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One-Factor Interest-Rate Models and the Valuation 
of Interest-Rate Derivative Securities 

John Hull and Alan White* 

Abstract 
This paper compares different approaches to developing arbitrage-free models of the term 
structure. It presents a numerical procedure that can be used to construct a wide range of 
one-factor models of the short rate that are both Markov and consistent with the initial term 
structure of interest rates. 

I. Introduction 

During the last 15 years, there have been many attempts to describe yield 
curve movements using a one-factor model. The traditional approach has been 
to propose a plausible model for the short-term interest rate and deduce from 
the model the current yield curve and the way it can evolve. The parameters of 
the model are then chosen so that it reflects market data as closely as possible. 
Examples of this approach are provided by the work of Vasicek (1977), Dothan 
(1978), Courtadon (1982), and Cox, Ingersoll, and Ross (1985). Recently some 
researchers have adopted a different approach. They have taken market data, such 
as the current term structure of interest rates, as given, and have developed a no- 
arbitrage yield curve model so that it is perfectly consistent with the data. The 
main purpose of this paper is to provide some general procedures that can be used 
when this second approach is adopted. 

Ho and Lee (1986) were pioneers in the development of no-arbitrage yield 
curve models. Their model, which was presented in the form of a binomial tree for 
discount bond prices, provides an exact fit to the current term structure of interest 
rates. An alternative to the Ho and Lee model was proposed by Black, Derman, 
and Toy (1990), who use a binomial tree to construct a one-factor model of the 
short rate that fits the current volatilities of all discount bond yields as well as the 
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current term structure of interest rates. Hull and White (1990b) suggest two one- 
factor models of the short rate that are also capable of fitting both current discount 
bond yield volatilities and the current term structure of interest rates. They show 
how the parameters of the process followed by the short-term interest rate in the 
models can be determined from the market data. The continuous time version 
of the Ho and Lee model is a particular case of one of the models considered by 
Hull and White. Heath, Jarrow, and Morton (1990), (1992) consider the process 
followed by instantaneous forward rates and provide general results that must hold 
for all arbitrage-free yield curve models. 

This brief review of the literature reveals that there have been three main 
approaches to constructing arbitrage-free models of the term structure. These 
involve modeling discount bond prices, modeling instantaneous forward rates, and 
modeling the short rate. This paper starts by explaining the relationship among 
the three approaches. Attention is then restricted to one-factor models where the 
short rate is Markov. A general numerical procedure is presented involving the 
use of trinomial trees for constructing these models so that they are consistent with 
initial market data. 

The procedure proposed in this paper is robust and efficient. It provides a 
convenient way of implementing models that have already been suggested in the 
literature, such as the extended-Vasicek and extended-CIR models in Hull and 
White (1990b) and the lognormal interest rate model in Black and Karasinski 
(1991). It also enables many other new models to be developed and implemented. 
The procedure provides an easy way for academics and practitioners to test the 
effect of a wide range of different assumptions about the interest-rate process on 
the prices of interest-rate derivatives. It is important to be able to do this because 
there is no general agreement on which set of assumptions is best. 

The rest of this paper is organized as follows. Section I1 compares alternative 
approaches to constructing arbitrage-free yield curve models and explains the 
approach used in this paper. Section I11 presents a procedure for fitting a one- 
factor model of the short rate to the initial yield curve using a trinomial interest-rate 
tree. Section IV shows how the procedure can be extended so that the model is 
fitted to both the initial yield curve and the initial volatilities of all discount bond 
yields. Section V compares alternative models that can be implemented using the 
procedure. Section VI explains how the length of the time step on the tree can be 
changed. Conclusions are in Section VII. 

II. Alternative Approaches to Modeling the Term Structure 

There are three broad approaches to constructing arbitrage-free models of the 
term structure. The first approach, used by Ho and Lee (1986) and Hull and White 
(1993), involves specifying the process followed by all discount bond prices at all 
times. The second approach, used by Heath, Jarrow, and Morton (1992), involves 
specifying the process followed by all instantaneous forward rates at all future 
times. The third approach used by Black, Derman, and Toy (1990), Hull and 
White (1990b), and Black and Karasinski (1991) involves specifying the process 
for the short rate. This section explores the relationship among the approaches. 
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It is assumed that a single factor drives the whole term structure, but the analysis 
can be extended to the situation where there are several factors. 

