Portmamteau Theorem

Jaime Frade

Department of Statistics Florida State University

> Florentina Bunea STA5447

April 26, 2009

- $2 Show 7 \rightarrow 9$
- 3 Show $9 \rightarrow 12$
- 4 Show $9 \rightarrow 11$
- 6 Show $12 \rightarrow 11$
- 8 Show $13 \rightarrow 9$

$$F_n \xrightarrow{d} F \Rightarrow E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$
 (1)

By **Hally-Bray Theorem**, consider some (Ω, \mathbb{A}, P) . Suppose that g is bdd and is continuous a.s. F. $(g \in C_b)$, then

$$E[g_n(x_n)] = \int g dF_n \to \int g dF = E[g(x)]$$
 (2)

By converse, since $E[g_n(x_n)] \to E[g(x)] \Rightarrow F_n \to F$

 \leftarrow : Notice that for any $\delta(B)=(C_b)^c$. For any B with $P(x\in \delta B)=0$ by continuous mapping theorem, $E(1_B(x_n))\to E(1_B(x))$ as $n\to\infty$

$$F_n(x) = P(x_n \in (-\infty, x])$$
, with $\delta(-\infty, x] = \{x\}$ so provided $P(X = x) = 0$, then $P(x_n \in (-\infty, x]) \rightarrow P(x \in (-\infty, x])$.

 $x \in B \leftrightarrow 1_B$. $x \to 1_B(x)$ is not continuous at δB . Otherwise, $h(x) = 1_B(x)$ is continuous and bounded $\forall x \notin \delta B$

$$x_n \to x \Rightarrow h(x_n^\#) \xrightarrow{a.s} h(x^\#) \text{ and } E[h(x_n^\#)] \xrightarrow{DCT} E[h(x^\#)].$$
 So $E[h(x_n)] \to E[h(x)]$

$$E[h(x_n)] = E[1_B(x_n)] = P(x_n) \to E[h(x)] = P(x \in B)$$

$$\rightarrow$$
: Take $B = (-\infty, x]$, then $\delta B = \{x\}$

$$P_n(B) \rightarrow P(B) \quad \forall B \quad \text{with } P(\delta B) = 0$$

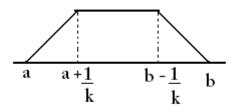
$$F_n(x) \to F(x) \ \forall x, \ P(\{x\}) = 0, \ \forall x \ F \ \text{has no jumps at } x, \to \text{all } x \in C_b$$

Define a trapezoidal function of height 1. Let $g_k \in C_b$. Note the $g_k \downarrow 1_{[a,b]}$ as $k \to \infty$.

Since $g_k \leq 1$ and $g_k \downarrow 1_{[a,b]}$, then

$$\int g_k dF \downarrow F([a,b]) = F((a,b])$$
, then

 $\limsup F_n(a,b] \leq F(a,b]$

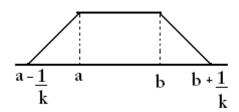


Note the $h_k \uparrow 1_{(a,b)}$

$$F_n(a,b] \ge \int h_k dF_n \to \int h_k dF$$
 by MCT

$$\int h_k dF \uparrow F(a,b) = F(a,b] \text{ as } k \to \infty.$$

Thus, $\liminf F_n((a,b]) \ge F(a,b]$



Show that
$$E[g_n(x_n)] = \int g dF_n \rightarrow \int g dF = E[g(x)] \ \forall \ g \in C_b \Rightarrow \liminf P_n(B) \ge P(B) \ \forall \text{ open sets } B$$

Define a function, g, such that satisfies first part, then will show because of the way the function is setup, the function will imply the second part.

