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Theorem. FEvery uniformly convergent sequence of bounded functions is uni-
formly bounded.

Proof. Let (f,) be a uniformly convergent sequence of bounded functions on a
space X. Pick an integer N such that if m,n > N, then |f,(z) — fin(2)] < 1 for
all x € X. This N is guaranteed to exist by the Cauchy criterion for uniform
convergence. By hypothesis, each f,, is bounded. By definition this means that
for each n € N there exists an M,, € R such that |f,(z)| < M,, for all z € X.
Thus, if n > N, then

[fn(@)] = [fn(2) = fn(z) + [ (@)] < |fnl@) = I ()] + [ fn(2)] <1+ My,

Let M = max{l + My, M1, Mz,...,Mn_1}. Then|f,(z)| £ M for all n € N
and all z € X. 0
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Theorem. If (f,) and (g,) converge uniformly on a set E, then (f, + gn)
converges uniformly on E.

Proof. Let € > 0 and write f, ¢ for the uniform limits of (f,), (g,) respectively.

Apply the definition of uniform convergence to choose Ny, Ny € N, such that if

n > Ny, Ny, then |f,(x) — f(z)] < § and

lgn(z) — g(x)| < §, respectively, for all x € E. Take N = max{N;, N»}.
Suppose n > N and z € E. Then we have

€

|fa(2) + gn(@) — (f(2) + g(2))| < |fulz) = F(2)] + [gn(z) — 9(2)| < % +3
as desired. O

Recall that if h : E — R is a bounded function, then we write ||h|| :=
sup{|h(x)| : = € E}. (If more than one domain is being considered, we write
l|h||g to avoid ambiguity, but this is not usually necessary.) This notation will
be used below. It saves us from writing “for all x in E” over and over again.



Theorem. If (f,) and (g,) are sequences of bounded functions that converge
uniformly on a set E, then (f,g,) converges uniformly on E.

Proof. Let € > 0 and write f, g for the uniform limits of the given sequences of

functions. Apply Exercise 1 to get a single constant M satisfying ||fn|| < M

and ||gnl| < M for all n € J. It follows from (even pointwise) convergence that

|| fI| < M and ||g|| £ M as well. Now apply the uniform convergence hypothesis

to find N € J so that ||f, — f|| < 33757 and [|gn — g < 53757 for alln > N.
Let n > N. Then

2Me
2M +1

1 fngn — fall < 1 fallllgn = gll + llgllll fn = fII < <e.

By definition, this means (f,,g,) converges uniformly to fg as desired. [
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Question. Construct sequences (f,) aend (g,) which converge uniformly on
some set E, but (f,g,) does not converge uniformly on E.

Answer. Let fu(z) = gn(z) = z+ + and f(z) = g(x) = 2. Fix € > 0. Choose
N > % If n > N, then for all ¢ € E, we have

fule) = f@)] = - <

Thus (f,) converges uniformly to f. Likewise (g,) converges uniformly to g.
It remains to show that (f,g,) does not converge uniformly. If it were to
converge to some function uniformly that function would be f(z)g(z) = z*.Note
that f,(z)gn(z) = (z + 1) =22 + 22 + L. Pick e = 1. Let N be given. Take
n =x = N. Then
5
2@)an(o) = F@haa)] = o + 2 4 5 -t = [P >0,

Thus (frgn) does not converge uniformly.
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Theorem. Let L

0 , ) ;I:<nJrll
fal®) =< sin” % 5 <w <y
0 + <

Then (fn) converges to a continuous function, but not uniformly.



Proof. Let € > 0. Fix z € R. Let N > 1 € N. (When z < 0, we take N = 1.)
If n > N, then

[fn(z) =0 =0 <e

Thus for each z € R, the numerical sequence (f,(x)) converges to 0.
Now we show that (f,,) does not converge uniformly. If it were to converge

to some function uniformly that function would be 0. Pick € = % Let N be
given. Taken = N and = = Ni%. Then
i 1 1
| fr(z) — 0] = |sin*(N + i)w =1> 7
Thus (f,) does not converge uniformly. O

Theorem. Pointwise absolute convergence for a series of functions does not
imply uniform convergence.

Proof. By definition, (pointwise or uniform) convergence of the series Y f, is
equivalent to that type of convergence for its sequence (s,) of partial sums.
Fix ¢ € R. As shown above, there is an integer N (depending on z) so that
fn(x) =0 for all n > N. But this means s, (z) = sy(z) for all n > N, whence
lim, s sn(x) = sy (x), and the series > f,,(z) converges to sy (z) by definition.
Since f,(z) > 0 for all n € N and all x € E, this convergence is absolute by
default.

Suppose Y f, converged uniformly to some function s. Then the sequence
(fn) = (85, — $Sp—1) would converge uniformly to s —s = 0. Since the first part
of this problem showed that (f,,) does not converge uniformly, we conclude that
the series > f,, cannot converge uniformly either. O
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Theorem. Forn € J and x € R, put fo(z) = 1552 Then (fs) converges

uniformly to a function f, and f'(z) = lim f](x) is correct if x # 0, but false
n—o0

if £ = 0.