A. The Processes for Discount Bond Prices and Forward Rates 

The following notation is adopted for this paper: 
P(t, T): price at time t of a discount bond maturing at time T, 
v(t, T): volatility of P(t, T), 
F(t, T): instantaneous forward rate as seen at time t for a contract maturing 

at time T, 
r(t): short-term risk-free interest rate at time t, 

f (t, TI,  T2): forward rate as seen at time t for the period between time TI and time 
T2, and 

dz(t): Wiener process driving term structure movements. 
The process that would be followed by P(t, T) in a risk-neutral world is 

The volatility, v(t, T), in the most general form of the model can be any well- 
behaved function of past and present Ps. However, since a bond's price volatility 
declines to zero at maturity,' 

The forward rate f (t, TI, T2) can be related to discount bond prices as follows 

From (I), 

so that 

Equation (3) shows that the risk-neutral process for f depends only on the vs. It 
depends on r and the Ps  only to the extent that the vs themselves depend on these 
variables. 

When TI = T and T2 = T + AT are substituted in (4) and then limits are taken 
as AT tends to zero, f ( t , TI,  T2) becomes F(t, T), the coefficient of dz(t) becomes 

' v ( t ,t )  = 0 is equivalent to the assumption that all discount bonds have finite drifts at all times. 
This is because, if the volatility of the bond does not decline to zero at its maturity, an infinite drift may 
be necessary to ensure that the bond's price equals its face value at maturity. 
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vT(t, T ) ,  and the coefficient of dt becomes v(t, T)vT(t ,  T ) ,  where subscripts denote 
partial derivatives. It follows that 

or, since without loss of generality, the sign of dz(t)may be changed, 

Once v(t, T )  has been specified for all t and T ,  the risk-neutral processes for the 
F(t, T ) s  are known. The v(t, T ) s  are therefore sufficient to fully define a one-factor 
interest-rate model. 

Integrating vT(trT )  between T = t and r = T yields 

Since v(t, t )  = 0, this becomes 

If m(t, T )  and s(t, T )  are the instantaneous drift and standard deviation of F(t, T ) ,  
it follows from (4 )that 

This is a key result in Heath, Jarrow, and Morton (1992). 

B. The Process for the Short Rate 

In this section, the process for r(t)is derived from bond price volatilities and 
the initial term structure. Since 

and r(t)= F(t, t ) ,  it follows from (4 )that 

Differentiating with respect to t , and using the result that v(t, t )  = 0, 



Hull and White 239 

This is the risk-neutral process for r at time t. It is the process for r that is 
consistent with the risk-neutral process for bond prices in (1). For the purposes 
of derivative security pricing, this paper needs only to be concerned with the 
risk-neutral process for r. This is because derivative securities can be priced by 
assuming that r follows its risk-neutral process and by using the risk-free interest 
rate for discounting. The procedures that will be described in this paper lead 
directly to a tree representing the risk-neutral process for r. No assumptions are 
required about the market price of risk. 

It is interesting to examine the terms on the right-hand side of (7). The first 
and fourth terms are straightforward. The first term shows that one component of 
the drift in r is time dependent and equal to the slope of the initial forward rate 
curve. The fourth term shows that the instantaneous standard deviation of r is 
vt(7, t)lT=t. The second and third terms are more complicated, particularly when 
v is stochastic. The second term depends on the history of v because it involves 
V(T, t) when 7 < t. The third term depends on the history of both v and dz. The 
two terms are therefore liable to cause the process for r to be non-Markov. 

Non-Markov models of r are, in general, less tractable than Markov models. It 
is computationally feasible to use a non-Markov model when European options are 
being v a l ~ e d . ~  However, when American options are valued, it is highly desirable 
that r be Markov. This is because a Markov process can always be represented by a 
recombining tree where the number of nodes considered at time iAt grows linearly 
with i (see Nelson and Rarnaswamy (1990) and Hull and White (1990a)). For a 
non-Markov process, the trees that are constructed are, in general, not recombining 
and the number of nodes at time iAt grows exponentially with i so that accurate 
pricing is computationally extremely time consuming. 

