MATH 131C: HOMEWORK 5 SOLUTIONS

(From Rudin, Chapter 9)

Problem 18:

(a) If we define f(x, y) = (u(x, y), v(x, y)), then the range of f is \mathbb{R}^2 . The slickest way to see this is to note that if z = x + iy, then $u = \Re(z^2)$ and $v = \Im(z^2)$ (where \Re and \Im denote real and imaginary parts, respectively). Then since the map $z \mapsto z^2$ maps \mathbb{C} onto \mathbb{C} , it follows that the range of f is all of \mathbb{R}^2 . If you don't want to appeal to complex variables, you can also show this by brute-force algebra.

(b) The Jacobian of f is in fact 0 at the origin. However, it is nonzero at all other points of \mathbb{R}^2 , so f is one-to-one on a neighborhood of every point of $\mathbb{R}^2 \setminus \{(0,0)\}$. But it's easily seen that f(x,y) = f(-x,-y) for all (x, y), so f is not injective on $\mathbb{R}^2 \setminus \{(0,0)\}$. (This is the same as the fact that $z \mapsto z^2$ is not injective on $\mathbb{C} \setminus \{0\}$.)

(c) Once again, this is much easier if you appeal to the complex-variable interpretation of f, so identify \mathbb{R}^2 with \mathbb{C} . Since $u + iv = (x + iy)^2$, we can write

$$x + iy = \sqrt{u + iv},$$

where $\sqrt{-}$ denotes a branch of the square root function defined in a neighborhood of u + iv (note that we can't find such a branch if u = v = 0). In a neighborhood of $(0, \pi/3)$, we can take the standard branch of the square root, which is represented most easily in polar form (recall $e^{i\theta} = \cos \theta + i \sin \theta$):

$$\sqrt{re^{i\theta}} = \sqrt{r}e^{i\frac{\theta}{2}}.$$

Using some trig identities (viz., the half-angle formulas), we can rewrite this in the upper half-plane as:

$$\sqrt{u+iv} = \sqrt{\frac{\sqrt{u^2+v^2}+u}{2}} + i\sqrt{\frac{\sqrt{u^2+v^2}-u}{2}} ,$$

where the square roots on the right hand side are just the usual square roots of positive real numbers. Rewriting this in \mathbb{R}^2 -notation:

$$f^{-1}(u,v) = \left(\sqrt{\frac{\sqrt{u^2 + v^2} + u}{2}}, \sqrt{\frac{\sqrt{u^2 + v^2} - u}{2}}\right).$$

This is a good way to brush up on playing with complex numbers. I'll let you compute the derivatives in question; it's just calculus.

(d) The images under f of lines parallel to the coordinate axes are parabolas, unless of course we're considering the coordinate axes themselves, in which case we get we get the nonnegative u-axis as the image of the x-axis and the nonpositive u-axis as the image of the y-axis.

Problem 19:

First subtract the second equation from the first and compare with the third to see that u must be

0 or 3. To show that we can solve for x, y, u, in terms of z, apply the Implicit Function Theorem:

Let $f(x, y, z, u) = (3x + y - z + u^2, x - y + 2z + u, 2x + 2y - 3z + 2u) = (f_1, f_2, f_3)$. Then define

$$A_{x,y,u} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial u} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial u} \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2u \\ 1 & -1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$

Then det $A_{x,y,u} = 8u - 12 \neq 0$ since u = 0 or u = 3, so the Implicit Function Theorem gives the desired result. The next two claims follow by analogous reasoning.

Finally, to show that we cannot solve for x, y, z in terms of u, note that the system can be expressed as

$$A\begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} -u^2\\ -u\\ -2u \end{bmatrix},$$
$$A = \begin{bmatrix} 3 & 1 & -1\\ 1 & -1 & 2\\ 2 & 2 & -3 \end{bmatrix}.$$

where

But det A = 0, so the system cannot be solved.

Problem 21:

(a) Compute $\nabla f = 6(x^2 - x, y^2 + y)$. Then clearly the gradient is zero at precisely the points (0,0), (1,0), (0,-1), (1,-1). (1,0) is a local minimum and (0,-1) is a local maximum, while the other two are saddle points. This can easily be seen either by examining the Hessian of f or by examining f directly near the points in question.

(b) We'll first try to describe the set S. With some cleverness, you can notice that f(x, -x) = 0 for all $x \in \mathbb{R}$. This should suggest that we can factor f as

$$f(x,y) = (x+y)P(x,y),$$

where P is a polynomial. P turns out to be

$$P(x,y) = 2x^2 - 3x - 2xy + 3y + 2y^2.$$

The set of zeroes of P is an ellipse; so that S is the union of this ellipse and the line y = -x. (Try plotting this in Mathematica or some other such program.)