Let B be an open set and $F = B^c$. Consider a sequence of functions, $g_n \in C_b$

$$g_n(x) = \min(1, nd(x, F)) \tag{3}$$

Show that $g_n(x) \uparrow 1(x)$

- a. When $x \notin F \Rightarrow \text{let } \epsilon = d(x, F) > 0$, then $g_n(x) = \min(1, n\epsilon)$, where $n\epsilon \ge 1$. For n large, $\Rightarrow g_n(x) = 1$
- b. When $x \in F$, then $d(x, F) = 0 \Rightarrow g_n(x) = 0$

Therefore,

$$g_n(x) = \begin{cases} 0 & x \notin F = B^c \\ 1 & x \in F = B^c \end{cases}$$

Portmamteau Theorem

Jaime Frade (Florida State University)

9 / 15

By 9,
$$P_n(x) \ge \int g_k dF_n \to \int g_k dF$$
 as $n \to \infty$ and $\liminf P_n(B) \ge \int g_k dF$ by letting $k \to \infty$ and MCT.

$$P_{n}(B) \geq \int g_{k} dF_{n} \xrightarrow{9} \int g_{k} dF \uparrow P(B), n \to \infty$$

$$\liminf_{n} P_{n}(B) \geq \lim_{k \to \infty} \int g_{k} dF \xrightarrow{mCT} \int \lim_{k \to \infty} g_{k} dF = \int g dF = P(B)$$

$$\liminf_{n} P_{n}(B) \geq \int 1_{B} dF = P(B)$$

$$(4)$$

Show that
$$E[g_n(x_n)] = \int g dF_n \rightarrow \int g dF = E[g(x)]$$
 $g \in C_b \Rightarrow \limsup P_n(B) \leq P(B) \quad \forall \text{ closed sets } B$

$$P(B) = \int 1_{B} dF_{n} \leq \int g_{k} dF_{n} \xrightarrow{9} \int g_{k} dF \downarrow P(B^{c})$$

$$\limsup_{n} P_{n}(B) \leq \lim_{k \to \infty} \int g_{k} dF_{n} \xrightarrow{mCT} \int \lim_{k \to \infty} g_{k} dF = \int g dF = P(B)$$

Given
$$\limsup P_n(B) \leq P(B) \forall \text{ closed sets } B$$

$$1 - \limsup P_n(B) \ge P(B^c)$$

$$1 + \liminf(-P_n(B)) \geq P(B^c)$$

$$\liminf (1 - P_n(B)) \geq P(B^c)$$

$$\liminf P_n(B^c) \geq P(B^C) \tag{5}$$

Given
$$\liminf P_n(B) \geq P(B) \forall$$
 open sets B

$$1 - \liminf P_n(B) \leq P(B^c)$$

$$1 + \limsup(-P_n(B)) \le P(B^c)$$

$$\limsup (1 - P_n(B)) \leq P(B^c)$$

$$\limsup P_n(B^c) \leq P(B^c) \tag{6}$$

Define the following:

- a. B^0 is the interior of B, where $B^0 = \bigcup \{ U \subset B, \text{ s.t. } U \text{ is open} \}$, (Union of all open subsets of B.)
- b. \bar{B} is the closure of B, where $\bar{B} = \bigcap \{B \subset C, \text{ s.t. } C \text{ is closed}\}$, (Union of all open subsets of B.)

$$P(B) \leq \liminf P_n(B) \leq \limsup P_n(B) \leq P(B)$$

 \forall P-continuity sets B, $(P(\delta B)=0)$, then the boundary B, $\delta B=\bar{B}/B^0$

Then
$$P(\delta B)=0$$
, then $P(\bar{B})=P(B^0)=P(B)\to \lim P_n(B)=P(B)$

For $\lim P_n(B) = P(B) \ \forall \ P-$ continuity sets B, , $(P(\delta B) = 0)$, where $B \subset \Omega = \mathbb{R}$.

Let $B = (-\infty, x] \to \delta(-\infty, x] = \{x\}$. Then $P((-\infty, x]) = 0 \ \forall$ continuity points $x \in \Omega$

$$F_n \to F \Rightarrow F_n((-\infty, x]) \to F((-\infty, x])$$