One special case when r(t) is Markov is v(t, T) = (T - t)a, where a is a 
constant. Equation (7) then reduces to 

This is the continuous time version of the Ho and Lee (1986) model. More gener- 
ally, Hull and White (1993) show that, when v is nonstochastic, r(t) is Markov if 
and only if v(t, T) has the functional form 

The process for r then has the general form 

This is the extended-Vasicek model considered by Hull and White (1990b). 
This paper provides a procedure that can be used to construct a wide range 

of Markov one-factor arbitrage-free models for r. The models are more general 
than the extended-Vasicek model. For example, the standard deviation of r can be 
a function of r and the drift of r need not be linear in r. 

or example, the time considered can be divided into intervals of length A t  and the Wiener process, 
A z ( t )  can be simulated with the values of the ?.(I) ,  F ( t ,  T), and P ( t ,T) being calculated as necessary 
from the discrete versions of Equations ( I ) ,  (4),and (7). 
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C. The Approach in This Paper 

When v is allowed to be stochastic, it does not seem to be possible to derive 
a condition similar to (9) for a Markov r. It is even difficult to find particular v 
functions that lead to a Markov r. To expand the range of Markov arbitrage-free 
models of the short rate available to researchers, an alternative approach is taken. 
A Markov risk-neutral process is specified for r in terms of an unknown function 
of time, O ( t ) ,  and a procedure is developed for choosing this function of time so 
that the model is consistent with the initial term structure of interest rates. As an 
extension to the procedure, it is shown that, if two unknown functions of time are 
included in the expression assumed for the drift of r, the model can be fitted to 
both initial term structure and initial volatility data. 

Using one factor and allowing the drift of r to be a function of time provides a 
relatively simple model that captures the information contained in the initial term 
structure on expected future trends in r. An alternative approach is to expand the 
number of factors. This can be expected to reduce the extent to which the drift 
must be dependent on time in order to fit the initial term structure, but it does 
not eliminate the need for time dependence completely. Unless the initial term 
structure is constrained in some way, the process for r is time dependent in all 
arbitrage-free models of the term structure that involve a finite number of factorse3 

This paper's procedure for determining the functions of time involves using 
a trinomial tree. As shown by Hull and White (1990a), a trinomial tree is a useful 
representation of a one-factor model of the short rate. It is capable of duplicating 
at each node both the expected drift of the short rate and its instantaneous standard 
deviation. Derivative security prices calculated using the tree converge to the 
solution of the underlying differential equation for the security price as the length 
of the time step approaches zero. In a binomial tree with constant time steps, it is 
not, in general, possible to match both the expected drift and instantaneous standard 
deviation at each node without the number of nodes increasing exponentially with 
the number of time steps4 

This paper uses the trinomial tree in a different way from Hull and White 
(1990a). Whereas Hull and White (1990a) assume that the short-term interest rate 
process is known and build a tree to represent that process, this paper assumes that 
the short-term interest rate process has been specified in terms of unknown func- 
tions of time and uses the trinomial tree for the additional purpose of determining 
these functions. 

I l l .  Fitting a Model to the Term Structure 

This section considers models for r where the drift has been specified in terms 
of a single unknown function of time. It shows how to choose this function so that 
the model provides an exact fit to the initial term structure of interest rates. 

3 ~ h edrift of r in the multifactor version of Equation (7) always has Ft(O,t ) as its leading term. 
The other terms in the drift are functions of time and the factors. For an arbitrary F ( 0 , t ) ,the drift is a 
function of time. 

4Nelson and Ramaswamy (1990) show that, if the expected drift and the standard deviation at each 
node is required to be correct only in the limit as the length of the time step goes to zero, it is possible to 
construct a binomial tree where the number of nodes increases linearly with the number of time steps. 
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A. The Model dr = p[Q(t),r, t] d t  + a dz( t )  

First, a model is considered where the instantaneous standard deviation of r 
is constant. It is assumed 

where a is a known constant, the functional form for p is known, and Q(t) is the 
unknown function of time. A particular case of the model that is of interest because 
of its analytic tractability is5 

(10) d r  = [Q(t)- ar]  dt + a dz(t). 

This is a version of the extended-Vasicek model discussed by Hull and White 
(1990b). It has the property that 

A tree is constructed whose geometry is similar to that in Hull and White 
(1990a). The short rate r is defined as the continuously compounded yield on a 
discount bond maturing in time At. The values of r on the tree are equally spaced 
and have the form ro +j A r  for some Ar ,  where ro is the current value of r, and j 
is a positive or negative integer. The time values considered by the tree are also 
equally spaced, having the form iAt for some At, where i is a nonnegative integer. 
The variables A r  and At  must be chosen so that A r  is between a m 1 2  and 
2 a G .  As pointed out by Hull and White (1990a), there are some theoretical 
advantages to choosing A r  = o m .  

