Homework 8

Revised version of solutions by Aja Johnson

November 2, 2005

1

Theorem. Let f be defined for all real x and suppose that $|f(x)-f(y)| \le (x-y)^2$ for all real x and y. Then f is constant.

Proof. Algebraically manipulating the given inequality yields for all $x \neq y$

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le |x - y|$$
, or equivalently

$$-|x-y| \leq \frac{f(x)-f(y)}{x-y} \leq |x-y|.$$

Since $\lim_{y\to x}|x-y|=0$, the Squeeze Theorem implies f'(x)=0 for all $x\in\mathbb{R}$. By Theorem 5.11(b), f is constant over \mathbb{R} .

3

Theorem. Suppose g is a real function on \mathbb{R} , with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$ and define $f(x) = x + \epsilon g(x)$. Then f is one-to-one if ϵ is small enough.

Proof. Take $0 < \epsilon < \frac{1}{M}$. Since $g'(x) \ge -M$ for all x, we conclude that $f'(x) = 1 + \epsilon g'(x) > 0$ for all $x \in \mathbb{R}$ whence f is strictly increasing and hence one-to-one.

4

Theorem. If $C_0 + \frac{C_1}{2} + \cdots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$, where C_0, \ldots, C_n are real constants, then the equation $C_0 + C_1x + \cdots + C_{n-1}x^{n-1} + C_nx^n = 0$ has at least one real root between 0 and 1.

Proof. Let $f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_{n-1}}{n} x^n + \frac{C_n}{n+1} x^{n+1}$. Since f is a polynomial, it is continuous and differentiable. Since f(0) = f(1) = 0 by hypothesis, the mean value theorem guarantees that the equation f'(x) = 0 has a solution in the interval (0,1), as desired.

Theorem. Suppose that f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to \infty$. Let g(x) = f(x+1) - f(x). Then $g(x) \to 0$ as $x \to \infty$.

Proof. Let $\epsilon > 0$. Apply the hypothesis to find a number N such that $|f'(t)| < \epsilon$ whenever t > N.

Now suppose $x \ge N$ and apply the Mean Value Theorem to find a number $t \in (x, x+1)$ such that g(x) = f(x+1) - f(x) = g'(t). Since t > N, we have $|g(x)| = |f'(t)| < \epsilon$.

7

Theorem. Suppose that f'(x), g'(x) exist, $g'(x) \neq 0$, and f(x) = g(x) = 0. Then $\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$.

Proof. Since $g'(x) \neq 0$, we have $g(t) \neq g(x)$ for t sufficiently close to but unequal to x. For such t, we have

$$\frac{f(t)}{g(t)} = \frac{f(t) - f(x)}{g(t) - g(x)} = \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}}.$$

It only remains to take the limit as $t \to x$.

8

Theorem. Suppose that f' is continuous on [a,b] and $\epsilon > 0$. Then there exists a $\delta > 0$ such that for $x, t \in [a,b]$, if $0 < |t-x| < \delta$, then $\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$.

Proof. Let $\epsilon > 0$. Since [a,b] is compact, by Theorem 4.19 f' is uniformly continuous. Pick $\delta > 0$ such that $|f'(y) - f'(x)| < \epsilon$ whenever $0 < |y - x| < \delta$.

Now suppose $x,t\in [a,b]$ with $0<|t-x|<\delta$. Apply the Mean Value Theorem to find $c\in (x,t)$ such that f(t)-f(x)=(t-x)f'(c). Since $0<|c-x|<\delta$, we have $|\frac{f(t)-f(x)}{t-x}-f'(x)|=|f'(c)-f'(x)|<\epsilon$, as required. \square

Question. Does this hold for vector-valued functions too?

Answer. Yes. Consider the vector valued function $F = (f_1, \ldots, f_n) : [a, b] \to \mathbb{R}^n$. Since F' is continuous, each component function f'_j is uniformly continuous. Let $\epsilon > 0$. Pick $\delta > 0$ such that for each $j = 1 \ldots n$ and $p, q \in [a, b]$, if $|p - q| < \delta$ then $|f'_j(p) - f'_j(q)| < \frac{\epsilon}{n}$.

