Portmamteau Theorem

Jaime Frade

Department of Statistics Florida State University

> Florentina Bunea STA5447

April 26, 2009

(日) (同) (三) (三)

- 1 Show $7 \Leftrightarrow 9$
- 2 Show $7 \rightarrow 9$
- 3 Show $7 \leftarrow 9$
- 4 Definition of g(x)
- **5** Show $9 \rightarrow 12$
- 6 Show 9 \rightarrow 11
- **7** Show $11 \rightarrow 12$
- 8 Show $12 \rightarrow 11$
- $\bigcirc \text{ Show 11 and } 12 \rightarrow 13$
- 10 Show $13 \rightarrow 7$

(日) (周) (三) (三)

Show
$$F_n \xrightarrow{d} F \Leftrightarrow E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$

By **Hally-Bray Theorem**, consider some (Ω, \mathbb{A}, P) . Suppose that g is bdd and is continuous a.s. F. $(g \in C_b)$, then

$$E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$
(1)

By converse, since $E[g_n(x_n)] \rightarrow E[g(x)] \Rightarrow F_n \rightarrow F$

(日) (同) (三) (三)

Show $7 \rightarrow 9$

Show
$$F_n \xrightarrow{d} F \Rightarrow E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$

Notice that for any $\delta(B) = (C_b)^c$. For any B with $P(x \in \delta B) = 0$ by continuous mapping theorem, $E(1_B(x_n)) \to E(1_B(x))$ as $n \to \infty$

$$F_n(x) = P(x_n \in (-\infty, x])$$
, with $\delta(-\infty, x] = \{x\}$ so provided $P(X = x) = 0$, then $P(x_n \in (-\infty, x]) \rightarrow P(x \in (-\infty, x])$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

 $X \in B \leftrightarrow 1_B$. $X \to 1_B(x)$ is not continuous at δB . Otherwise, $h(x) = 1_B(x)$ is continuous and bounded $\forall x \notin \delta B$

$$X_n \to X \Rightarrow h(x_n) \xrightarrow{a.s} h(x) \text{ and } E[h(x_n)] \xrightarrow{DCT} E[h(x)].$$
$$E[h(x_n)] = E[1_B(x_n)] = P(x_n) \to E[h(x)] = P(x \in B)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Show
$$F_n \xrightarrow{d} F \Leftarrow E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$

Take $B = (-\infty, x]$, then $\delta B = \{x\}$
 $P_n(B) \to P(B)$ with $P(\delta B) = 0$
 $F_n(x) \to F(x) \ \forall x, \ P(\{x, y\}) = 0, \ \forall x \ F \text{ has no jumps at } x, \ \text{all } x \in C_b$

Jaime Frade (Florida State University)

◆□> ◆圖> ◆臣> ◆臣> □臣

Definition of g(x)

For the rest of the proof, define a trapezoidal function of height 1. Let $g_k \in C_b$. Note the $g_k \downarrow 1_{[a,b]}$ as $k \to \infty$.

Since $g_k \leq 1$ and $g_k \downarrow 1_{[a,b]}$, then

$$\int g_k dF \downarrow F([a,b]) = F((a,b])$$
, then

 $\limsup F_n(a,b] \leq F(a,b]$

Note the $h_k \uparrow 1_{(a,b)}$ $F_n(a,b] \ge \int h_k dF_n \to \int h_k dF$ by MCT $\int h_k dF \uparrow F(a,b) = F(a,b]$ as $k \to \infty$. Thus, $\liminf F_n((a,b]) \ge F(a,b]$

(日) (同) (三) (三)

Show
$$E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)] \forall g \in C_b$$

 $\Rightarrow \liminf P_n(B) \ge P(B) \forall \text{ open sets } B$

Define a function, g, such that satisfies first part, then will show because of the way the function is setup, the function will imply the second part.

