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Theorem. Let f be defined for all real x and suppose that | f(x)—f(y)| < (z—y)?
for all real x and y. Then f is constant.

Proof. Algebraically manipulating the given inequality yields for all z # y

‘f(x) —f(y)‘
—y

< |z —yl|, or equivalently
z

f(@) - fly)
-y

—lz -yl < <lz -yl

Since lim |z — y| = 0, the Squeeze Theorem implies f'(x) = 0 for all z € R. By
y—=z

Theorem 5.11(b), f is constant over R. O

3

Theorem. Suppose g is a real function on R, with bounded derivative (say
lg'| L M). Fiz e >0 and define f(x) = x + eg(x). Then f is one-to-one if € is
small enough.

Proof. Take 0 < € < ;. Since g'(z) > —M for all z, we conclude that f'(z) =
1+ ¢eg'(z) > 0 for all z € R whence f is strictly increasing and hence one-to-
one. u

4
Theorem. If Cy + % + -+ C’?,L” + n(—+'1 = 0, where Cy,...,C, are real
constants, then the equation Co+ Ciz+-- -+ Cp_12™ 1 + Crz™ = 0 has ot least

one real root between 0 and 1.
Cn—l

Proof. Let f(z) = Coz+SLa*+- -+ - x“+nc—$1x”+1. Since f is a polynomial,
it is continuous and differentiable. Since f(0) = f(1) = 0 by hypothesis, the
mean value theorem guarantees that the equation f'(x) = 0 has a solution in
the interval (0, 1), as desired. O



5

Theorem. Suppose that f is defined and differentiable for every x > 0, and
f'(@) = 0asx— oo. Let g(x) = f(e+ 1) — f(x). Then g(z) — 0 as x — oc.

Proof. Let € > 0. Apply the hypothesis to find a number N such that |f'(¢)] < €
whenever ¢t > N.

Now suppose x > N and apply the Mean Value Theorem to find a number
t € (z,z + 1) such that g(z) = f(x + 1) — f(x) = ¢'(¢). Since ¢t > N, we have
lg(x)] = |f'(t)] <e. O

7

Theorem. Suppose that f'(x), g'(z) exist, ¢'(z) # 0, and f(x) = g(x) = 0.
< !
Then lim & = f,(x)
e g(t)  g'(x)
Proof. Since ¢'(x) # 0, we have g(t) # g(z) for ¢ sufficiently close to but unequal
to x. For such ¢, we have

: : fH—J(x)
£ _ 50 - f@) _ M
90) = g0~ gla) _ A=sGT”
It only remains to take the limit as { — . O

8

Theorem. Suppose that f' is continuous on [a,b] and € > 0. Then there exists a
t) —

0 > 0 such that for z,t € [a,b], if 0 < |t—x| < 4, then w — fl(z)| <e.

Proof. Let € > 0. Since [a,b] is compact, by Theorem 4.19 f' is uniformly
continuous. Pick 6 > 0 such that |f'(y) — f'(z)| < € whenever 0 < |y — z| < 4.

Now suppose x,t € [a,b] with 0 < |t —z| < 4. Apply the Mean Value
Theorem to find ¢ € (z,t) such that f(t) — f(z) = (t — z)f'(¢). Since 0 <
|c — x| < 8, we have |M — fl(x)] = |f'(c) — f'(x)] < e, as required. O

t—x

Question. Does this hold for vector-valued functions too?

Answer. Yes. Consider the vector valued function F = (f1,..., fn) : [a,b] —
R™. Since F' is continuous, each component function f! is uniformly continuous.
Let € > 0. Pick § > 0 such that foreach j =1...nand p,q € [a,b], if |[p—¢| < I
then | fi(p) — fi(g)| < ¢

Now suppose x,t € [a,b], with 0 < |t—x| < d. Foreach 1< j <n € N, apply
the Mean Value Theorem to get ¢; € (z,t) such that f;(t) — f;(z) = (t—2)fj(c;)



Certainly 0 < |¢; — | < |t — x| < § for each such j, so

— T n ) 62 .
E%?§J—Fﬂﬂ=42me—ﬁ@)gdﬁﬁzvﬁ<e

j=1
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Question. Let f be a continuous function on R, of which it is know that f'(z)
exists for oll x £ 0 and that f'(z) — 3 as x — 0. Does it follow that f'(0)
erists?

f - 7(0) = lim& But it is
T

Answer. By L’Hopital’s Rule, we have lim
t—0 t -0 t—0

i 1 ! = ! =
given that %1_13(1)]‘ (t) = 3. Thus f'(0)

11

Theorem. Suppose that f is defined in a neighborhood of x, and suppose that
fl@+h)+ fle—h)—2f(z)

" : . oty
f"(x) exists. Then Illlﬁ) e = f'(x).
t) —
Proof. By definition f'(z) = tlgn M Substituting h = t —  into this
e _
expression yields f'(x) = %in%) w Substituting h = z — ¢ into this
—
1l g
expression yields f'(z) = % f h)h / (x) So
TN g
f'(z) = lim flath) - ) = lim fa-h-f (x) Thus using L’Hopital’s
h—>0 h h—0 —h
Rule with respect to &, and algebraic manipulation yields
o — _ 4] e (e
i &AM+ fla—h)-2f(@) _ . f@+h) - fa-h)
h—0 h? h—0 2h
. o
-1 <lim flath) - fz) + lim
2 \h—0 h—0

= U@+ @) = ),

Theorem. The above limit may exist even if f"(x) does not.

