Applied Nonparametrics STA 4502/5507

Yiyuan She

Department of Statistics, Florida State University

Fall 2009

Possible Course Flow

• Estimating success probabilities

- Single location: estimates, tests, intervals
- Two locations: testing, estimating differences between locations

- Scale comparisons
- Multiple locations and factors
- Independence
- Nonparametric regression
- Other topics ...

- Observe outcomes of *n* trials
- Assumptions
 - Independent
 - Success / failure
 - Identical
- Test

$$H_0: p = p_0$$

- p_0 a specified value in (0, 1)
- Use a test statistic

B = number of successes

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

One-sided alternative

$$H_1: p > p_0$$

- For a specified level of significance α , get critical value $b_{\!\alpha}$
- $\alpha = P(\text{reject } H_0 | H_0 \text{ true}) = \text{Type I error}$
- Table A.2 in NSM or pbinom in R
- Reject H_0 if $B \ge b_{\alpha}$

One-sided alternative

$$H_1 : p < p_0$$

(中) (문) (문) (문) (문)

- For a specified level of significance $\alpha,$ get critical value \textit{c}_{α}
- Reject H_0 if $B \leq c_{\alpha}$
- If p=1/2, symmetry gives $c_lpha=n-b_lpha$

• Two-sided alternative

$$H_1: p \neq p_0$$

- Reject H_0 if $B \geq b_{lpha_1}$ or $B \leq c_{lpha_2}$
- $\alpha = \alpha_1 + \alpha_2$
- Usually, $\alpha_1 = \alpha_2 = \alpha/2$

- pbinom(q, size, prob, lower.tail=T)
- pbinom(2, 5, 0.4, lower.tail=T) is P(B ≤ 2) where there are n = 5 trials and success probability is 0.4

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- pbinom(2, 5, 0.4, lower.tail=F) is $P(B > 2) = 1 P(B \le 2)$
- Note P(B > 2) = P(B ≥ 3)
- Default is lower.tail=T

- ?pbinom for documentation
- Density, distribution function, quantile function and random generation for the binomial distribution with parameters size and prob.
 - dbinom(x, size, prob, log = FALSE)
 - pbinom(q, size, prob, lower.tail = TRUE, log.p =
 FALSE)
 - qbinom(p, size, prob, lower.tail = TRUE, log.p =
 FALSE)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• rbinom(n, size, prob)

- Example 2.1
- 7 gaps examined
- 6 were 'successes' (more dead branches than lives ones)
- Success probability is 0.15 in previous studies
- Is success probability in this study greater than others?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $H_0: p = 0.15$ $H_1: p > 0.15$

- $B = 6, n = 7, p_0 = 0.15$
- Set $\alpha = 0.0121$
- Critical-value method:

$$P(R|H_0) = \alpha$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

or $P(S \ge b_{\alpha}) = \alpha$, where $S \sim Bin(7, .15)$

- Table A.2 \Rightarrow $b_{\alpha} = 4$ (qbinom(1-.01210317,7,.15)+1)
- Reject null since $B \ge b_{lpha} = 4$
- p-value?

 p-value: smallest significance level at which we would reject the null based on the given data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Already know we reject the null if $\alpha = 0.0121$
- Smaller α ?
- Table A.2, $\alpha = 0.0012, b_{\alpha} = 5 \Rightarrow$ reject null
- Table A.2, $\alpha = 0.0001, b_{\alpha} = 6 \Rightarrow$ reject null
- Table A.2, $\alpha = 0.0000, b_{\alpha} = 7 \Rightarrow$ do not reject null

- If null is true, what is $P(B \ge 6)$?
- Table A.2 \Rightarrow 0.0001
- $P(B \ge 6) = P(B > 5) = pbinom(5, 7, 0.15, lower.tail=F)$
- $P(B \ge 6) = 1 P(B \le 5) = 1$ -pbinom(5, 7, 0.15)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• 6.948281e-05 = $0.00006948281 \approx 0.0001$

- *p*-value method is more informative
- p-val: 'true' Type-I error for rejecting the null
- If p-value is extremely small, one can reject H_0 at basically no risk

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

- o binom.test
- ?binom.test
- binom.test(x, n, p = 0.5, alternative =
 c("two.sided", "less", "greater"), conf.level =
 0.95)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• binom.test(6, 7, .15, "greater")

- parametric
- $\bullet \ \longrightarrow {\sf many \ nonparametric \ methods}$
- Those three assumptions (i.i.d. + Bernoulli) lead to Binomial problem
- In NSM, it is said to be a distribution-free test (Comment 2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Large Sample Test

- B is asymptotically normal (CLT)
- Previous nonparametric test is exact
- This test will be approximate (OK for large samples)
- Under *H*₀:
 - $E(B) = np_0$
 - $var(B) = np_0(1 p_0)$
- Standardize B

$$B^* = \frac{B - np_0}{\sqrt{np_0(1 - p_0)}}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- B* approximately normal(0, 1)
- Critical values are now z_{lpha} (A.1)