Let B be an open set and $F = B^c$. Consider a sequence of functions, $g_n \in C_b$,

$$g_n(x) = \min(1, nd(x, F))$$
⁽²⁾

Show that $g_n(x) \uparrow 1(x)$

a. When
$$x \notin F \Rightarrow \text{let } \epsilon = d(x, F) > 0$$
, then
 $g_n(x) = \min(1, n\epsilon)$, where $n\epsilon \ge 1$. For $n \text{ large}, \Rightarrow g_n(x) = 1$
b. When $x \in F$, then $d(x, F) = 0 \Rightarrow g_n(x) = 0$

Therefore,

$$g_n(x) = \begin{cases} 0 & x \notin F = B^c \\ 1 & x \in F = B^c \end{cases}$$

as $n
ightarrow \infty$

Jaime Frade (Florida State University)

By 9,
$$P_n(x) \geq \int g_k dF_n \to \int g_k dF$$
 as $n \to \infty$
and

lim inf
$$P_n(B) \ge \int g_k dF$$

by letting $k \to \infty$ and MCT,

$$P_{n}(B) \geq \int g_{k} dF_{n} \xrightarrow{9} \int g_{k} \uparrow P(B), n \to \infty$$

$$\liminf_{n} P_{n}(B) \geq \lim_{k \to \infty} \int g_{k} dF \xrightarrow{MCT} \int \lim_{k \to \infty} g_{k} dF = \int g dF = P(B)$$

$$\liminf_{n} P_{n}(B) \geq \int 1_{B} dF = P(B)$$
(3)

3

<ロ> (日) (日) (日) (日) (日)

Show
$$E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)] \forall g \in C_b$$

 $\Rightarrow \limsup P_n(B) \le P(B) \forall \text{ closed sets } B$

$$P(B) = \int 1_B dF_n \leq \int g_k dF_n \xrightarrow{9} \int g_k dF \downarrow P(B^c)$$

$$\limsup_n P_n(B) \leq \lim_{k \to \infty} \int g_k dF_n \xrightarrow{MCT} \int \lim_{k \to \infty} g_k dF = \int gDF = P(B)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Show $\limsup P_n(B) \leq P(B) \forall$ closed sets B $\Rightarrow \liminf P_n(B) \geq P(B) \forall$ open sets B

$$\begin{split} & \limsup P_n(B) \leq P(B) \forall \text{ closed sets } B \\ & 1 - \limsup P_n(B) \geq P(B^c) \\ & 1 + \liminf(-P_n(B)) \geq P(B^c) \\ & \liminf(1 - P_n(B)) \geq P(B^c) \\ & \liminf(P_n(B^c)) \geq P(B^C) \end{split}$$

(4)

Show $\liminf P_n(B) \ge P(B) \forall$ open sets B $\Rightarrow \limsup P_n(B) \le P(B) \forall$ closed sets B

$$\begin{split} & \liminf P_n(B) \geq P(B) \forall \text{ open sets} \\ & 1 - \liminf P_n(B) \leq P(B^c) \\ & 1 + \limsup (-P_n(B)) \leq P(B^c) \\ & \limsup (1 - P_n(B)) \leq P(B^c) \\ & \limsup P_n(B^c) \leq P(B^c) \end{split}$$

Jaime Frade (Florida State University)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

(5)

В

Show $\liminf P_n(B) \ge P(B) \forall$ open sets Band $\limsup P_n(B) \le P(B) \forall$ closed sets B $\Rightarrow \lim P_n(B) = P(B)$

Define the following:

- a. B^0 is the interior of B, where $B^0 = \bigcup \{ U \subset B, \text{ s.t. } U \text{ is open} \}$, (Union of all open subsets of B.
- b. \overline{B} is the closure of B, where $\overline{B} = \bigcap \{B \subset C, \text{ s.t. } C \text{ is closed}\}$, (Intersection of all closed subsets of B.

 $P(B) \leq \liminf P_n(B) \leq \limsup P_n(B) \leq P(B)$

 \forall *P*-continuity sets *B*, (*P*(δB) = 0), then the boundary *B*, $\delta B = \overline{B}/B^0$ Since *P*(δB) = 0, then *P*(\overline{B}) = *P*(B^0) = *P*(B) $\rightarrow \lim_{n \to \infty} P_n(B) = P(B)$

Show
$$\lim P_n(B) = P(B) \to F_n \xrightarrow{d} F$$

For lim $P_n(B) = P(B) \forall P$ - continuity sets B, , $(P(\delta B) = 0)$, where $B \subset \Omega = \mathbb{R}$. Let $B = (-\infty, x] \rightarrow \delta(-\infty, x] = \{x\}$. Then $P(-\infty, x]) = 0 \forall$ continuity points $x \in \Omega$

$$F_n \xrightarrow{d} F \Rightarrow F_n((-\infty, x]) \to F((-\infty, x])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