then $|f_j'(p) - f_j'(q)| < \frac{\epsilon}{n}$. Now suppose $x, t \in [a, b]$, with $0 < |t - x| < \delta$. For each $1 \le j \le n \in \mathbb{N}$, apply the Mean Value Theorem to get $c_j \in (x, t)$ such that $f_j(t) - f_j(x) = (t - x)f_j'(c_j)$ Certainly $0 < |c_j - x| < |t - x| < \delta$ for each such j, so

$$\left| \frac{F(t) - F(x)}{t - x} - F'(x) \right| = \sqrt{\sum_{j=1}^{n} \left(f'_j(c_j) - f_j(x) \right)^2} \le \sqrt{n \frac{\epsilon^2}{n^2}} = \frac{\epsilon}{\sqrt{n}} < \epsilon$$

9

Question. Let f be a continuous function on \mathbb{R} , of which it is know that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists?

Answer. By L'Hopital's Rule, we have $\lim_{t\to 0}\frac{f(t)-f(0)}{t-0}=\lim_{t\to 0}\frac{f'(t)}{1}$. But it is given that $\lim_{t\to 0}f'(t)=3$. Thus f'(0)=3.

11

Theorem. Suppose that f is defined in a neighborhood of x, and suppose that f''(x) exists. Then $\lim_{h\to 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2} = f''(x)$.

Proof. By definition $f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}$. Substituting h = t - x into this expression yields $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. Substituting h = x - t into this expression yields $f'(x) = \lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h}$. So $f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} = \lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h}$. Thus using L'Hopital's Rule with respect to h, and algebraic manipulation yields

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

$$= \frac{1}{2} \left(\lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h} + \lim_{h \to 0} \frac{f'(x-h) - f'(x)}{-h} \right)$$

$$= \frac{1}{2} (f''(x) + f''(x)) = f''(x).$$

Theorem. The above limit may exist even if f''(x) does not.

Proof. Define $f: \mathbb{R} \to \mathbb{R}$ by taking f(x) to be 1 when x > 0, to be 0 when x = 0, and to be -1 when x < 0. Then f''(0) cannot exist since f is discontinuous at 0. However at x = 0, the limit from Part (a) reduces to $\lim_{h \to 0} \frac{f(h) + f(-h) - 2f(0)}{h^2} = 0.$

12

Question. If $f(x) = |x|^3$, compute f'(x) and f''(x) for all real x.

Answer. Note that

$$f(x) = |x|^3 = \begin{cases} x^3 & x \ge 0 \\ -x^3 & x < 0. \end{cases}$$

Thus if x > 0, then $f'(x) = 3x^2$ while f''(x) = 6x.

Similarly, for x < 0, we have $f'(x) = -3x^2$ while f''(x) = -6x.

Because of the change of formula for f at 0, derivatives at that point must be evaluated from the definition.

$$f'(0) = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{|h|^3}{h} = \lim_{h \to 0} h|h| = 0, \text{ and}$$

$$f''(0) = \lim_{h \to 0} \frac{f'(h)}{h} = \lim_{h \to 0} \frac{3h|h|}{h} = \lim_{h \to 0} 3|h| = 0, \text{ but}$$

$$f'''(0) = \lim_{h \to 0} \frac{f''(h)}{h} = \lim_{h \to 0} \frac{6|h|}{h}, \text{ which does not exist.}$$

25

Suppose that f is twice differentiable on [a,b], f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 \le f''(x) \le M$ for all $x \in [a,b]$. Let ξ be the unique point in (a,b) at which $f(\xi) = 0$.

\mathbf{a}

Question. Choose $x_i \in (\xi, b)$, and define $\{x_n\}$ by $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. What does this mean geometrically in terms of a tangent to the graph of f?

Answer. First note that $f'(x_n)$ is the slope of the tangent line to the curve f(x) at the point $(x_n, f(x_n))$. Using the point slope formula to find where this tangent line intersects the x-axis yields $(x_{n+1}, 0)$ where $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

b

Theorem. For each $n \in J$, we have

(i)
$$x_n \ge \xi$$
, (ii) $f(x_n) \ge 0$, and (iii) $x_{n+1} \le x_n$.

Proof. Note that (ii) always follows from (i) because f is increasing, and (iii) always follows from (ii) by the formula for x_{n+1} and the fact that f' > 0. Since (i) is true for n = 1 by assumption, we can complete the proof by showing that $x_n > \xi$ implies $x_{n+1} > \xi$.