For convenience, the node on the tree where t = iAt and r = ro +JAr  (i > 2) 
will be referred to as the (i, j )  node. The following notation is used: 

R(i): yield at time zero on a discount bond maturing at time 
iAt, 

r;: ro +JAr, 
pl,;: the drift rate of r at node (i, J), and 

pl  (i, j),  p2(i, j), p3(i, j): probabilities associated with the upper, middle, and lower 
branches emanating from node (i, j). 

Suppose that the tree has already been constructed up to time nAt (n 2 0) so that 
it is consistent with the R(i) and consider how it can be extended one step further. 
Since the interest rate, r, at time iAt is assumed to apply to the time period between 
iAt and (i + l )At,  a tree constructed up to time nAt reflects the values of R(i) for 
i < n + 1. In constructing the branches comprising the tree between times nAt 
and (n + l )At,  a value of Q(nAt) must be chosen so that the tree is consistent with 

his particular case of the model has the property that the function O(t) can be determined analyt- 
ically from the term structure. This makes it possible to use the approach in Hull and White (1990a) 
that is based on a known process for r. The authors of this current paper prefer not to use this approach. 
Errors are introduced by assuming that the analytic value of 8 at time t is correct for the whole time 
period between t and t+ A t  and attempts to correct this error by, for example, integrating B(t) between t 
and [+At are not totally satisfactory. Building a tree in the way that will be described here automatically 
chooses a value for 6' between t and t + At that matches the current forward bond price. The approach 
in Hull and White (1990a) is best suited to models where the parameters are non-time-dependent. 
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R(n + 2). The procedure for doing this is explained in Appendix A. Note that for 
the purposes of constructing the tree, 0 and p are assumed to be constant within 
each of the time steps of length At. 

Once O(nAt) has been determined, the drift rates pa,,for r at the nodes at 
time nAt are calculated using 

The branches emanating from the nodes at time nAt and their associated proba- 
bilities are then chosen to be consistent with the pn,,s and with a. The three nodes 
that can be reached by the branches emanating from node (n, j )  are 

(n+ l , k +  I) ,  (n+ l , k ) ,  and (n+ l , k - I), 

with the value of k being chosen so that rk (the value of r reached by the mid- 
dle branch) is as close as possible to r, + p, ,At  (the expected value of r) .  The 
probabilities are given by 

Providing that A r  is chosen within the range a a / 2  to 2 a a t  mentioned 
above, the probabilities are always between 0 and 1 .  

Figure 1 illustrates the procedure by showing the tree that is constructed for 
the model in ( 1 0 )  when a = 0 .1 ,  a = 0.014, and At = 1 .  The term structure 
is assumed to be upward sloping with the yields on one-, two-, three-, four-, 
and five-year discount bonds being 10 percent, 10.5 percent, 11.0 percent, 11.25 
percent, and 11.5 percent, respectively. Table 1 shows the results of using the same 
model with progressively smaller values of At to calculate the prices of one-year 
European call options on five-year discount bonds. Since these option prices are 
known analytically, the results provide a test of the speed of convergence of the 
procedure. The table illustrates that convergence is reasonably fast. 

6 ~ a t e r ,this branching process is used when the values of r at time (n+  1)Athave the form ro +jAr, 
but those at time nAt do not. Suppose that the value of an r at time nAt is r* and its drift is p*. 
The value of k is chosen so that rk is as close as possible to r* + p*At and the expressions for the 
probabilities are still correct with 
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FIGURE 1 

Tree constructed for the model, 

dr = [O(t)- ar] dt + u dz(t), 

when a = 0 014, a = 0.1,and A t  = 1 year. The zero coupon interest rates for matur~t~es 
of one, two, three, four, and five years are 10 percent, 10.5 percent, 11 percent, 11.25 
percent, and 11.5 percent. The values calculated for 0 are: O(0)= 0.0201,O ( 1 )  = 0.0213 

Table of Rates and Probabilities 

Node 

Rate 
P1 
P2 
P3 
Node 

Rate 
P1 
P2 
P3 

B. Other Models 

The approach just considered can be extended to the general class of models, 
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TABLE 1 

Convergence of the proposed procedure for a one-year call option on a five-year discount 
bond when the model 

dr = [ O ( t )  - ar] dt + u d4 t )  

is used with a = 0.1 and a = 0.014. The term structure increases linearly from 9.5 percent 
to 11 percent over the first three years and then increases linearly from 11 percent to 11.5 
percent over the next two years 

Total Exercise Pricea 
Number of 
Time Steps 0.96- 0.98 - 1 .OO - 1.02- 1.04-

5 2.30 1.31 1.OO 0 69 0.37 
25 2 47 1 68 0.95 0.58 0.25 
50 2.48 1.64 1 .OO 0.55 0 26 

100 2.48 1.64 0.99 0.54 0.26 
Analytic Value 2.48 1.64 0.99 0.53 0.26 

aThe exercise price is expressed as a proportion of the forward bond price. 

