Homework 7

Revised version of solutions by Aja Johnson

November 2, 2005

Problems are presented in rough order of increasing difficulty.

As mentioned in class, to prove a statement of type “forall e > 0 ...”, we
start with a “fixed but arbitrary” ¢ > 0. When we are given a statement of type
“for all e > 0 ...”, we wait until we have a “particular” € in mind and then
invoke .... The bottom line is that the phrase “for all € > 0” should seldom
appear in a proof.
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Theorem. Suppose [ is a uniformly continuous mapping of a metric space X
into a metric space Y. If {x,} is a Cauchy sequence in X, then {f(x,)} is a
Cauchy sequence in Y.

Proof. Fix € > 0. Apply the uniform continuity hypothesis to choose a é > 0
such that d(f(z), f(y)) < € whenever dx(z,y) < 4. Since {z,} is Cauchy there
exists an N € J such that d(z,,z,) < § whenever n,m > N.

Suppose n,m > N. Then d(x,,zm,) < § whence d(f(z,), f(zm)) < € as
desired. O
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Theorem. Suppose X,Y,Z are metric spaces, f maps X into Y, g maps the
range of f, f(X), into Z, and h is the mapping of X into Z defined by h(z) =
g(f(x)). If f and g are both uniformly continuous, then h is also uniformly
continuous.

Proof. Fix € > 0. Since ¢ is uniformly continuous, there exists an 1 > 0 such
that d(g(y1),g9(y2)) < € whenever y,,ys € Ranf satisfy d(y1,y2) < 5. Since
f is uniformly continuous, there exists a § > 0 such that d(f(z1), f(z2)) < n
whenever dx (z1,22) < 4.

Suppose dx (z1,22) < 8. Then d(f(x1), f(22)) < n whence d(h(x1), h(z2)) =
d(g(f(x1)),9(f(z2))) < e. Thus h is uniformly continuous as desired. O
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Theorem. Let I = [0,1] be the closed unit interval. Suppose that f is a con-
tinuous mapping of I into I. Then f(x) = x for at least one x € I.

Proof. Apply the intermediate value theorem to the the function g : I — I
defined by g(z) = f(z) — =. O
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Question. What discontinuities do the functions [z] and (z) have?

Answer. [x] has a simple discontinuity at each integer and is continuous else-
where. One can prove this formally (if a ¢ Z, take § = min(a ~[a], [a] +1—a) for
any € > 0), but T would be satisfied with a picture. In any case, no additional
argument is needed for () since any two functions whose sum is continuous will
have the same types of discontinuites.
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Theorem. The definition of uniform continuity is equivalent to the statement:
For all € > 0, there exists a 6 > 0 such that if diam E < 6§ for E C X, then
diam f(E) < e.

Proof. Assume f : E — Y is uniformly continuous. Fix € > 0. Choose § > 0
such that d(f(z), f(y)) < § whenever d(z,y) < 6. Now suppose E is a subset
of X having dimaeter less than é.

Let y1,y2 be members of f(E). Write y; = f(x;) with z1,z2 € E. Since
diamFE < §, we have d(x1,22) < §, whence d(y1,y2) < 5. Thus § is an upper
bound of for the set of distances between members of f(E). Since diam f(E)
is the least upper bound of such distances, we conclude diamf(E) < § < ¢, as
desired.

Now assume that the statement concerning diameters is true. Fix € > 0.
Choose 6 > 0 such that diam f(E) < e whenever diam E < 6. To complete the
proof, we need to show that this 6 works in the definition of uniform continuity.

So suppose z1,z2 € X with d(wy,22) < 6. Take E := {x;,22}. Since
diamE < §, we have d(f(z1), f(z2) = diamf(F) < € as desired. O
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Theorem. Let f be a real-valued continuous function defined on a subset E of
R.

(a) If E is bounded and f is uniformly continuous, then f is bounded on E.



(b) f may fail to be bounded if E is unbounded or if f is not uniformly con-
tinuous.

Proof. Part b) is easiest. Note that counterexamples are required — not an
analysis of how the argument for Part a) breaks down. The identity function
i : R — R by i(z) = z is uniformly continuous and (its range is) bounded. The
reciprocal function r : (0,1) = R by r(z) = < has a bounded domain, but its
range is again unbounded.

Turning to the proof for Part a), fix e = 1 and apply the uniform continuity
hypothesis to find a 6 > 0 such that |f(z) — f(y)| < 1 whenever |z — y| < 4.
Next, express B2 = U7_; E; where each Ej; has diameter less than 6. Then each
image set f(E;) has diameter less than 1. Thus f(E) is the union of finitely
many bounded sets and hence must also be bounded.

{Comments: In writing up any proof, one must decide on how much detail
to provide. The above argument is on the brief side — one could also explain
how the E;’s are constructed and/or why finite unions of bounded sets remain
bounded. The proof of Problem 9 above, on the other hand, was more fully
detailed. Why the difference? First of all, to illustrate both styles, and secondly
because the least upper bound concept is so central to this course.

A totally different approach to the present proof would be to first solve Prob-
lem 18. That would provide a continuous extension F of f to the compact
domain E. That would make f(E) a subset of the compact set F(E).}

O
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Let E be a bounded subset of a metric space X. For each z € X, define
pe(z) =inf.cpd(z, z). Then

(a) = € E if and only if pg(z) =0
(b) pg is uniformly continuous.