Now by the Implicit Function Theorem, the only candidates for points that have no neighborhoods in which f(x, y) = 0 can be solved for y in terms of x (or vice versa) will be points at which $D_1 f = 0$ and $D_2 f = 0$, i.e. $\nabla f = 0$. (This is a NOT(p OR q) \iff (NOT p) AND (NOT q) thing). Using part (a), it's easy to see that the only points of S at which $\nabla f = 0$ are (0,0) and (1,-1). These both lie on the line y = -x and the ellipse P(x, y) = 0, so the curves "cross" at these points. If you examine a plot of the points in S, it's pretty clear that it is neither a graph of y as a function of x nor a graph of x as a function of y. So these are the points we're looking for. As an example of how to be more rigorous about this, we'll consider the point (0,0). Pick a positive $\varepsilon \ll 1$. Then for any $x_0 \in (-\varepsilon, \varepsilon)$, the point $(x_0, -x_0)$ satisfies f(x, y) = 0. But there is also a y_0 s.t. $P(x_0, y_0) = 0 \Rightarrow f(x_0, y_0) = 0$. It's pretty easy to see that this y_0 must have the same sign as x_0 , so $y_0 \neq -x_0$. So, in short, we can't solve for y in terms of x in some small neighborhood of the (0,0). An analogous argument shows we can't solve for x in terms of y, and the point (1,-1) is treated similarly. (I realize this is probably confusing; it really helps to draw a picture).

Problem 24:

Compute the Jacobian matrix of f:

$$[\mathbf{f}'(x,y)] = \frac{1}{(x^2+y^2)^2} \begin{bmatrix} 4xy^2 & -4x^2y \\ y^3 - x^2y & x^3 - y^2x \end{bmatrix}.$$

Noticing that the first column is $\frac{-x}{y}$ times the second, we see that $\mathbf{f}'(x, y)$ has rank 1. The range of \mathbf{f} is an ellipse, as you can see from the relation

$$f_1^2 + 4f_2^2 = 1.$$

Problem 25:

(a) By the hint, SA is a projection in \mathbb{R}^n . The \mathbf{z}_j used to define S are linearly independent (VER-IFY!), so S is injective. Then it's immediate that $\mathscr{N}(SA) = \mathscr{N}(A)$. Finally, $SA\mathbf{z}_j = \mathbf{z}_j$ so that $\mathscr{R}(SA) = \mathscr{R}(S)$, since clearly $\mathscr{R}(SA) \subseteq \mathscr{R}(S)$.

(b) This is immediate from the Rank-Nullity Theorem, but we can do the problem as Rudin suggests without using this result. We'll use the following result from the proof of 9.31 (b) in Rudin:

P a projection in $\mathbb{R}^n \implies \dim \mathcal{N}(P) + \dim \mathscr{R}(P) = n.$

Since we noted in part (a) that the \mathbf{z}_j are linearly independent, we know that $\operatorname{rank}(S) = r = \operatorname{rank}(A)$. The desired result now follows immediately from part (a).

Problem 28:

To show φ is continuous, it suffices to consider points (x,t) with $t \ge 0$ since φ is odd in t. The following is just a sketch of the continuity argument; I expect a bit more detail on the actual homeworks. First consider a point (x_0, t_0) with $0 < x_0 < \sqrt{t_0}$. Argue that you can find an $\varepsilon > 0$ such that $0 < x < \sqrt{t}$ for all $(x, y) \in B_{\varepsilon}((x_0, y_0))$. Then $\varphi(x, t) = x$ on this ball, and the continuity follows immediately. Treat the cases $\sqrt{t_0} < x < 2\sqrt{t_0}$ and $2\sqrt{t_0} < x$ similarly. Now consider a point of the form $(\sqrt{t_0}, t_0)$ (i.e. $x = \sqrt{t_0}$). Since the functions $\varphi_1(x, t) = x$ and $\varphi_2(x, t) = -x + 2\sqrt{t}$ are both continuous, choose $\delta > 0$ so that both $|\varphi_1(x, t) - \varphi_1(\sqrt{t_0}, t_0)| < \varepsilon$ and $|\varphi_2(x, t) - \varphi_2(\sqrt{t_0}, t_0)| < \varepsilon$ for a given $\varepsilon > 0$. This δ will "work" for φ in the usual sense. Treat the other "boundary" cases similarly.

Showing that $(D_2\varphi)(x,0) = 0$ for all x is routine; just use the definition of partial derivatives. Now $|t| < \frac{1}{4} \Rightarrow 2\sqrt{|t|} < 1$, so we have

$$f(t) = \int_{-1}^{1} \varphi(x,t) \, dx = \int_{0}^{1} \varphi(x,t) \, dx = \operatorname{sgn}(t) \left[\int_{0}^{\sqrt{|t|}} x \, dx + \int_{\sqrt{|t|}}^{2\sqrt{|t|}} (-x + 2\sqrt{|t|}) \, dx \right] = t,$$

where

$$\operatorname{sgn}(t) = \begin{cases} -1, & t < 0 \\ 0, & t = 0 \\ 1, & t > 0. \end{cases}$$

So this implies f'(t) = 1 for $|t| < \frac{1}{4}$, and hence

$$1 = f'(0) \neq \int_{-1}^{1} (D_2 \varphi)(x, 0) \, dx = 0.$$

This suggests you should take care when differentiating under the integral sign.