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Introduction

Goals

I Goal 1: To describe(graphically or algebraically) the
differential features of objects from several populations
→ Discrimination

I Goal 2: To sort objects into two or more labeled classes,
emphasizing a rule that can be used to assign new objects to
labeled classes → Classification
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Separation and Classification for Two Populations

Example Scenarios

I Good/Poor Credit Risks: measured by income, age, family
size, number of credit cards

I Federalist Papers written by Madison and those written by
Hamilton: measured by freequencies of different words and
sentence length.
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Separation and Classification for Two Populations

Classification: Why are there unknown objects?

How can we be certain about classification of some objects, and
uncertain about others?
When one of these conditions is true:

I Incomplete Knowledge of Future performance

I ”Perfect” information requires destroying the object

I Unavailable or expensive information
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Separation and Classification for Two Populations

The Probability of Misclassification

π1, π2: Two populations, or ’classes’
f1(x), f2(x): Probability density functions associated with the
p× 1 vector rv X for populations π1, π2

R1, R2: Set of x values where we classify objects in π1, π2,
respectively.
Now, the conditional probability of classifying an object in π2

when it is part of π is:

P(2 | 1) = P(X ∈ R2 | π1) =

∫
R2=Ω−R1

f1(x)dx (1)
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Separation and Classification for Two Populations

Overall Probabilities

Let p1, p2 be the prior probabilities of π1, π2 respectively.
p1 + p2 = 1 The overall probabilities are as follows:

I P(observation correctly classified as π1) = P(1 | 1)p1

I P(observation incorrectly classified as π1) = P(1 | 2)p2

I P(observation incorrectly classified as π2) = P(2 | 2)p2
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Separation and Classification for Two Populations

Expected Cost of Misclassification (ECM)

If we evaluate a classification scheme by its misclassification
probabilities, we would not be considering the cost of incorrectly
classifying an object.
Let c(2 | 1) be the cost for misclassifying object 2 in population 1.
Let c(1 | 2) be the cost for misclassifying object 1 in population 2.
The Expected Cost of Misclassification is given by:

ECM = c(2 | 1)P (2 | 1)p1 + c(1 | 2)P (1 | 2)p2 (2)
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Separation and Classification for Two Populations

Minimizing ECM

The regions R1 and R2 that minimize ECM are the values of x
such that the following inequalities hold:

R1 :
f1(x)

f2(x)
≥

c(1 | 2)

c(2 | 1)

p2

p1
(3)

R2 :
f1(x)

f2(x)
<

c(1 | 2)

c(2 | 1)

p2

p1
(4)
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Separation and Classification for Two Populations

Special Cases of Minimum Expected Cost Regions

I When p1/p2 = 1 (equal priors)

R1 :
f1(x)

f2(x)
≥ c(1 | 2)

c(2 | 1)
R2 :

f1(x)

f2(x)
<

c(1 | 2)

c(2 | 1)

I When c(1 | 2)/c(2 | 1) = 1 (equal misclassification costs)

R1 :
f1(x)

f2(x)
≥ p2

p1
R2 :

f1(x)

f2(x)
<

p2

p1
(5)

I When priors and misclassification costs are both equal

R1 :
f1(x)

f2(x)
≥ 1 R2 :

f1(x)

f2(x)
< 1
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Separation and Classification for Two Populations

Example 11.2, page 589

A researcher has enough data available to estimate the density
functions f1(x), f2(x) associated with the population parameters
π1, π2, respectively. Suppose that:

I c(2 | 1) = 5 units

I c(1 | 2) = 10 unit

I Twenty of all objects belong to π2 (this means priors are
p1 = .80, p2 = .20)

What are the classification regions R1,R2? If f1(x0) = .3 and
f2(x0) = .4, in which population do we classify x0?
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Separation and Classification for Two Populations

Example 11.2, continued

R1 :
f1(x)

f2(x)
≥ (

10

5
)(
.2

.8
) = .5

R2 :
f1(x)

f2(x)
< (

10

5
)(
.2

.8
) = .5

And to classify the object:

f1(x)

f2(x)
=
.3

.4
= .75

This result is greater than .5, so we classify it as belonging to π1.
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Separation and Classification for Two Populations

Total Probability of Misclassification (TPM)

If costs are not a concern, you can derive a classification procedure
based entirely off of the total probability of misclassification(TPM):

= P(misclassifying a π1 observation or a π2 observation)

= p1

∫
R2

f1(x) + p2

∫
R1

f2(x)
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Classification with Two Multivariate Normal Populations

When Σ1 = Σ2 = Σ

Let

fi (x) =
1

(2π)p/2 | Σ |1/2
exp[(−1/2)(x− µi)

T Σ−1(x− µi)]

be the joint densities of X′ = [X1,X2, . . . ,Xp]
Then (Result 11.2) allocate X0 to π1 if the following holds:

(µ1 − µ2)T Σ−1x0− (1/2)(µ1−µ2)T Σ−1(µ1 +µi) ≥ ln[
c(1 | 2)

c(2 | 1)

p2

p1
]

Allocate it to π2 otherwise
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Classification with Two Multivariate Normal Populations

Minimum ECM Classification Rule

Let

Spooled =
n1 − 1

(n1 − 1) + (n2 − 1)
S1 +

n2 − 1

(n1 − 1) + (n2 − 1)
S2

Using the statistics instead of parameters(x i for µi , and S-pooled
for Σ), //we arrive at the following rule for minimizing ECM for
Two Normal Populations. We allocate x0 to π1 if:

(x1 − x2)TS−1
pooledx0−

1

2
(x1 − x2)TS−1

pooled(x1+x1) ≥ ln[
c(1 | 2)

c(2 | 1)

p2

p1
]
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Classification with Two Multivariate Normal Populations

When Σ1 6= Σ2

When covariance matrices are not equal, we use a slightly different
formula for classification.

I We no longer used Spooled , now we use S1, S2

I Classification rule calculates to the following. Allocate x0 to
π1 if:

−1

2
xT
0 (S−1

1 − S−1
2 )x0 + (xT

1 S−1
1 − xT

2 S−1
2 )x0 − k ≥ ln[

c(1 | 2)

c(2 | 1)

p2

p1
]

k =
1

2
ln(
| Σ1 |
| Σ2 |

) +
1

2
(µT

1 Σ−1
1 µ1 − µT

2 Σ−1
2 µ2)
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Evaluating Classification Functions

Evaluation

We are concerned with the future performance of a classification
function. There are multiple ways of measuring the effectiveness of
a classification system (as seen in the last section). There are also
multiple ways of evaluating future performance.

I OER

I AER

I APER
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Evaluating Classification Functions

OER

The Optimum Error Rate results from minimizing the Total
Probability of Misclassification.

I Assumes costs of misclassification are equal.

I OER is given by:

= p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx

I R1,R2 are the regions determined from the minimizing the
ECM when costs are equal
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Evaluating Classification Functions

AER

I Actual Error Rate (AER) is similiar to OER, but it deals the
sample classification function

I AER is given by:

= p1

∫
R̂2

f1(x)dx + p2

∫
R̂1

f2(x)dx

I The Regions are given by

R̂1 : (x1 − x2)TS−1
pooledx−1

2
(x1 − x2)TS−1

pooled(x1+x1) ≥ ln[
c(1 | 2)

c(2 | 1)

p2

p1
]

R̂2 : (x1 − x2)TS−1
pooledx−1

2
(x1 − x2)TS−1

pooled(x1+x1) < ln[
c(1 | 2)

c(2 | 1)

p2

p1
]
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Evaluating Classification Functions

APER

Note that AER and OER cannot be usually calculated, since they
depend on unknown density functions f1(x), f2(x).

I We can use the Apparent Error Rate(APER), which is the
fractions of observations in the training set that are
misclassified.

I We can use a confusion matrix to calculate this:

Predicted Membership

π1 π2

Actual π1 n1c n1M = n1 − n1c

membership π2 n2M = n2 − n2C n2C
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Evaluating Classification Functions

APER

I n1C , n2C : number of items correctly classified in groups π1, π2

respectively

I n1M , n2M : number of items incorrectly classified in groups
π1, π2 respectively

APER =
n1M + n2M

n1 + n2
(6)
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Evaluating Classification Functions

Lachenbruch’s ”Holdout” Procedure

The APER tends to underestimate the AER, unless n1, n2 are both
very large. To calculate an error-rate estimate, we can use the
Lachenbruch’s ”holdout” procedure”. AKA: Jacknifing

1. Start with the π1 group of observations, omit one observation,
develop functions

2. Classify the ”holdout” observation

3. Repeat Steps 1 and 2 until all observations are classified. Let

n
(H)
1M be number of misclassifications

4. Repeat Steps 1 through 3 with the π2 observations. Let n
(H)
2M

be number of misclassifications

Now we can estimate conditional misclassification probabilities:

P̂(2 | 1) =
n

(H)
1M

n1
P̂(1 | 2) =

n
(H)
2M

n2
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Evaluating Classification Functions

Ê (AER)

Ê (AER) =
n

(H)
1M + n

(H)
2M

n1 + n2
(7)
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Fisher’s Discriminant Function

Fisher’s Idea

I To use Linear combinations of X to create y’s. âT x

I Assumes equal variance, but does not assume normal
populations
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Fisher’s Discriminant Function

Allocation Rule Based on Fisher

Allocate x0 to π1 if

ŷ0 = (x1 − x2)T S−1
pooledx0 ≥ m̂ =

1

2
(x1 − x2)T S−1

pooled(x1 + x2)
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