STA437/STA1005 Fall 2005 Assignment 1

- 1) 2.9.15 p52 Let **x** be $N_3(\mu, \Sigma)$ with $\mu' = [5, 10, 2]$ and $\Sigma = \begin{bmatrix} 4 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. a) What is the conditional distribution of x_2 and x_3 given x_1 ?
- b) What is the conditional distribution of $(x_1 + x_2, x_1 x_2)$ given x_3 ?
- c) What is the distribution of $A\mathbf{x}$, where $A = A = \begin{bmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$?

(5 marks)

2) 2.9.27 p55

Let **x** be
$$N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 with $\boldsymbol{\mu}' = [5, 10, 2]$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & 1 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 1 \end{bmatrix}$.

Find the distribution of

- a) $x_1 x_2$,
- b) $x_1 + x_2 + x_3$
- c) (x_1, x_2) , the joint distribution of x_1, x_2 .
- d) $(x_1, x_2 | x_3)$, the conditional distribution of x_1, x_2 given x_3 . (5 marks)
- 3) Let **x** be $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}' = [-3, 1, 4]$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Which of the following variables are independent? Why?

a) X₁ and X₂
b) X₂ and X₃
c) (X₁, X₂) and X₃
d) X₂ and X₂-2.5 X₁-X₃

(5 marks)

4) The files, assign1dat1.txt, assign1dat2.txt and assign1dat3.txt (on course web page) contain generated multivariate data on three variables. I have also included a few outliers in these data sets. Use the methods we have discussed in lectures to identify these outlier. Test whether data are from a multivariate normal distribution. (Use data file assign1dat1.txt if your last name begins with A-E, assign1dat2.txt if your last name begins with F-N, and assign1dat3.txt if your last name begins with O-Z.)

(10 marks)