(Score Data): Principal Factor Method with Varimax Rotation
The FACTOR Procedure
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
Eigenvalue
Difference
Proportion
Cumulative
1
2.73288407
1.60311371
0.4555
0.4555
2
1.12977037
0.51459650
0.1883
0.6438
3
0.61517387
0.01395199
0.1025
0.7463
4
0.60122188
0.07642497
0.1002
0.8465
5
0.52479691
0.12864401
0.0875
0.9340
6
0.39615290
0.0660
1.0000
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
Factor1
Factor2
x1
Gaelic
0.65782
0.44905
x2
English
0.68842
0.29039
x3
History
0.51737
0.63734
x4
Artimethic
0.73831
-0.41303
x5
Algebra
0.74388
-0.37545
x6
Geometry
0.67831
-0.35501
Variance Explained by Each Factor
Factor1
Factor2
2.7328841
1.1297704
Final Communality Estimates: Total = 3.862654
x1
x2
x3
x4
x5
x6
0.63437428
0.55824594
0.67387364
0.71570325
0.69431309
0.58614424
Residual Correlations With Uniqueness on the Diagonal
x1
x2
x3
x4
x5
x6
x1
Gaelic
0.36563
-0.14426
-0.21653
-0.01221
0.00826
-0.03879
x2
English
-0.14426
0.44175
-0.19024
-0.03433
-0.08307
-0.03487
x3
History
-0.21653
-0.19024
0.32613
0.04526
0.04443
0.05633
x4
Artimethic
-0.01221
-0.03433
0.04526
0.28430
-0.10929
-0.17744
x5
Algebra
0.00826
-0.08307
0.04443
-0.10929
0.30569
-0.17387
x6
Geometry
-0.03879
-0.03487
0.05633
-0.17744
-0.17387
0.41386
Root Mean Square Off-Diagonal Residuals: Overall = 0.11423990
x1
x2
x3
x4
x5
x6
0.11782884
0.11514955
0.13436892
0.09675217
0.10111151
0.11628388
Partial Correlations Controlling Factors
x1
x2
x3
x4
x5
x6
x1
Gaelic
1.00000
-0.35894
-0.62707
-0.03786
0.02470
-0.09972
x2
English
-0.35894
1.00000
-0.50122
-0.09687
-0.22606
-0.08155
x3
History
-0.62707
-0.50122
1.00000
0.14865
0.14073
0.15333
x4
Artimethic
-0.03786
-0.09687
0.14865
1.00000
-0.37072
-0.51730
x5
Algebra
0.02470
-0.22606
0.14073
-0.37072
1.00000
-0.48884
x6
Geometry
-0.09972
-0.08155
0.15333
-0.51730
-0.48884
1.00000
Root Mean Square Off-Diagonal Partials: Overall = 0.32267554
x1
x2
x3
x4
x5
x6
0.32681445
0.29906281
0.37678621
0.29595406
0.29930154
0.33065500
(Score Data): Principal Factor Method with Varimax Rotation
The FACTOR Procedure
Initial Factor Method: Principal Components
Plot of Factor Pattern for Factor1 and Factor2
Factor1
1
.9
.8
DE
F .7 B
A
.6
.5 C
.4
.3
.2
F
.1 a
c
-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t
o
-.1 r
2
-.2
-.3
-.4
-.5
-.6
-.7
-.8
-.9
-1
x1=A x2=B x3=C x4=D x5=E x6=F
(Score Data): Principal Factor Method with Varimax Rotation
The FACTOR Procedure
Rotation Method: Varimax
Orthogonal Transformation Matrix
1
2
1
0.77441
0.63269
2
-0.63269
0.77441
Rotated Factor Pattern
Factor1
Factor2
x1
Gaelic
0.22531
0.76394
x2
English
0.34939
0.66044
x3
History
-0.00259
0.82089
x4
Artimethic
0.83308
0.14727
x5
Algebra
0.81360
0.17989
x6
Geometry
0.74990
0.15424
Variance Explained by Each Factor
Factor1
Factor2
2.0911641
1.7714904
Final Communality Estimates: Total = 3.862654
x1
x2
x3
x4
x5
x6
0.63437428
0.55824594
0.67387364
0.71570325
0.69431309
0.58614424
(Score Data): Principal Factor Method with Varimax Rotation
The FACTOR Procedure
Rotation Method: Varimax
Plot of Factor Pattern for Factor1 and Factor2
Factor1
1
.9
D
.8 E
F
.7
.6
.5
.4
B
.3
A
.2
F
.1 a
c
-1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .C .9 1.0t
o
-.1 r
2
-.2
-.3
-.4
-.5
-.6
-.7
-.8
-.9
-1
x1=A x2=B x3=C x4=D x5=E x6=F