (−x) = f1−t (x) ,

so we have
∞∑

n=0

(−1)n Pn (t)
xn

n!
=

∞∑
n=0

Pn (1− t)
xn

n!
.

Hence, Pn (1− t) = (−1)n Pn (t) .

(g) B2n+1 = 0 if n = 1, 2, ...

Proof : With help of (e) and (f), let t = 0 and n = 2k +1, then it is clear
that B2k+1 = 0 if k = 1, 2, ...

(h) 1n + 2n + ... + (k − 1)n = Pn+1(k)−Pn+1(0)
n+1

(n = 2, 3, ...)

Proof : With help of (e), we know that

Pn+1 (t + 1)− Pn+1 (t)

n + 1
= tn

which implies that

1n + 2n + ... + (k − 1)n =
Pn+1 (k)− Pn+1 (0)

n + 1
(n = 2, 3, ...)
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Remark: (1) The reader can see the book, Infinite Series by Chao
Wen-Min, pp 355-366. (Chinese Version)

(2) There are some special polynomials worth studying, such as Legen-
gre Polynomials. The reader can see the book, Essentials of Ordinary
Differential Equations by Ravi P. Agarwal and Ramesh C. Gupta.
pp 305-312.

(3) The part (h) tells us one formula to calculte the value of the finite
series

∑m
k=1 kn. There is an interesting story from the mail that Fermat,

pierre de (1601-1665) sent to Blaise Pascal (1623-1662). Fermat
used the Mathematical Induction to show that

n∑
k=1

k (k + 1) · · · (k + p) =
n (n + 1) · · · (n + p + 1)

p + 2
. (*)

In terms of (*), we can obtain another formula on
∑m

k=1 kn.
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