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Possible Course Flow

I Estimating success probabilities

I Single location: estimates, tests, intervals

I Two locations: testing, estimating differences between
locations

I Scale comparisons

I Multiple locations and factors

I Independence

I Nonparametric regression

I Other topics ...



Multiple Location

I Compared two population centers via locations (medians) in
chapter 4

I Now, compare multiple locations

I Parametric equivalent is analysis of variance (ANOVA)

I ANOVA assumes means exist, variances exist, data follows
particular distribution



Problem Setup

I k populations (treatments)

I k − 1 treatments and 1 control

I In first case, looking for differences in locations

I Second case compares treatments to control

I Also want to compare all k treatments to each other



Assumptions

I N =
∑k

j=1 nj , nj observations from jth treatment

I All N observations are independent

I X1,j ,X2,j , . . . ,Xnj ,j are data from treatment j , following
continuous distribution Fj

I Fj(t) = F (t − τj), t ∈ (−∞,∞), j = 1, 2, . . . , k where F is
a continuous distribution function with unknown median θ

I τj is the treatment effect for population j



X1,1 X1,2 X1,3 · · · X1,k

X2,1 X2,2 X2,3 · · · X2,k

X3,1 X3,2 X3,3 · · · X3,k

X4,2 X4,3 · · · X4,k

X5,2 · · · X5,k

X6,2 · · · X6,k

...
...

Xn2,2
...

Xnk ,k



Assumptions

I This corresponds to the parametric one-way ANOVA

Xi ,j = θ + τj + εi ,j , i = 1, 2, . . . , nj , j = 1, 2, . . . , k

I θ is overall median

I τj is the treatment j effect

I Errors εi ,j are iid with median 0 from continuous distribution

I If errors are normally distributed, then medians = means = 0,
constant variance



Kruskal - Wallis Test

I No difference among treatment effects τj

H0 : τ1 = τ2 = · · · = τk

or,

H0 : F1 = F2 = · · · = Fk = F

I Only difference is in medians, all have same scale



Kruskal - Wallis Test

I Alternative

H1 : Not H0

I At least one treatment effect is different, τ1, · · · , τk not all
equal



Kruskal - Wallis Test

I Order the N combined sample values Xi ,j

I Get ranks ri ,j
I For each j , set

Rj =

nj∑
i=1

ri ,j

and

R·j = Rj/nj

I R·j is the average rank for sample from treatment j



Kruskal - Wallis Test

I Test statistic:

H =
12

N(N + 1)

k∑
j=1

nj

(
R·j −

N + 1

2

)2

or,

H =

 12

N(N + 1)

k∑
j=1

R2
j

nj

− 3(N + 1)

I Second slightly easier if doing this by hand

I Reject H0 if H ≥ hα
I Exact null distribution available. See Table A.12 (k = 3, 4, 5)



Kruskal - Wallis Test

I Why N+1
2 ?

I Motivation: under H0, the average rank of the jth population
should be close to (N + 1)/2 for any j

I Note: k = 2 is equivalent to Wilcoxon rank-sum test



Kruskal - Wallis Test

I Large sample approximation

I min nj →∞
I H ∼ χ2

k−1
I Reject H0 if H ≥ χ2

k−1,α
I Chart A.2 (from 1944)



I Use R when possible

pchisq(q, df, ncp=0, lower.tail=T) = P(χ2
df ≤ q)

pchisq(1, 4, ncp=0, lower.tail=F) = P(χ2
4 > 1)

qchisq(p, df, ncp=0, lower.tail=T) = q

⇒ P(χ2
df ≤ q) = p

qchisq(.05, 4, lower.tail=F)=0.710723

⇒ P(χ2
4 > 0.710723) = 0.05



Kruskal - Wallis Test

I Continuous ⇒ No ties, strictly increasing ranks

I Ties will occur in practice

I Give each group in tie the average of the scores



Kruskal - Wallis Test

I Modify H

H ′ =
H

1−
(∑g

j=1

t3j −tj
N3−N

)
I H is computed as before with average ranks

I g is the number of tied groups

I tj is the size of tie group j

I Untied observation is a tie group of size tj = 1

I If no ties, g = N, t3j = tj = 1, and H ′ = H

I Approximately a level-α test



Kruskal - Wallis Test

I R

I kruskal.test(x, g)