Here, the instantaneous standard deviation of r is a general function of r and t. 
One particular case of (12)that is of interest is 

dr = [O(t)- ar] dt + a& dz(t). 

This is a version of the extended CIR that is considered by Cox, Ingersoll, and 
Ross (1985)and Hull and White (1990b).It has the property that 

where 

A more general family of models corresponding to (12)is 

(14) dr = [O(t)- ar] dt + or0 dz(t), 

where p is a constant. When /? = 0 ,  (14) reduces to the model in (10);when 
p = 0.5, it reduces to the model in (13). When P = 0 ,  the model is capable of 
fitting any initial term structure. When /3 > 0 ,  r must be nonnegative for the 
standard deviation of r to be well defined. This means that as r tends to zero, 
the drift of r must be nonnegative. One consequence of this is that the condition 
O(t) 2 0 must be satisfied. It can be shown that it is impossible for a /3 > 0 model 
to satisfy this condition and to fit all initial term structures. In particular, term 
structures where F(0,t )  is positive, but F,(O,t )  is highly negative for some values 
oft,  cannot be fitted.' 

7~ lognormal model that does not have this problem is a version of Black and Karasinski (1991), 

d Log r = [ B ( t )  - a Log r ]dt + adz. 

An alternative to the extended-CIR model (P = 0.5) that does not have the problem is 

dr = r[O(r)- ar] dr + a d d z .  

It appears that both of these models can be fitted to any initial term structure where F(0, t )  > 0. They 
can be implemented using the procedure described in this paper. 
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Analogously to Hull and White (1990a), (12) is dealt with by defining a 
function of r ,  x(r) ,  that has a constant instantaneous standard deviation. This 
function is 

It follows the process 

(15) dx = [p(Q(t ) ,r ,  t)u(r, t )  + w(r,t ) ]dt + o(rO,0) dz(t), 

where 

u(r, t)  = 
d l h ,0) 

d r , t) ' 

A tree is constructed for x where the spacing between the x-values, A x ,  is 
constant and equal to a(ro,0 ) m . Assume that a tree has been constructed up 
to time nAt .  The value of Q(nAt )is calculated as described in Appendix A with r, 
now being defined as the value of r at the (i,j )  node for x. The branching process 
for x between times n A t  and ( n + 1)At  is calculated to represent (15) using the 
same procedure as that described for r in Section 1II.A. 

IV. Fitting a Model to Term Structure and Volatility Data 

This section moves on to consider models for r that involve two functions of 
time, Q(t)and q(t) , and can be fitted to both the initial term structure of interest 
rates and initial volatility data. It is assumed that the volatility data consist of 
discount bond yield volatilities estimated from historical data. 

It is important to emphasize that the models developed in this section match 
the volatilities of the yields on discount bonds only at time zero. There is no 
guarantee that the pattern of discount bond yield volatilities at later times will be 
similar to the pattern at time zero.8 In practice, it is found that they are sometimes 
quite different. Models such as (14)in Section I11 are more robust. Although they 
do not match the volatilities at time zero exactly, they have the advantage that they 
give rise to stationary volatility structure^.^ They may be more appropriate than 
the models in this section for valuing long-lived options because the price of a 
long-lived option can be quite sensitive to the way bond yield volatilities evolve. 

One model involving two functions of time is 

This has the same general flavor as (1 4). Another is 

d Log r = [Q(t)- 4( t )Log r]  dt + a dz(t). 

8 ~ ngeneral, a non-Markov model is necessary if the volatilities of the yields on discount bonds are 
required to have some particular pattern at all times. 

'when = 0 or 0= 0.5 in Equation (14), v(t, T ) is a known function of T - t and r .  In general, 
for models similar to those in Equation (14) and footnote 7, the volatility structure is stationary in the 
sense that v(t, T )can depend only on T - rand the term structure at time t. 
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This is considered by Black and Karasinski (1991). 
For the sake of generality, it is assumed 

As in Section III.B, a transformed variable, x,  whose instantaneous standard de- 
viation is constant, is used. For computational convenience, one change is made 
to the geometry of the tree. The tree is made binomial during the first time step 
and trinomial thereafter. During the first time step, there is a probability of 0.5 of 
moving up a new node U and a probability 0.5 of moving down to a new node D. 
Define 

r,, rd: values of r at nodes U and D, respectively; 
xu, xd: values of x at nodes U and D, respectively; 

R,(i), Rd(i): yields at nodes U and D, respectively, on a discount bond maturing 
at time iAt; 

p,, pd: the drift rates of r at nodes U and D, respectively; 
V(i): volatility at time zero of the yield on a discount bond maturing at 

time iAt.  
Unlike the values of x considered in Section III.B, the values of xu and xd are 
not necessarily equal to x(r0)+j A x  for any integer j. However, the values of x 
considered at time nAt  when n > 1 do have this form. 