Proof. Fix z,y € X and set S := {d(z,z)|z € E}. Then 0 is a lower bound for
S and pg(x) = inf S by definition.

For Part (a), first assume x € E and € > 0. Then N.(z) N E is non-empty
which means that € is not a lower bound for S. Thus 0 is in fact the greatest
lower bound of S, i.e., pp(z) = 0.

Conversely, suppose pg(z) = 0 and and let € > 0. Then € is not a lower
bound for S, so there is a z € E with d(z,2) <e, i.e. z € N.(z) N E. Since this
is true for each € > 0, we conclude z € FE, as desired.

For Part (b), first fix z € E and note that pp(y) < d(y, z) < d(y,z)+d(x, 2)
by definition of inf and the triangle inequality. Transposing, we see that pg(y) -
d(y,x) is a lower bound for the set S. Applying the definition of inf once again,
we get pp(y) — d(y,x) < pe(z). Interchanging the roles of x and y, we see that
loE(z) — pe(y)| < d(x,y) for all z,y € X. Thus one can take § = € to establish
uniform continuity of pg. O
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Theorem. Let f be a real function defined on (a,b). Then the set of points at
which f has a simple discontinuity is at most countable.

Proof. There are four sets to consider:

(a) B:={z € (a,b)|f(z—) < flzt)},
(b) £ := {2 € (a,0)[f(x—) > fz+)},
(©) G:=A{z € (a,b)|f(x—) = fla+) > f(2)},
(d) H:={z € (a,0)|f(z—) = fla+) < fz)}

Associate to each x € E a triple (p, ¢,7) of rational numbers satisfying:

(a) fla=) <p< flz+),
(b) a<g<z<r<hb,

(¢) ¢ <t <z implies that f(f) < p, and
(d) = <t < r implies that f() > p.

By Theorem 2.13 this set of triples is countable. Many such triples are associated
to each x € E. It needs to be shown that no triple can go with two different
members of E. Prove this by contradiction. Assume that z; < x» are both
assigned to the same triple (p, ¢, ). The reals are dense in themselves, so there
exists an x3 € R such that z; < z3 < z2. We have ¢ < 23 < z9 so f(x3) <p
by condition (¢). On the other hand, we have z; < x5 < r which implies that
f(x3) > pby condition (d). This contradicts trichotomy. Thus #y and 25 cannot
be associated to the same triple (p,q, 7).

The proof that F' is countable is so similar that you should not write out any
details. You should, however, at least explain how to associate a triple (p, q,7)
of rational numbers with each member of G:

(a) flz—) = fla+)>p> f(2),

by a<g<z<r<hb,

(¢) ¢ <t < z implies that f(t) > p,
(d) = <t < r implies that f(t) > p.

There is no need to repeat the countability argument, but it wouldn’t hurt to
explain why no rational triple can go with two members of G. Again, H deserves
no further comment, and the proof is completed by noting that EUFUGUH
accounts for simple discontinuites of f. O



11b

Theorem. Let E be a dense subset of a metric space X, and let f be a uniformly
continuous real function defined on E. Then f has a continuous extension from
FE to X.

Proof. (outline) Given z € X, find a sequence (z,,) in E converging to x. By
Part (a) of this problem, the image sequence (f(z,)) will also be Cauchy and
hence will converge to some real number which we will denote F(x). To see that
this is a good definition, suppose (y,) were a another sequence converging to
z. Then the “interweaved” sequence z1,¥1, %2,y ... would also converge to x
and hence all subsequences of the image sequence f(x1), f(y1), f(z=2), f(y2) ...
would have to converge to the same value. In particular, lim, o f(yn) =
lim;, o f(zn) and F(z) is indeed well-defined. When z € E, we can take
2n = z for all n, so F(z) = f(x) and F is indeed an extension of f.

Let € > 0. Apply uniform continuity of f to get 6 > 0so that |f(p)—f(g)| < €
whenever p,q € E satisfy d(p,q) < 6. To see that this same § works for the
extended function F, let z,y € X with d(x,y) < ¢ and fix sequences (z,), (yn)
in E which converge to x,y respectively. For each n € J, we have

d(Tn,yn) < d(@n,z) + d(2,y) + d(y,yn), and

|F(x) = F(y)| < |[F(x) = flen)| + [ f(zn) = fyn)l + 1 (yn) — Fy)l-
Choosing n sufficiently large, we can make the right-hand members of these
inequalities less than § and e respectively which means |F(z) — F'(y)| < € as
desired. O
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The “ruler function” f : R — R defined by f(2) := L when 2 is a fraction
in lowest terms, f(0) := 1, and f(z) := 0 when x is irrational has a simple
discontinuity at each rational point and is continuous elsewhere.

Proof. Tt suffices to show that lim,_,, f(z) = 0 for each real number a. So fix
a € R and € > 0. Fix an integer n > L. Then the interval (@ — 55, a + 7) has
length less than %, and hence can contain at most one rational number p # «
with denominator < n. Take 6 = |p — af if such a number p exists and § = 5L

n:
otherwise. Then |f(z)| < 1 < e whenever 0 < |z — a| < 4, as desired. O
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Convex functions are continuous. The displayed inequalities compare the slopes
of various secant lines associated with a convex function. To establish them
algebraically, note that if s < # < w, then ¢ is a convex combination of s,u,
specifically ¢t = As + (1 — M)u with A = =L, Then use the squeceze principle to

get the desired continuity result. Full proofs can be found in many textbooks.