 $x_n \ge \xi$ implies $x_{n+1} \ge \xi$. So assume that $x_n \ge \xi$ for some fixed n, and set $g(x) = f(x) - (f(x_n) + f'(x_n)(x - x_n))$. This is the curve minus the tangent line through the point $(x_n, f(x_n))$. By Theorem 5.3, $g'(x) = f'(x) - f'(x_n)$ and $g''(x) = f''(x) \ge 0$. Combining this with the fact that $g'(x_n) = 0$ gives that $g'(x) \le 0$ for x to the left of x_n and $g'(x) \ge 0$ for x to the right of x_n . Combining this with the fact that $g(x_n) = 0$ gives that $g(x) \ge 0$ over its whole domain. Thus the tangent line through $(x_n, f(x_n))$ lies on or below the curve f(x) and $x_{n+1} \ge \xi$ as desired. \square

Theorem. Then $\lim_{n\to\infty} x_n = \xi$.

Proof. Since $\{x_n\}$ is non-increasing and bounded, it is convergent. Let $\lim_{n\to\infty} x_n = c$. Then $\lim_{n\to\infty} x_{n+1} = c$ also. So

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(x_n - \frac{f(x_n)}{f'(x_n)} \right)$$

$$c = c - \frac{f(c)}{f'(c)}.$$

This implies that $\frac{f(c)}{f'(c)} = 0$, which means that f(c) = 0. But ξ is the unique point in (a,b) such that $f(\xi) = 0$. Thus $c = \xi$ and $\lim_{n \to \infty} x_n = \xi$.

 \mathbf{c}

Theorem. Then $x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$ for some $t_n \in (\xi, x_n)$.

Proof. (Thanks to Stephen Bismarck.) Applying Taylor's Theorem to f with $n=2,\,\alpha=x_n$ and $\beta=\xi$ yields

$$f(\xi) = f(x_n) + f'(x_n)(\xi - x_n) + \frac{f''(t_n)}{2}(\xi - x_n)^2$$

for some t_n between ξ and x_n . Recalling that $f(\xi) = 0$ and rearranging this equation yields

$$x_n - \frac{f(x_n)}{f'(x_n)} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2,$$

which is what we wanted to show.

 \mathbf{d}

Theorem. If $A = \frac{M}{2\delta}$, then $0 \le x_{n+1} - \xi \le \frac{1}{A} [A(x_1 - \xi)]^{2^n}$.

Proof. By part (b) of this exercise $\xi \leq x_{n+1}$, so the first inequality holds for all n. The second inequality is obviously true when n=0. Proceeding by induction, assume that $x_n - \xi \leq \frac{1}{A}[A(x_1 - \xi)]^{2^{n-1}}$. Then by part (c) of this exercise, the inductive hypothesis, the fact that f'(x) > 0 which implies that

 $\frac{1}{f'(x)} < \frac{1}{\delta}$, and $0 \le f''(x) \le M$ for all $x \in [a, b]$,

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2$$

$$\leq A \left(\frac{1}{A} [A(x_1 - \xi)]^{2^{n-1}}\right)^2$$

$$\leq A \frac{1}{A^2} [A(x_1 - \xi)]^{2^{n-1} \cdot 2}$$

$$\leq \frac{1}{A} [A(x_1 - \xi)]^{2^n}.$$

e

Theorem. Newton's Method is equivalent to finding a fixed point of the function g defined by $g(x) = x - \frac{f(x)}{f'(x)}$.

Proof. Newton's method is equivalent to finding an x such that f(x) = 0, i.e. $\frac{f(x)}{f'(x)} = 0$. This is equivalent to saying that $g(x) = x - \frac{f(x)}{f'(x)} = x$, i.e. finding a fixed point of g(x).

Question. How does g'(x) behave near ξ ?

Answer. By Theorem 5.3, $g'(x) = \frac{f(x)f''(x)}{f'(x)f'(x)}$, so $\lim_{x\to\xi} g'(x) = g'(\xi) = 0$.

 \mathbf{f}

Question. What happens when $f(x) = x^{\frac{1}{3}}$ on $(-\infty, \infty)$ and Newton's Method is applied?

Answer. We have $\frac{f(x)}{f'(x)} = \frac{3x^{\frac{1}{3}}}{x^{\frac{-2}{3}}} = 3x$, so $x_{n+1} = x_n - 3x_n = -2x_n$ for all n. Thus, no matter what starting guess x_1 is chosen, the iterates (x_n) will diverge.