The first step in the construction of the tree is to determine R,(i) and Rd(i)for 
all i > 1. These must be consistent with the known values of R(i) so that 

They must also be consistent with the known values of V(i) .  Since v(i)v% is 
the standard deviation of the distribution of the natural logarithm of the yield on a 
discount bond maturing at time iA t ,  

Equations (18) and (19) can be solved for R,(i) and Rd(i)using the Newton- 
Raphson procedure. Since R,(2) and Rd(2)are r, and rd, respectively, the solution 
to (18)and (19)when i = 2 determines the two nodes at time At.  

The tree is constructed from time A t  onward using an approach similar to 
that in Section 111. There are two functions of time, O(t)and $(t). These are chosen 
to be consistent with R,(i)s and Rd(i)susing the procedure explained in Appendix 
B. The branching process is determined as described in Section 111. Footnote 6 
describes a minor modification necessary for the segment of the tree between At  
and 2At.  

Figure 2 illustrates the procedure by showing the tree that is produced for the 
model, 

when a = 0.14, P = 1, and A t  = 1 year. The term structure of interest rates is 
assumed to be flat at 10 percent per annum. The volatilities of one-year, two-year, 
three-year, four-year, and five-year rates are assumed to be 13percent, 12 percent, 
1 1  percent, 10 percent, and 9 percent per annum, respectively. 
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FIGURE 2 

Tree constructed for the model dr = [O(t)- d( t ) r ]  dt + urdz ( t )  when u = 0.14 and the 
time step is one year. The term structure of interest rates is flat at 10 percent per annum. 
The current volatilities of one-year, two-year, three-year, four-year, and five-year discount 
bond yields are 13 percent, 12 percent, 11 percent, 10 percent, and 9 percent per annum, 
respectively. The values calculated for O and 4 are: O(1) = 0.0165, O(2) = 0.0193, O(3) = 
0.0244, 4(1)  = 0.164, 4(2)  = 0.190, 4(3)  = 0.241. 

A 

Table of Rates and Probabilities 

Node A D U B C E F G H I J 

Rate 10.00 8.81 11.20 7.85 10.00 12.74 6.16 7.85 10.00 12.74 16.24 
pl 0.500 0.042 0.411 0.282 0.154 0.088 0.047 0.321 0.153 0.074 0.045 
p2 0.500 0.450 0.537 0.629 0.666 0.627 0.506 0.605 0.665 0.606 0.494 
P3 0.508 0.052 0.089 0.180 0.285 0.447 0.074 0.182 0.320 0.461 

V. Comparison of Models 

The procedures in Section IV allow two different models to be fitted to the 
same term structure of interest rates and volatility data. This makes it possible 
to assess the impact of different model assumptions on option prices. For bond 
options and bond futures options lasting less than nine months, there is very little 
difference between the option prices produced by different models. This means 
that most exchange-traded options can be expected to be relatively insensitive to 
the model chosen once the term structure of interest rates and discount bond yield 
volatilities have been determined. 

Over-the-counter bond options and swap options frequently last considerably 
longer than exchange-traded options.1° It is therefore important to investigate 
the impact of the model chosen on longer-dated bond options. As the life of the 
option is increased beyond nine months, there is very little difference between the 

''A swap option is an option to exchange a fixed rate bond for a floating rate bond and can be 
regarded as a type of bond option. 
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prices produced by different models for at-the-money options." But for deep-in 
and deep-out-of-the-money options, the absolute differences are greater. This is 
illustrated by Table 2, which shows the prices for one-, two-, three-, and four- 
year call options on five-year discount bonds using the model in (20) with ,6' = 
0, 0.5, and 1.0. The term structure and initial volatility data are the same as in 
Figure 2, and a is chosen so that the initial instantaneous standard deviation of 
r is the same for all models and equal to 0.014. All results are based on 100 
time steps. The pattern of results in Table 2 can be explained by the effect of 
,6' on the skewness of the distributions of future interest rates.12 In proportional 
terms, the differences between the prices produced by the models are quite high 
for deep-out-of-the-money options. 