I x is the vector of all the data, each treatment sample laid
end-to-end

I g is the vector specifying which treatment the data belongs to



Kruskal - Wallis Test

I Imagine 3 treatments with n1 = 3, n2 = 4, n3 = 4

I Treatment 1 data: 3, 4, 4

I Treatment 2 data: 4, 4, 5, 4

I Treatment 3 data: 1, 2, 2, 4

I Then set x=c(3, 4, 4, 4, 4, 5, 4, 1, 2, 2, 4)

I The corresponding g is g=c(1, 1, 1, 2, 2, 2, 2, 3, 3,

3, 3)

I Or, g=c(rep(1, 3), rep(2, 4), rep(3, 4))



Kruskal - Wallis Test

I Use R

I Understand output

I The limitations of the assumptions



Other Alternatives
I Ordered alternative

I Jonckheere-Terpstra trend test

H1 : τ1 ≤ τ2 ≤ · · · ≤ τk

I JT.test in R package SAGx,
I Has large sample approximation (normal)
I 6.2

I Umbrella alternatives
I H1 : τ1 ≤ τ2 ≤ · · · ≤ τp−1 ≤ τp ≥ τp+1 ≥ · · · ≥ τk
I p (peak) fixed or unspecified
I 6.3

I Skip



Control vs. Treatment

I Assume one of the treatments is a control (j = 1)

H0 : τi = τ1, i = 2, 3, . . . , k

I Same null as before

I Test statistic

FW =
k∑

j=2

nj∑
i=1

ri ,j

I Fligner - Wolfe



Control vs. Treatment

I We’re adding the ranks of treatments 2, 3, . . . , k with respect
to all k treatments

I Two sample rank-sum test!

I X is the n1 samples from control

I Y is the N∗ = N − n1 samples from other treatments



Control vs. Treatment

I One-sided test

H1 : τi ≥ τ1, i = 2, 3, · · · , k

I Reject H0 when FW ≥ fα
I To use A.6 (which assumes n ≤ m)

I If n1 ≥ N∗ then fα = wα (m = n1, n = N∗)(A.6)
I If n1 < N∗ then

fα = w ′α +
(N − 2n1)(N + 1)

2

where w ′α comes from A.6 with m = N∗ and n = n1
I Why?



Control vs. Treatment

I One-sided test

H1 : τi ≤ τ1, i = 2, 3, · · · , k

I Reject H0 when FW ≤ N∗(N + 1)− fα



Control vs. Treatment

I Large sample approximation

I E (FW ) = N∗(N+1)
2

I var(FW ) = n1N∗(N+1)
12

I FW ∗ = FW−EFW√
var(FW )

∼ N(0, 1)



Control vs. Treatment

I Ties ...

I Average ranks

I Approximately level α

I Modify variance in large sample approximation



Multiple Comparisons

I Suppose the null was rejected in Kruskal - Wallis test

I Which treatments show differences?

I Look at all pair-wise comparisons

I Many of them:  k

2

 =
k(k − 1)

2

I Two-sided



Multiple Comparisons

I For each pair (i , j),

Wi ,j =

nj∑
b=1

Ri ,b, 1 ≤ i < j ≤ k

I Ri ,b are the ranks of the sample from treatment j with respect
to the combined sample of treatments i and j

I Wi ,j : Wilcoxon rank sum of the jth sample in the joint
two-sample ranking of the i-th and j-th sample observations

I k(k−1)
2 of these Wi ,j

I Problem: control the familywise error rate



Multiple Comparisons

I Goal: control the familywise error rate (overall Type-I error)
I Why? Consider m = 100 independent tests, each with

significance level α = 0.05
I P(at least one false positive|H0) = 1− (1− α)m = 0.994�

0.05
I E (# of false positives|H0) = mα = 5 due to chance!

When m is large (gene microarray analysis ∼ 10k , 100k), choosing
α = 0.05 does not have a good control of the (familywise) Type-I
error, and results in too many false positives.



