MATH 131C: HOMEWORK 3 SOLUTIONS

(From Rudin, Chapter 9)

Problem 3:
Suppose Ax = Ay. Then A(x—y)=0 =x=y. g

Problem 4:

These results follow immediately from the definition of a vector space and linearity. You don’t have
to verify all the vector space axioms; since the range and kernel are subsets of vector spaces, it suffices
to show they are subspaces (i.e. that they are closed under addition and scalar multiplication).

Problem 5:
Given A € L(R™,R), let y4 = (Aeq, Aes, ..., Ae,) (where {eq,...,e,} is the standard basis for R™).
By linearity, Ax = x -y 4 for all x € R™. The uniqueness of y 4 is immediate.

Now by Cauchy-Schwarz, we have

|A|l = sup x-ya < sup [x|[ya| = [yal
Ix|<1 Ix|<1

But if x = g—;“, we have |x| =1 and Ax = |y 4], so ||4|| > |yal- So [|A| = |yal. o

Problem 6:

For (z,y) # (0,0), we can compute (D; f)(x,y) via the usual differentiation formulas just as in Math
32A or the like. At (0,0), we consider the definition of partial derivatives:
f(0+h,0) — £(0,0) 0-0

S

(D1 )(0.0) = Jim
Similarly, (D2£)(0,0) = 0. So the partial derivatives of f exist everywhere in R2.

However, f is not continuous at (0,0), since f(a,a) = 3 for all @ € R. (So there is no neighbor-
hood of the origin on which |f(z,y) — f(0,0)| = |f(z,y)| < 5). O

Problem 7:

Fix x € E and € > 0. Since the partial derivatives of f are bounded in E (say by M), the Mean
Value Theorem implies that | f(a+ he;) — f(a)] < hM for all a € E and all h € R such that a+ he; € E
(1 <j <n). Now choose § < 57 s.t. Bs(x) C E/ (we can choose such a § since E is open).

Now pick an arbitrary y in Bs(x). Write y —x = > ] hje;, vo = 0, and vy, = Zlf hje;. (Note
v, =Yy — X). It’s pretty easy to see that h; < ¢ for all j. Now we have



lFy) x| = +(y=x)) = f(®)]

[f(x+v;) = fx+ Vi)l
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where we’ve used the Mean Value Theorem result from the first paragraph. So |y — x| < §
= |f(y) — f(x)] <e, and f is continuous at x. g

Problem 8:
Let x = (21,...,%n), and let E; be the j-cross-section of E through x; i.e.,

Ej :{{EE]R| (1’1,...,$j71,$,$j+1,...,$n) GE}

Now define f; : E; — R by f;(z) = f(z1,...,2j-1,2%,%j41,...,&y). Since f has a local maximum at x,
f; has a local maximum at z; € Ej; for all j. By single-variable calculus, this implies f]’(mj) = 0 for all
j. But since fi(z;) = D; f(x) (VERIFY!), this implies f’(x) = 0 by Theorem 9.17 in Rudin. g

Problem 9:

To show f is constant, fix some x¢ € E and consider the set A = {x € F | f(x) = f(x0)}. We want
to show that A = F, but since E is connected and A is nonempty, it suffices to show that A is both open
and closed in the relative topology on E. Since F is open, the relative topology coincides with the usual
topology on R”.

First we show A is open. Take any x € A. Since E is open, there is an open ball B,(x) C E.
Now B, (x) is convex, so Theorem 9.19 (or its corollary) in Rudin implies that f is constant on B, (x).
So, since x € A, this implies B,(x) C A. So A is open.

To show A is closed, use an exactly analogous argument to show that A° is open. So A is both
closed and open, which implies that A = E.

Problem 10:
(This whole problem is easier to think about if you draw a picture in two dimensions.) Fix any

X = (mgo), . ,x%o)) € E. We want to show that for all x = (ml,xéo), . ,xSL(’)) € E, f(x) = f(x0). As
in Problem 8, define f(z) = f(z, 2", ..., 2{"). Note that f{(z) = (D1 f)(z, 25", ... 2{"), so fi(z) =0

for all z at which f; is defined. Now take any z; s.t. (xl,xéo), e ,xgo)) € E. By convexity, we have
(2,2, 20) € E for all 2% < 2 < 21, so fi is defined for all such z. Since f/(z) = 0 for all these



x, the Mean Value Theorem shows that f; (33(10)) = f1(z1). So f(xo) = f(a1, xéo), ce CL‘%O)), as desired. g

Note that the proof just given only required that E be “convex in the first variable”; i.e., we can
relax the convexity condition to

(a,29,...,2n) € E and (b,22,...,2,) € E = (x,29,...,2,) EE V a<z<b.

But, as noted, the proof doesn’t work for arbitrary connected regions. Draw the union of the following
three regions in R?:
A={(z,y)| -2<z<2,0<y<1}

B:{(l',y)‘ *2<£E<71, 72<y§0}
C={(z,y)|l<zx<2 —2<y<0}

Take
0, (z,y)eA
flx,y)=¢ -y, (z,y)eB
y, (z,y)eC

Then clearly g—i = 0 on the union of these regions, but f does not depend only on y. The problem is
that we can’t apply the Mean Value Theorem because of the “gap” between B and C.