TABLE 2 

Prices of European call options on a five-year discount bond with a face value of $100 
when the interest rate model 

dr = [B(t) - 4(t)r]dt + arDdz(t) 

is fitted to the term structure of interest rates and initial discount bond yield volatilities using 
a trinomial tree. The term structure of interest rates is flat at 10 percent per annum. The 
volatility of the y~eld on a t-year discount bond is assumed to be (14 - t)% per annum. The 
parameter, 0,is chosen so that or8 equals 0.014 when r = 0.1 

Option Exercise Pricea 
Maturity 
(Years) 0 0.96 0.98 1 .OO 1.02 1.04 

0.0 2.55 1.58 0.84 0.38 0.14 
1 .O 0.5 2.57 1.60 0.84 0.37 0.12 

1 0  2.59 1.61 0.84 0.36 0.10 

0.0 2.56 1.59 0.85 0.39 0.15 
2 0 0.5 2.58 1.61 0.86 0.37 0.13 

1.O 2.61 1.63 0.86 0.35 0.10 

0.0 2.48 1.44 0.67 0.24 0.06 
3.0 0.5 2.50 1.46 0.67 0.22 0.04 

1 .O 2.52 1.48 0.67 0.20 0.03 

0.0 2.43 1.26 0.37 0.05 0.00 
4.0 0.5 2.43 1.27 0.37 0.03 0.00 

1.O 2.44 1.28 0.37 0.02 0.00 

aThe exercise price is expressed as a proportion of the forward bond price. 

One particularly popular over-the-counter interest-rate option is a cap. This 
is designed to provide insurance against the rate of interest paid on a floating-rate 
loan rising above a predetermined level (the cap rate). As explained in Hull and 
White (1990b), a cap can be regarded as a portfolio of put options on bonds. Table 
3 compares cap prices when p = 0, 0.5, and 1.0 and the models are fitted to the 
same yield curve and volatility data. The results are generally similar to those 

"An at-the-money European bond option is defined as one where the strike price equals the forward 
bond price. 

I2As p increases, low interest rates (high bond prices) become less likely and high interest rates 
(low bond prices) become more likely. This means that the prices of out-of-the-money calls increase. 
The prices of out-of-the-money puts decrease and from put-call parity, the prices of in-the-money calls 
must therefore also decrease. 
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for bond options in Table 2. The model chosen makes very little difference for 
at-the-money caps, but can have a significant effect on the prices of out-of and 
in-the-money caps. l 3  

TABLE 3 

Prices, as a percent of princ~pal, of instruments designed to cap an interest rate that is 
reset every three months. The term structure is flat at 10 percent per annum with quarterly 
compounding. The yield volatilities are those for the P = 0 model with u = 0 015 and 
a = 0 1 .  

Cap Rate % 
Maturity 
(Years) 0- 9.5- 10.0- 10.5- 11.O-

0.49 0.27 0.14 0.07 
0.48 0.27 0.14 0.07 
0.48 0.27 0.15 0.08 

1.30 0.81 0.52 0.30 
1.29 0.81 0.53 0.32 
1.28 0.81 0.54 0.34 

2.16 1.43 1.OO 0.64 
2.14 1.43 1.02 0.67 
2.12 1.44 1.04 0.71 

3.02 2.08 1.51 1.02 
2.99 2.08 1.54 1.07 
2.97 2 08 1.57 1.12 

3.86 2.73 2.03 1.41 
3.82 2.73 2.07 1.48 
3.78 2.73 2.10 1.54 

The correct value for P is an issue that is difficult to resolve by analyzing 
interest rate data. Chan et al. (1992) have considered the model in (16) with 
the two functions of time being constants. Using monthly data on one-month 
Treasury bill yields between June 1964 and December 1989, they conclude that 
p = 1.499 provides the best fit. Empirical research carried out by the authors 
shows that maximum likelihood estimates of /3 are greatly influenced by the few 
observations in a sample where large interest-rate movements take place. 

An alternative approach to choosing between the models in Equation (14) 
is to use the market prices of options. The test of a model's quality is how little 
the volatility parameters must be varied in order to price correctly a wide range 
of interest-rate options. This is similar to the approach suggested by MacBeth 
and Merville (1979) and Rubinstein (1985) for evaluating equity option pricing 
models. The difference is that there are two volatility parameters, a and a, rather 
than one. 