Multiple Comparisons

I Set

W ∗
i ,j =

Wi ,j −
nj (ni+nj+1)

2√
ninj (ni+nj+1)

24

I
√

2× standardarized Wi ,j

I α is the experiment-wise rate (familywise error rate, FWER)

I P(at least 1 type I error among all pair-wise comparisons) = α

I P(making all correct decisions|H0 is true) = 1− α



Multiple Comparisons

I For each pair of treatments τu, τv

τu 6= τv if |W ∗
u,v | ≥ w∗α

I P(|W ∗
u,v | < w∗α for all pairs u, v |H0) = 1− α

I Table A.16 (exact but small)

I Ties ... average ranks ... modify variance ...

I Distribution free due to the use of Wilcoxon test



Limitations of the D-S-C-F Multiple Comparison Procedure

I Table A.16 limited use (k ≤ 3 and ni ≤ 7)

I Depend on the distribution of Wilcoxon rank-sum statistic
(though independent of the data distribution), not general for
multiple comparisons

I FWER may be very conservative. Hard to tabulate for other
criteria (such as FDR)



Multiple Comparisons

I Large sample approximation

I min nj →∞

I Asymptotically, maxu<v |W ∗
u,v |

d
= range of k independent

standard normal random variables, i.e.,
max1≤u<v≤k |Zu − Zv |, where Zi are iid ∼ N(0, 1)

I Ru,v = {τu 6= τv if |W ∗
u,v | ≥ qα}

I qα: Table A.17



More General Procedures for Multiple Comparisons

I Bonferroni

I Holm

I Benjamini-Hochberg

The error control will be approximate, but you are free to use any
test for each comparison



Bonferroni Procedure

P(at least one false prositive) ≤ P(reject 1|H0) + P(reject 2|H0)

+ · · ·+ P(reject m|H0)

I FWER control: P(at least one false prositive) ≤ α
I P(reject j |H0) ≤ α/m ∀j suffices

I For example, if you have 50 hypothesis tests, and want
FWER ≤ 0.05, Bonferroni’s choice is 0.05/50 = 1e − 3 as the
significance level for each test

I Extremely conservative for large m

I May fail to identify true positives (Type-II error large)

I Other alternatives possible?



Holm Procedure
Given the FWER bound α (say 0.05)

I Order the p-values. WLOG, assume p1 ≤ p2 ≤ · · · ≤ pm
I Compare p1 to α

m , p2 to α
m−1 , · · · , pj to α

m+1−j , · · · , pm to α

I Let j0 be the first index such that pj >
α

m+1−j , 1 ≤ j ≤ m.

I Reject 1, 2, · · · , j0 − 1. Accept j0, · · · ,m.

I Stepwise (or sequential)

I Always dominates Bonferroni

I Still not powerful enough to detect all positives (due to the
FWER)



False Discovery Rate

I A better control: # of false rejected
# of rejected in total

FWER = P(# of false rejected > 0)

= E
[
1# of false rejected>0

]

FDR = E

[
# of false rejected

# of rejected in total

]



False Discovery Rate

Accepted Rejected

H0 true U V m0

H1 true S T m1

W R

FWER = P(V > 0) = E [1V>0] while FDR = E
[
V
R

]
.

Obviously, FDR ≤ FWER. Less stringent and more meaningful.



Benjamini-Hochberg Procedure
To have FDR control ≤ α

I Order the p-values. WLOG, assume p1 ≤ p2 ≤ · · · ≤ pm
I Compare p1 to 1

mα, p2 to 2
mα, · · · , pj to j

mα, · · · , pm to α

I Let j0 be the first index such that pj >
j
mα, 1 ≤ j ≤ m.

I Reject 1, 2, · · · , j0 − 1. Accept j0, · · · ,m.

I For dependent tests, replace α by α∑m
1

1
i

FDR is more appropriate than FWER in multiple hypothesis testing
(comparison). FDR procedures (BH) are more powerful.



Others

I q-value (Storey 2003)

I Empirical null, Local FDR (Efron 2004)

I k-FWER (Romano 2005)

I ...

A lot of R packages



Multiple Comparisons

I Can do multiple comparison for ordered alternatives (6.6)

I Can do multiple comparison for treatments vs. control (6.7)

I Can estimate linear combinations of treatments (contrasts)
and obtain confidence intervals for these contrasts (6.8, 6.9)

I Skip



Chapter 7

I Chapter 6 is one-way model

I One effect - τj
I Chapter 7 examines two-way models

I Two effects: treatment and block