Proof. Define f : R — R by taking f(z) to be 1 when = > 0, to be 0 when
z = 0, and to be —1 when z < 0. Then f"”(0) cannot exist since f is
discontinuous at 0. However at x = 0, the limit from Part (a) reduces to
i F)+ (R - 20) _ -
h—0 h?
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Question. If f(z) = |z|®, compute f'(z) and f"(z) for all real z.

Answer. Note that
z3 z>0

fx) = [af :{ -3 <0,

Thus if z > 0, then f'(z) = 32% while f"(z) = 6z.

Similarly, for < 0, we have f'(z) = —3x? while f"(z) = —62.

Because of the change of formula for f at 0, derivatives at that point must
be evaluated from the definition.

o f) R
! = = = lim -
F(0) = 111—% h 111—% 1%1—>0 Alh| =0, and
. f' Ry .. 3hlh] .
" _ — — —
F10) = 111—% o I%l—% h %1_%3|h| =0, but

1 (h )
"0 = %in%) / ’EL) = %in%) %, which does not exist.
— —

25

Suppose that f is twice differentiable on [a, ], f(a) < 0, f(b) > 0, f'(z) > § > 0,
and 0 < f"(z) < M for all = € [a,b]. Let £ be the unique point in (a,b) at
which f(¢) =0.

a

Question. Choose z; € (£,b), and define {z,} by xp41 = Ty — Jf,((g;i)). What
does this mean geometrically in terms of a tangent to the graph of f?

Answer. First note that f'(z,) is the slope of the tangent line to the curve
f(z) at the point (z,, f(x,)). Using the point slope formula to find where this

tangent line intersects the z-axis yields (zy+4.1,0) where z,41 = ,, — ff’(( n))
Tp

b

Theorem. For each n € J, we have

(i) 2n > € (i) flan) >0, and (i) Tpsy < Tn.

Proof. Note that (ii) always follows from (i) because f is increasing, and (iii)
always follows from (ii) by the formula for z,., and the fact that f' > 0. Since
(i) is true for n = 1 by assumption, we can complete the proof by showing that
Ty > € implies 41 > €.

So assume that z,, > £ for some fixed n, and set g(z) = f(x) — (f(zn) +
f'(zn)(x — xp)). This is the curve minus the tangent line through the point



(2n, f(z2)). By Theorem 5.3, ¢'(z) = f'(z) — f'(z,) and g"(z) = f"(z) > 0.
Combining this with the fact that g'(x,) = 0 gives that ¢g'(z) < 0 for z to the
left of x,, and g'(x) > 0 for z to the right of z,,. Combining this with the fact
that g(z,) = 0 gives that g(x) > 0 over its whole domain. Thus the tangent line
through (z,, f(2,)) lies on or below the curve f(z) and z,41 > £ as desired. O

Theorem. Then lim z, = ¢&.
n—roo

Proof. Since {z,} is non-increasing and bounded, it is convergent. Let lim z, =
n—oo

¢. Then lim z,4; = c also. So
n—oQ

AL Snpr = IO <x"  Flam)
R ()
f(e)
This implies that ]{,((?) = 0, which means that f(¢) = 0. But £ is the unique
point in (a,b) such that f(¢) = 0. Thus ¢ = £ and li_r)n xn =& O
n >0
(&
Theorem. Then zpiq ~ € = %(mn —&)? for some t, € (£,13,).

Proof. (Thanks to Stephen Bismarck.) Applying Taylor’s Theorem to f with
n=2 a=ux, and § = ¢ yields

f"(tn)

9 (€ _"1717,)2

F&) = f(@n) + fl(@n)(€ —20) +

for some ¢, between & and z,. Recalling that f(¢) = 0 and rearranging this
equation yields
flan) . ()

2
Ty, — - &= T — &),
n fl(fL'n) g 2fl(xn) ( n g)
which is what we wanted to show. O
d
Theorem. If A= %, then 0 < zp4 — € < S[A(z — O]

Proof. By part (b) of this exercise & < x,41, so the first inequality holds for
all n. The second inequality is obviously true when n = 0. Proceeding by
induction, assume that z, — ¢ < L[A(z; — €)]*""". Then by part (c) of this
exercise, the inductive hypothesis, the fact that f'(x) > 0 which implies that



f’%oc) < §7 and 0 < f"(z) < M for all z € [a,b],

Tpyr —§ = 2f’($n)(xn_£)2

< a4 fHe-or)

1 n—1
< AE[A(-’L’l—f)P 2
< @ o

e

Theorem. Newton’s Method is equivalent to finding a fized point of the function

g defined by g(z) =z — ]{,((”;)).

Proof. Newton’s method is equivalent to finding an x such that f(z) = 0, i.e.

]{,((?) = 0. This is equivalent to saying that g(z) = = — Jf,((fc)) =z, i.e. finding a
fixed point of g(x). O

Question. How does ¢'(x) behave near £

Answer. By Theorem 5.3, g'(z) = %, so lim,¢ g'(x) = ¢'(€) = 0.

f

Question. What happens when f(z) = x3 on (~o00,0) and Newton’s Method
is applied?

( 3z3
Answer. We have f () = :L_'z
f'(@) T3

Thus, no matter what starting guess xy is chosen, the iterates (x,) will diverge.

= 3z, 80 Tpt1 = Ty — 3Ty = —21, for all n.