Large Sample Test

- Example 2.2
- 50 taste tests
- Success correctly identified flavor
- 25 successes
- Is probability of success greater than 1/3?
- (iid assumption valid? panelists: independent & homogenous judges)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Large Sample Test

$$H_0: p = 1/3$$

 $H_1: p > 1/3$

•
$$B = 25, n = 50, p_0 = 1/3$$

- Set $\alpha = 0.05$
- Table A.1 $\Rightarrow z_{\alpha} = 1.645$
- qnorm(.95, 0, 1) = 1.644854
- Reject H_0 since $B^* = 2.5 \ge z_{\alpha}$
- p-value: pnorm(2.5, 0, 1, lower.tail=F) =
 0.006209665

- $\alpha = P(\text{reject } H_0 | H_0 \text{ true}) = \text{Type I error}$
- $\beta = P(\text{do not reject } H_0 | H_0 \text{ false}) = \text{Type II error}$
- Power = $1 \beta = P(\text{reject } H_0 | H_0 \text{ false})$
- Consistent test has power ightarrow 1 as $n
 ightarrow\infty$
- Power varies based on conditional event: H_0 false
- Many ways for H_0 to be false, one way for it to be true

$$H_0: p = 0.4$$

 $H_1: p > 0.4$

- $\alpha = 0.0085 \Rightarrow$ reject null if $B \ge 7$
- Suppose p = 0.5, the null is false
- Power = $P(B \ge 7|p = 0.5) = 0.0352$ (A.2)
- $\beta = 1 \text{power} = 0.9648 \text{ (R: 1-pbinom(6, 8, .5))}$

- Try different α
- $\alpha = 0.0498 \Rightarrow$ reject null if $B \ge 6$
- Suppose p = 0.5, the null is false
- Power = $P(B \ge 6|p = 0.5) = 0.1445$ (A.2)

(日) (문) (문) (문) (문)

- $\beta = 1-$ power = 0.8554 ($\gg \alpha \approx 0.05$)
- $\bullet \ \alpha \uparrow, \beta \downarrow$

- $n = 50, \alpha = 0.05$ (taste test)
- Suppose p = 0.6, the null is false

$$\frac{B-(50)(0.6)}{\sqrt{(50)(0.6)(0.4)}}$$

is (asymptotically) normal(0, 1)

$$B^* = \frac{B - (50)(1/3)}{\sqrt{(50)(1/3)(2/3)}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

is (asymptotically) normal, but not standard

Power =
$$P(B^* > 1.645 | p = 0.6)$$

= $P_{0.6} \left(\frac{B - (50)(1/3)}{\sqrt{(50)(1/3)(2/3)}} > 1.645 \right)$
= $P_{0.6} \left(B > \underbrace{(50)(1/3) + (1.645)\sqrt{(50)(1/3)(2/3)}}_{x} \right)$
= $P_{0.6} \left(\frac{B - (50)(0.6)}{\sqrt{(50)(0.6)(0.4)}} > \frac{x - (50)(0.6)}{\sqrt{(50)(0.6)(0.4)}} \right)$
 $\approx P(Z > -2.27) = 0.9884$

(□) (@) (E) (E) (E)

Note that n is large here

- Point estimate: $\hat{p} = B/n$
- $E(\hat{p}) = p$ (unbiased)

•
$$\operatorname{var}(\hat{p}) = \frac{p(1-p)}{n}$$
, $\operatorname{sd}(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$

- Don't know p
- Standard error:

$$\hat{\mathsf{sd}}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Reducing error of \hat{p}
- Want $|p \hat{p}| < D$ with probability 1α
- Increase n
- Problem: How much? (Sample size determination)
- Asymptotically, we have

$$P\left(-z_{\alpha/2} < \frac{\hat{p}-p}{\sqrt{p(1-p)/n}} < z_{\alpha/2}
ight) = 1-lpha$$

• Or,

$$z_{\alpha/2} = \frac{D}{\sqrt{p(1-p)/n}}$$

• Choose *n* such that

$$n=\frac{p(1-p)z_{\alpha/2}^2}{D^2}$$

• Don't know p, substitute in worst case, p = 1/2

$$n = \frac{z_{\alpha/2}^2}{4D^2}$$

(中) (문) (문) (문) (문)

Interval estimate

$$P(p_L(\alpha)$$

- Use Table A.3 (not necessarily symmetric; exact) (Clopper-Pearson)
- Asymptotically,

$$P\left(-z_{\alpha/2} < \frac{p-\hat{p}}{\sqrt{p(1-p)/n}} < z_{\alpha/2}\right) = 1-\alpha$$

• This gives

$$p_L(\alpha) = \hat{p} - z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$
$$p_U(\alpha) = \hat{p} + z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Approximate, may be outside (0, 1)

- binom.test(6, 7, .15, "two.sided")
 [0.4212768, 0.9963897]
- binom.test(6, 7, .15, "greater", conf.level=.90)
 [0.5474351, 1.0000000]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで