The FACTOR Procedure
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of
the Correlation Matrix: Total |
||||
|
Eigenvalue |
Difference |
Proportion |
Cumulative |
1 |
2.43761478 |
1.03135359 |
0.4875 |
0.4875 |
2 |
1.40626120 |
0.90607546 |
0.2813 |
0.7688 |
3 |
0.50018573 |
0.10015292 |
0.1000 |
0.8688 |
4 |
0.40003281 |
0.14412732 |
0.0800 |
0.9488 |
5 |
0.25590548 |
|
0.0512 |
1.0000 |
2 factors will be retained by the NFACTOR criterion.
Variance
Explained by Each |
|
Factor1 |
Factor2 |
2.4376148 |
1.4062612 |
Final
Communality Estimates: Total = 3.843876 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.72689087 |
0.76910539 |
0.66748055 |
0.84699821 |
0.83340095 |
Residual
Correlations With Uniqueness on the Diagonal |
|||||
|
x1 |
x2 |
x3 |
x4 |
x5 |
x1 |
0.27311 |
-0.09903 |
-0.18424 |
-0.02545 |
0.05580 |
x2 |
-0.09903 |
0.23089 |
-0.13444 |
0.01401 |
-0.05352 |
x3 |
-0.18424 |
-0.13444 |
0.33252 |
0.00323 |
0.00568 |
x4 |
-0.02545 |
0.01401 |
0.00323 |
0.15300 |
-0.15603 |
x5 |
0.05580 |
-0.05352 |
0.00568 |
-0.15603 |
0.16660 |
Root Mean
Square Off-Diagonal Residuals: Overall = 0.09645329 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.10898520 |
0.08794901 |
0.11408265 |
0.07937147 |
0.08711316 |
Partial
Correlations Controlling Factors |
|||||
|
x1 |
x2 |
x3 |
x4 |
x5 |
x1 |
1.00000 |
-0.39436 |
-0.61137 |
-0.12448 |
0.26158 |
x2 |
-0.39436 |
1.00000 |
-0.48518 |
0.07452 |
-0.27286 |
x3 |
-0.61137 |
-0.48518 |
1.00000 |
0.01434 |
0.02414 |
x4 |
-0.12448 |
0.07452 |
0.01434 |
1.00000 |
-0.97729 |
x5 |
0.26158 |
-0.27286 |
0.02414 |
-0.97729 |
1.00000 |
Root Mean
Square Off-Diagonal Partials: Overall = 0.43410706 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.39153754 |
0.34311832 |
0.39049831 |
0.49405058 |
0.52405910 |
The FACTOR Procedure
Initial Factor Method: Principal Components
Plot of Factor Pattern for Factor1 and Factor2 Factor1 1 .9 B .8 A C .7 .6 D E .5 .4 .3 .2 F .1 a c -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t o -.1 r 2 -.2 -.3 -.4 -.5 -.6 -.7 -.8 -.9 -1 x1=A x2=B x3=C x4=D x5=E |
The FACTOR Procedure
Rotation Method: Varimax
Orthogonal
Transformation Matrix |
||
|
1 |
2 |
1 |
0.84070 |
0.54150 |
2 |
-0.54150 |
0.84070 |
Rotated Factor Pattern |
||
|
Factor1 |
Factor2 |
x1 |
0.85205 |
0.03002 |
x2 |
0.85042 |
0.21424 |
x3 |
0.81318 |
0.07886 |
x4 |
0.13275 |
0.91070 |
x5 |
0.08440 |
0.90900 |
Variance
Explained by Each |
|
Factor1 |
Factor2 |
2.1352041 |
1.7086719 |
Final
Communality Estimates: Total = 3.843876 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.72689087 |
0.76910539 |
0.66748055 |
0.84699821 |
0.83340095 |
The FACTOR Procedure
Rotation Method: Varimax
Plot of Factor Pattern for Factor1 and Factor2 Factor1 1 .9 A B .8 C .7 .6 .5 .4 .3 .2 D F .1 E a c -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t o -.1 r 2 -.2 -.3 -.4 -.5 -.6 -.7 -.8 -.9 -1 x1=A x2=B x3=C x4=D x5=E |
The FACTOR Procedure
Initial Factor Method: Maximum Likelihood
Prior
Communality Estimates: SMC |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.45156689 |
0.53347907 |
0.36655825 |
0.51643642 |
0.47767780 |
Preliminary
Eigenvalues: Total = 4.52808758 |
||||
|
Eigenvalue |
Difference |
Proportion |
Cumulative |
1 |
3.67372695 |
1.95722570 |
0.8113 |
0.8113 |
2 |
1.71650125 |
1.86845966 |
0.3791 |
1.1904 |
3 |
-.15195842 |
0.07024376 |
-0.0336 |
1.1568 |
4 |
-.22220217 |
0.26577786 |
-0.0491 |
1.1078 |
5 |
-.48798003 |
|
-0.1078 |
1.0000 |
2 factors will be retained by the NFACTOR criterion.
Convergence criterion satisfied. |
Significance
Tests Based on 10000 Observations |
|||
Test |
DF |
Chi-Square |
Pr > |
H0: No common
factors |
10 |
17393.6805 |
<.0001 |
HA: At least one
common factor |
|
|
|
H0: 2 Factors
are sufficient |
1 |
195.8253 |
<.0001 |
HA: More factors
are needed |
|
|
|
Chi-Square
without Bartlett's Correction |
195.90039 |
Akaike's
Information Criterion |
193.90039 |
Schwarz's
Bayesian Criterion |
186.69005 |
Tucker and
Lewis's Reliability Coefficient |
0.88793 |
Squared
Canonical Correlations |
|
Factor1 |
Factor2 |
1.0000000 |
0.8149733 |
Eigenvalues of
the Weighted Reduced Correlation Matrix: Total = 4.40462521 Average =
1.1011563 |
||||
|
Eigenvalue |
Difference |
Proportion |
Cumulative |
1 |
Infty |
Infty |
|
|
2 |
4.40462638 |
4.26529969 |
1.0000 |
1.0000 |
3 |
0.13932669 |
0.13939470 |
0.0316 |
1.0316 |
4 |
-.00006801 |
0.13919184 |
-0.0000 |
1.0316 |
5 |
-.13925985 |
|
-0.0316 |
1.0000 |
Factor Pattern |
||
|
Factor1 |
Factor2 |
x1 |
0.11500 |
0.75555 |
x2 |
0.32200 |
0.78747 |
x3 |
0.18300 |
0.65195 |
x4 |
1.00000 |
-0.00000 |
x5 |
0.68300 |
0.03281 |
Variance
Explained by Each Factor |
||
Factor |
Weighted |
Unweighted |
Factor1 |
1.34516012 |
1.61688700 |
Factor2 |
4.40462638 |
1.61708744 |
Final
Communality Estimates |
||
Total
Communality: Weighted |
||
Variable |
Communality |
Weight |
x1 |
0.58408551 |
2.40432917 |
x2 |
0.72379091 |
3.62045851 |
x3 |
0.45853266 |
1.84686184 |
x4 |
1.00000000 |
Infty |
x5 |
0.46756536 |
1.87813579 |
Residual
Correlations With Uniqueness on the Diagonal |
|||||
|
x1 |
x2 |
x3 |
x4 |
x5 |
x1 |
0.41591 |
-0.00000 |
-0.00263 |
0.00000 |
0.05167 |
x2 |
-0.00000 |
0.27621 |
0.00168 |
0.00000 |
-0.03276 |
x3 |
-0.00263 |
0.00168 |
0.54147 |
0.00000 |
-0.00038 |
x4 |
0.00000 |
0.00000 |
0.00000 |
0.00000 |
0.00000 |
x5 |
0.05167 |
-0.03276 |
-0.00038 |
0.00000 |
0.53243 |
Root Mean
Square Off-Diagonal Residuals: Overall = 0.01937176 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.02586691 |
0.01640214 |
0.00157232 |
0.00000000 |
0.03058965 |
Partial
Correlations Controlling Factors |
|||||
|
x1 |
x2 |
x3 |
x4 |
x5 |
x1 |
1.00000 |
-0.00001 |
-0.00554 |
0.00000 |
0.10979 |
x2 |
-0.00001 |
1.00000 |
0.00435 |
0.00000 |
-0.08543 |
x3 |
-0.00554 |
0.00435 |
1.00000 |
0.00000 |
-0.00070 |
x4 |
0.00000 |
0.00000 |
0.00000 |
0.00000 |
0.00000 |
x5 |
0.10979 |
-0.08543 |
-0.00070 |
0.00000 |
1.00000 |
Root Mean
Square Off-Diagonal Partials: Overall = 0.04404878 |
||||
x1 |
x2 |
x3 |
x4 |
x5 |
0.05496674 |
0.04276996 |
0.00353966 |
0.00000000 |
0.06955812 |
The FACTOR Procedure
Initial Factor Method: Maximum Likelihood
Plot of Factor Pattern for Factor1 and Factor2 Factor1 D .9 .8 .E .6 .5 .4 .3 B .2 C F .1 A a c -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t o -.1 r 2 -.2 -.3 -.4 -.5 -.6 -.7 -.8 -.9 -1 x1=A x2=B x3=C x4=D x5=E |
The FACTOR Procedure
Rotation Method: Varimax
Orthogonal
Transformation Matrix |
||
|
1 |
2 |
1 |
0.11841 |
0.99297 |
2 |
0.99297 |
-0.11841 |
Rotated Factor Pattern |
||
|
Factor1 |
Factor2 |
x1 |
0.76385 |
0.02473 |
x2 |
0.82006 |
0.22649 |
x3 |
0.66904 |
0.10452 |
x4 |
0.11841 |
0.99297 |
x5 |
0.11345 |
0.67431 |
Variance
Explained by Each Factor |
||
Factor |
Weighted |
Unweighted |
Factor1 |
4.68843713 |
1.73046567 |
Factor2 |
1.06134937 |
1.50350876 |
Final
Communality Estimates |
||
Total
Communality: Weighted |
||
Variable |
Communality |
Weight |
x1 |
0.58408551 |
2.40432917 |
x2 |
0.72379091 |
3.62045851 |
x3 |
0.45853266 |
1.84686184 |
x4 |
1.00000000 |
Infty |
x5 |
0.46756536 |
1.87813579 |
The FACTOR Procedure
Rotation Method: Varimax
Plot of Factor Pattern for Factor1 and Factor2 Factor1 1 .9 .8 B A .7 C .6 .5 .4 .3 .2 F .1 E D a c -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0t o -.1 r 2 -.2 -.3 -.4 -.5 -.6 -.7 -.8 -.9 -1 x1=A x2=B x3=C x4=D x5=E |