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Possible Course Flow

» Estimating success probabilities
> Single location: estimates, tests, intervals

» Two locations: testing, estimating differences between
locations

» Scale comparisons

» Multiple locations and factors
» Independence

» Nonparametric regression

» Other topics ...



Multiple Location

>

Compared two population centers via locations (medians) in
chapter 4

Now, compare multiple locations
Parametric equivalent is analysis of variance (ANOVA)

ANOVA assumes means exist, variances exist, data follows
particular distribution



Problem Setup

v

k populations (treatments)

v

k — 1 treatments and 1 control

v

In first case, looking for differences in locations

v

Second case compares treatments to control

v

Also want to compare all k treatments to each other



Assumptions

> N = Zjlle n;, n; observations from jth treatment

» All N observations are independent

> X1, X2y .- 7X,,J.,J- are data from treatment j, following
continuous distribution F;

» Fi(t) = F(t—1;), te(—o0,00), j=1,2,...,k where F is
a continuous distribution function with unknown median 6

» 7; is the treatment effect for population j
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Assumptions

» This corresponds to the parametric one-way ANOVA
X,'J :6’—}-7']—}-5,'71', = 1,2,...,[7], ji=12,...,k

0 is overall median

v

v

7j is the treatment j effect

v

Errors ¢; ; are iid with median 0 from continuous distribution

v

If errors are normally distributed, then medians = means = 0,
constant variance



Kruskal - Wallis Test

» No difference among treatment effects 7;
Hy:mi=m=- =7k
or,
Hy:FR=FH=---=F,=F

» Only difference is in medians, all have same scale



Kruskal - Wallis Test

» Alternative

Hi : Not Hy

> At least one treatment effect is different, 74, - - -

equal

, Tk not all



Kruskal - Wallis Test

» Order the N combined sample values X; ;
» Get ranks rij

» For each j, set

i=1

and
Rj = Ri/nj

» R, is the average rank for sample from treatment



Kruskal - Wallis Test

» Test statistic:

k 2

12 N-+1

- -
H N(N+1)Z”f< i >

or,

k p2
12 R;
H=|——— L] -3(N+1
N(N+ 1) Z nj ( + )
» Second slightly easier if doing this by hand
> Reject Hy if H > h,
» Exact null distribution available. See Table A.12 (k = 3,4,5)



Kruskal - Wallis Test
» Why MHL?

» Motivation: under Hp, the average rank of the jth population
should be close to (N + 1)/2 for any j

» Note: k = 2 is equivalent to Wilcoxon rank-sum test



Kruskal - Wallis Test

» Large sample approximation
> min n; — o0

» Hexgoy

Reject Hp if H > Xi—La
Chart A.2 (from 1944)

v

v



» Use R when possible

pchisq(q, df, ncp=0, lower.tail=T) = P(x% < q)
pchisq(1, 4, ncp=0, lower.tail=F) = P(x3 >1)

qchisq(p, df, ncp=0, lower.tail=T) =gq
= P(xgr < q)=p

gchisq(.05, 4, lower.tail=F)=0.710723
= P(x3 > 0.710723) = 0.05



Kruskal - Wallis Test

» Continuous = No ties, strictly increasing ranks
» Ties will occur in practice

» Give each group in tie the average of the scores



Kruskal - Wallis Test
» Modify H
H

3_ 4
1— g 5y
j=1 N3—N

» H is computed as before with average ranks

H =

v

g is the number of tied groups

v

tj is the size of tie group j
Untied observation is a tie group of size t; =1
If no ties, g = N, tj3 =ti=1,and H' =H

v

v

» Approximately a level-a test



Kruskal - Wallis Test
» R

» kruskal.test(x, g)

» x is the vector of all the data, each treatment sample laid
end-to-end

> g is the vector specifying which treatment the data belongs to



Kruskal - Wallis Test
» Imagine 3 treatments with ny =3, my =4,n3 =4
» Treatment 1 data: 3, 4, 4
> Treatment 2 data: 4, 4, 5, 4
> Treatment 3 data: 1, 2, 2, 4
» Then set x=c(3, 4, 4, 4, 4, 5, 4, 1, 2, 2, 4)

> The corresponding g is g=c(1, 1, 1, 2, 2, 2, 2, 3, 3,
3, 3)

» Or, g=c(rep(1, 3), rep(2, 4), rep(3, 4))



Kruskal - Wallis Test

» Use R
» Understand output

» The limitations of the assumptions



Other Alternatives
» Ordered alternative
» Jonckheere-Terpstra trend test

Hiim << <ry

» JT.test in R package SAGx,
» Has large sample approximation (normal)
> 6.2

» Umbrella alternatives

> Hl:7_1§7_2§"'§Tp71STpZTp+12"'

» p (peak) fixed or unspecified
» 6.3

» Skip



Control vs. Treatment

» Assume one of the treatments is a control (j = 1)
Hy:mi=m, i=2,3,...,k

» Same null as before

» Test statistic
k nj
=33
j=2 i=1

> Fligner - Wolfe



Control vs. Treatment
» We're adding the ranks of treatments 2,3, ..., k with respect
to all k treatments
» Two sample rank-sum test!
» X is the n; samples from control

» Y is the N* = N — n; samples from other treatments



Control vs. Treatment

» One-sided test
Hl:TiZTla ’:2737 7k

» Reject Hy when FW > f,
» To use A.6 (which assumes n < m)
» If gy > N* then f, = wy (m = ny,n= N*)(A.6)
» If ny < N* then
(N —2n1)(N +1)
2

/
fo = w,

where w/, comes from A.6 with m = N* and n=n,
» Why?



