MATH 131C: HOMEWORK 5 SOLUTIONS

(From Rudin, Chapter 9)

Problem 18:

(a) If we define f(x,y) = (u(x,y),v(x,y)), then the range of f is R%. The slickest way to see this
is to note that if z = x + iy, then u = R(22) and v = 3(2?) (where ® and  denote real and imagi-
nary parts, respectively). Then since the map z — 22 maps C onto C, it follows that the range of f is

all of R2. If you don’t want to appeal to complex variables, you can also show this by brute-force algebra.

(b) The Jacobian of f is in fact 0 at the origin. However, it is nonzero at all other points of R?, so f is
one-to-one on a neighborhood of every point of R?\ {(0,0)}. But it’s easily seen that f(z,y) = f(—z, —y)
for all (z,y), so f is not injective on R?\ {(0,0)}. (This is the same as the fact that z — 22 is not injective

on C\ {0}.)

(¢) Once again, this is much easier if you appeal to the complex-variable interpretation of f, so
identify R? with C. Since u + iv = (x + iy)?, we can write

T +1y = Vu+iv,

where /™ denotes a branch of the square root function defined in a neighborhood of u +iv (note that we

can’t find such a branch if u = v = 0). In a neighborhood of (0,7/3), we can take the standard branch
of the square root, which is represented most easily in polar form (recall e?’ = cos@ + isin 6):

Vel = \/Fei% .

Using some trig identities (viz., the half-angle formulas), we can rewrite this in the upper half-plane as:
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where the square roots on the right hand side are just the usual square roots of positive real numbers.
Rewriting this in R2-notation:

l(u’v)<\/w+u’\/¢w;z_u>.

f

This is a good way to brush up on playing with complex numbers. I'll let you compute the derivatives
in question; it’s just calculus.

(d ) The images under f of lines parallel to the coordinate axes are parabolas, unless of course
we’re considering the coordinate axes themselves, in which case we get we get the nonnegative u-axis as
the image of the x-axis and the nonpositive u-axis as the image of the y-axis.

Problem 19:
First subtract the second equation from the first and compare with the third to see that u must be



0 or 3. To show that we can solve for x, y, u, in terms of z, apply the Implicit Function Theorem:
Let f(x,y,z,u) = 3z +y — 2 +u?, 0 —y+ 22 +u, 22 + 2y — 32 + 2u) = (f1, f2, f3). Then define
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Then detA; . = 8u — 12 # 0 since © = 0 or u = 3, so the Implicit Function Theorem gives the desired
result. The next two claims follow by analogous reasoning.
Finally, to show that we cannot solve for x, y, z in terms of u, note that the system can be expressed

as -

T —u?
A Yy = —Uu )

z —2u |

where _
3 1 -1
A=|1 -1 2

2 2 =3 |

But detA = 0, so the system cannot be solved.

Problem 21:

(a) Compute Vf = 6(2% — x,9% +y). Then clearly the gradient is zero at precisely the points (0, 0),
(1,0), (0,—1), (1,-1). (1,0) is a local minimum and (0, —1) is a local maximum, while the other two are
saddle points. This can easily be seen either by examining the Hessian of f or by examining f directly
near the points in question.

(b) We'll first try to describe the set S. With some cleverness, you can notice that f(z, —z) = 0 for
all z € R. This should suggest that we can factor f as

f(z,y) = (z +y)P(z,y),
where P is a polynomial. P turns out to be
P(x,y) = 22% — 3z — 2xy + 3y + 2y°.

The set of zeroes of P is an ellipse; so that S is the union of this ellipse and the line y=—=. (Try plotting
this in Mathematica or some other such program.)

Now by the Implicit Function Theorem, the only candidates for points that have no neighborhoods
in which f(z,y) = 0 can be solved for y in terms of = (or vice versa) will be points at which Dy f =0
and Daof =0,ie. Vf=0. (This is a NOT(p OR q) <= (NOT p) AND (NOT q) thing). Using part
(a), it’s easy to see that the only points of S at which Vf = 0 are (0,0) and (1,—1). These both lie on
the line y =—x and the ellipse P(z,y) = 0, so the curves “cross” at these points. If you examine a plot
of the points in S, it’s pretty clear that it is neither a graph of y as a function of = nor a graph of = as
a function of y. So these are the points we’re looking for. As an example of how to be more rigorous
about this, we’ll consider the point (0,0). Pick a positive ¢ < 1. Then for any z¢ € (—¢,¢), the point
(xo, —o) satisfies f(z,y) = 0. But there is also a yg s.t. P(xo,y0) =0 = f(zo,yo) = 0. It’s pretty easy



to see that this yg must have the same sign as zg, so yo # —z¢. So, in short, we can’t solve for y in
terms of x in some small neighborhood of the (0,0). An analogous argument shows we can’t solve for
x in terms of y, and the point (1, —1) is treated similarly. (I realize this is probably confusing; it really
helps to draw a picture).

Problem 24:
Compute the Jacobian matrix of f:

[ (2,y)] =

1 4> —4a2y

(2172 + yg)g y3 _ x2y (ES _ y2x
Noticing that the first column is =% times the second, we see that f’(x,y) has rank 1. The range of f is
an ellipse, as you can see from the relation

fF+afi=1

Problem 25:

(a) By the hint, SA is a projection in R”. The z; used to define S are linearly independent (VER-
IFY!), so S is injective. Then it’s immediate that A4 (SA) = A4 (A). Finally, SAz; = z; so that
H(SA) =Z%(S), since clearly Z(SA) C Z(S5).

(b) This is immediate from the Rank-Nullity Theorem, but we can do the problem as Rudin suggests
without using this result. We’ll use the following result from the proof of 9.31 (b) in Rudin:

P a projection in R" = dim.4#(P) + dimZ(P) = n.

Since we noted in part (a) that the z; are linearly independent, we know that rank(S) = r = rank(A4).
The desired result now follows immediately from part (a).

Problem 28:

To show ¢ is continuous, it suffices to consider points (z,t) with ¢ > 0 since ¢ is odd in ¢. The
following is just a sketch of the continuity argument; I expect a bit more detail on the actual homeworks.
First consider a point (xg, tg) with 0 < zg < 1/fg. Argue that you can find an € > 0 such that 0 < z < NG
for all (z,y) € B-((z0,y0)). Then p(z,t) = = on this ball, and the continuity follows immediately. Treat
the cases vty < * < 2v/tg and 2y/tg < x similarly. Now consider a point of the form (y/tg,%9) (i.e.
x = \/Ty). Since the functions o1 (z,t) = 2 and @a(x,t) = —x + 24/t are both continuous, choose § > 0
so that both |¢1(x,t) — p1(Vto,t0)| < € and |pa2(z,t) — p2(v/To, to)| < € for a given € > 0. This § will
“work” for ¢ in the usual sense. Treat the other “boundary” cases similarly.

Showing that (Da¢)(x,0) = 0 for all z is routine; just use the definition of partial derivatives.

Now [t| < 3 = 24/]t] < 1, so we have

ft) = /1 o(x,t) de = /01 o(x,t) de = sgn(t) {/Oﬁx dx + /\j»tl(—x—i-%/m) dx| =t,
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where
-1, t<0
sgn(t) = 0, t=
1, t>0.



So this implies f’(t) =1 for |¢| < 1, and hence

1= 70 # [ (D)0 de =0,

This suggests you should take care when differentiating under the integral sign.