Proof. We first show that the sequence (f,) converges uniformly to f = 0,
i.e., that limy,_, || fn]| = 0. One can get a reasonable upper bound for || f,|| by
separately bounding f,,(z) for z close to, and far away from, 0, but it is easier to
use calculus. A direct computation shows that the only positive critical point of
fn is at L and that in fact f} > 0 on the interval (0, 1) while f}, < 0 on (1, 00).
In view of the mean value theorem, this means that 0 < f(z) < f() = 2 for
all x > 0. Since all these functions are odd (f,(—2) = — fn(x) for all n and all
x), we conclude that lim || f,|| = lim 2 =0, as desired.

The statements concerning lim,_,, f},(z) are also direct computations. O
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Theorem. Let (f,) be a sequence of continuous functions which converges uni-
formly to a function f on a set E. Then lim f,(x,) = f(a) for every sequence
n—o0

of points x,, € E such that z, — a, and a € E.

Proof. Let € > 0. Apply the uniform convergence hypothesis to choose N; € N

such that ||f, — f|| < § for all n > N. Theorem 7.12 tells us f is continuous.

Then by definition a § > 0 can be chosen such that |f(y) — f(a)| < € whenever

ly—a| < &. Apply the definition of convergence to the numerical sequence (zy,) to

choose N3 € N such that |z, —~a| < § whenever n > Ny. Take N = max{N;, Na}.
Suppose n > N. Then

Fal@a) = @] < |falwa) = f@n)] + [ f(zn) = f@] < 5+ 5 =<
Thus lim fa(@a) = f(a) O

Question. Is the converse true?

Answer. No. Let E = Z and f,(z) =1if x =n and f,(z) = 0 otherwise. All
functions from Z to R are continuous, so each f,, is continuous. Also, it is clear
that (f,) converges to 0 pointwise.

It remains to show that (f,) does not converge uniformly. If it were to
converge to sore function uniformly that function would be f(z) = 0. Pick
e=1. Let N be given. Taken = z = N. Then | f,(z)—f(z)| = fy(N) =1> 1,
s0 (fn) does not converge uniformly.
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Theorem. Suppose that (f,) and (g,,) are defined on E, Y f, has uniformly
bounded partial sums, g, — 0 uniformly on E, and g1 (z) > g2(x) > gs(x) > ---
for every x € E. Then Y fng, converges uniformly on E.

Proof. This is a matter of adapting the proof of Dirictlet’s Theorem 3.42 by
replacing “a,b” by “f, ¢” and sprinkling in the term “uniformly”. O
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Question. Suppose f is a real continuous function on R, f,(t) = f(nt) for
n=1,2,3,---, and (f,) is equicontinuous on [0,1]. What conclusion can you
draw about f*?

Answer. f must be constant on the interval [0, 00).

Proof. The condition is sufficient because the equicontinuity hypothesis has no
bearing on the values of f(z) for x < 0. (This was pointed out by Ms. Ulrich.)



To establish necessity, fix ¢ > 0. Let € > 0, and take § > 0 to be the
corresponding number guaranteed by equicontinuity. Choose n > %. Then
L < ds0|ft) = f0) = |fa(L) — f(0)| < e. The arbitrariness of e means
f() = f(0) as desired. O
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Theorem. Suppose that (f,) is an equicontinuous sequence of functions on
a compact set K, and (f,) converges pointwise on K. Then (f,) converges
uniformly on K.

The following argument is similar to the last few paragraphs in the proof of
the Arzela-Ascoli Theorem 7.25. One can also use the result of that theorem
to establish the assertion of this problem.

Proof. (outline) Write f for the pointwise limit of (f,,). Use the hypotheses in
conjunction with the inequality
1F (@) = FW) < 1 (@) = fu(@)] + [fn(2) = fa(y)| + [fo(y) — F )]

to establish uniform continuity of f.

Now, let € > 0 and take § > 0 to be the corresponding number guaranteed
by equicontinuity.

Temporarily fix a € K, and apply the inequality

[fn(2) = f(@)] < [fn(@) = fula)l +[fnla) = fla)| + |f(a) - f(2)|

to find a positive integer M, such that |f,(z) — f(z)| < € whenever n > N and

x € Ns(a).

Finally, apply compactness to find finitely many points aq,--- ,a,, so that
the neighborhoods Ns(a1),---, Ns(an) cover K. Take M = max{M,,} and
check that |fn(z) — f(z)| < eforalln > M and all z € K. O
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Theorem. Let (f,) be a uniformly bounded sequence of functions which are
Riemann-integrable on [a,b], and put F,(z) = ff fnlt) dt for a < x <b. Then
there exists a subsequence (Fy, ) which converges uniformly on [a,b)].
Proof. Choose a number M so that ||f,| < M for each n € J. For each z € [a, ]
and n € J, we have |F,(z)| < [ |fa| < (2 = a)M < (b—a)M, so the (F,) are
uniformly (and hence pointwise) bounded.

Moreover, for each x,y € [a,b], and n € J, we have

Y
Fuy) — Fa(o)] = |/ ful < Mly -],

establishing equicontinuity of the family {f,}. The proof is completed by ap-
pealing to the Arzela-Ascoli Theorem 7.25. O