Control vs. Treatment

» One-sided test

Hl:TiéTla I:2737

» Reject Hy when FW < N*(N + 1) — £,



Control vs. Treatment
» Large sample approximation
> E(Fw) = M0
» var(FW) = %

x _ FW_EFW _
> P = P ~ N0, 1)



Control vs. Treatment

> Ties ...

v

Average ranks

v

Approximately level o

v

Modify variance in large sample approximation



Multiple Comparisons

v

Suppose the null was rejected in Kruskal - Wallis test

v

Which treatments show differences?

v

Look at all pair-wise comparisons

v

Many of them:

v

Two-sided



Multiple Comparisons
» For each pair (i),

nj
VV;,J'ZZR:',m 1<i<j<k
b—1

v

R; p are the ranks of the sample from treatment j with respect
to the combined sample of treatments / and j

v

W; j: Wilcoxon rank sum of the jth sample in the joint
two-sample ranking of the j-th and j-th sample observations

k(k{l) of these W; ;

Problem: control the familywise error rate

v

v



Multiple Comparisons

» Goal: control the familywise error rate (overall Type-| error)
> Why? Consider m = 100 independent tests, each with
significance level a = 0.05
» P(at least one false positive|Hp) =1 — (1 — )™ = 0.994 >
0.05
» E(# of false positives|Hy) = ma =5 due to chance!

When m is large (gene microarray analysis ~ 10k, 100k), choosing
a = 0.05 does not have a good control of the (familywise) Type-|
error, and results in too many false positives.



Multiple Comparisons

> Set
ni(nij+n;+1
e, Wi =
1, T ) )
nlnj(nl+nj+1)
24
» /2x standardarized Wi

> « is the experiment-wise rate (familywise error rate, FWER)

v

P(at least 1 type | error among all pair-wise comparisons) = «

» P(making all correct decisions|Hp is true) =1 — «



Multiple Comparisons

» For each pair of treatments 7, 7,

r AT WG] > W

v

P(IW,,| < w; for all pairs u,v|Hp) =1 -«
Table A.16 (exact but small)
> Ties ... average ranks ... modify variance ...

v

Distribution free due to the use of Wilcoxon test

v



Limitations of the D-S-C-F Multiple Comparison Procedure
» Table A.16 limited use (k <3 and n; <7)
» Depend on the distribution of Wilcoxon rank-sum statistic

(though independent of the data distribution), not general for
multiple comparisons

» FWER may be very conservative. Hard to tabulate for other
criteria (such as FDR)



Multiple Comparisons

» Large sample approximation
> min n;j — o0
. d .
» Asymptotically, max,<, |W,,| = range of k independent

standard normal random variables, i.e.,
maxi<u<v<k |Zu — Zy|, where Z; are iid ~ N(0,1)

> Ry ={mu # 7 if W] | > qa}
> q,: Table A.17



More General Procedures for Multiple Comparisons
» Bonferroni
» Holm

» Benjamini-Hochberg

The error control will be approximate, but you are free to use any
test for each comparison



Bonferroni Procedure

P(at least one false prositive) < P(reject 1|Hp) + P(reject 2|Hp)
+ -+ P(reject m|Hp)

» FWER control: P(at least one false prositive) < «
> P(reject j|Hp) < a/m Vj suffices
> For example, if you have 50 hypothesis tests, and want

FWER < 0.05, Bonferroni's choice is 0.05/50 = le — 3 as the
significance level for each test

» Extremely conservative for large m
» May fail to identify true positives (Type-Il error large)

» Other alternatives possible?



Holm Procedure
Given the FWER bound « (say 0.05)

» Order the p-values. WLOG, assume p1 < pp < -+ < pm
» Compare p; to o, p2 to %5, --+, pj to %1—] -o, Pm to @

> Let jo be the first index such that p; > 1<j<m

m+1 -’
> Reject 1,2, -+ ,jo — 1. Accept jo, -+, m.

» Stepwise (or sequential)

» Always dominates Bonferroni

» Still not powerful enough to detect all positives (due to the
FWER)



False Discovery Rate

# of false rejected

> A better control: # of rejected in total

FWER = P(# of false rejected > 0)

= E {1# of false rejected>o]

EDR — E [ # of false rejected ]

# of rejected in total



False Discovery Rate

Accepted Rejected
Hy true U 74 mg
Hy true S T my
w R

FWER = P(V > 0) = E[ly~o] while FDR = E [%]
Obviously, FDR < FWER. Less stringent and more meaningful.



Benjamini-Hochberg Procedure
To have FDR control < «

» Order the p-values. WLOG, assume p1 < pp < --- < pmy

» Compare p; to %a, p2 to %a,--~,pj to Za, -+, pm to

v

Let jo be the first index such that p; > La, 1 <j < m.

v

Re.jeCt 17 27 e 7.j0 -1 ACCGpt _jO, e, m.

v

For dependent tests, replace a by #
17

FDR is more appropriate than FWER in multiple hypothesis testing
(comparison). FDR procedures (BH) are more powerful.



Others
» g-value (Storey 2003)
» Empirical null, Local FDR (Efron 2004)
» k-FWER (Romano 2005)
> .

A lot of R packages



Multiple Comparisons

» Can do multiple comparison for ordered alternatives (6.6)
» Can do multiple comparison for treatments vs. control (6.7)

» Can estimate linear combinations of treatments (contrasts)
and obtain confidence intervals for these contrasts (6.8, 6.9)

» Skip



Chapter 7

v

Chapter 6 is one-way model

v

One effect - 7;

v

Chapter 7 examines two-way models

Two effects: treatment and block

v