'"Since caps pay off when interest rates are high (bond prices low), the impact of changing beta 
on the prices of in-the-money and out-of-the-money caps is the reverse of that for in-the-money and 
out-of-the-money call options on bonds (see footnote 12). 
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VI. Changing the Length of the Time Step 

For many one-factor interest rate models, bond prices are not known analyt- 
ically as a function of the short rate.14 When bond options are valued, the interest 
rate tree must therefore have the same life as the bond. This presents a problem 
when a short-dated option on a long-dated bond is being valued. The At required 
during the life of the option is generally much smaller than that required for the 
period of time between the end of the life of the option and the end of the life of the 
bond. For example, when a three-month option on a 10-year bond is being valued, 
it might be appropriate to use 50 time steps each of length 0.005 years during the 
first three months and 39 steps each of length 0.25 years during the remaining 9.75 
years. This section shows how this type of variation in At can be achieved. 

Suppose that at time T it is required to change the length of time steps from 
At, to At2. The new time step length, At2, is assumed to be an integral multiple 
of the old one, Atl. The tree is constructed using time steps of length At1 until 
time T + At2 as described in Sections I11 and IV. The tree is then used to calculate 
the value of the At2-maturity interest rate at each of the nodes at time T. This 
calculation is necessary because up to time 7, the short rate on the tree is the 
Atl-maturity rate. From time 7 onward, it is the At2-maturity rate. Once the 
calculation has been carried out, the tree constructed between time T and time 
r + At2 can be dispensed with. 

From time T onward, the tree is constructed in time steps of length At2. The 
new Ax is chosen to be equal to the old Ax times Ja.At time r + At2, 
one of the short rates to be considered can be chosen arbitrarily. The rest are 
determined by the new Ax. Footnote 6 describes the modifications to the standard 
calculations necessary to define the branching process between times 7 and ~ + A t 2 .  

The geometry of a tree where the size of the time step increases by a factor 
of three after two steps is illustrated in Figure 3. 

VII. Conclusions 

From a computational perspective, there are compelling arguments in favor 
of using a yield-curve model that is Markov when valuing interest rate derivative 
securities. It is also desirable that the model fit the initial term structure so that 
it prices at least one well-known class of securities correctly. One approach to 
developing a Markov model of the short rate that fits the term structure is to 
specify a brocess for the short rate that has one or two unknown functions of 
time in the drift and then estimate these functions so that the process is consistent 
with the initial term structure and other market data. Examples of models that are 
developed using this approach are the extended-Vasicek and extended-CIR models 
in Hull and White (1990b), and the lognormal interest rate model in Black and 
Karasinski (1991). 

l 4 ~ h eextended-Vasicek model is the only model where bond prices are known analytically. For the 
extended-CIR model in (13), Cox, Ingersoll, and Ross (1985) provide an expression for bond prices 
in terms of an analytically intractable integral. It is found to be computationally more efficient to 
construct a trinomial tree for calculating bond prices in the extended-CIR model than to evaluate the 
integral numerically. 



Hull and White 251 

FIGURE 3 

Geometry of Tree when At Increases by 
a Factor of 3 after the Second Step 

This paper has developed a general procedure, involving the construction of 
a trinomial tree for the short rate, that implements the approach. The procedure is 
robust and numerically efficient. It provides an alternative to the model-specific 
procedures for constructing trees that are suggested by authors such as Ho and Lee 
(1986) and Black and Karasinski (1991). It provides a way in which the extended- 
Vasicek, the extended-CIR model, and a wide range of other one-factor models 
can be implemented. 

Once the tree has been constructed, bond options and other non-path-depend- 
ent interest rate derivative securities can be valued in the usual way by working 
back through the tree from the end of the life of the security to time zero. Path- 
dependent derivative securities can be valued by using Monte Carlo simulation to 
randomly sample paths through the tree. If required, the length of the time step 
can be changed during the life of the tree. 

Appendix A 

In this appendix, it is assumed that the tree has been constructed up to time 
nAt and it is shown how B(ndt) is obtained. Define Q(i, j )  as the value of a security 
that pays off $1 if node (i, j) is reached and zero otherwise. It is assumed that the 
Q(i, j)s are calculated as the tree is being constructed using the relationship 
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where q0'+,j) is the probability of moving from node (i - l , j*)  to node (i ,  j).15 
(For any given j*, this is zero for all except three of the js.) This means that when 
O(nAt)is being estimated, the Q(i, j)s are known for all i < n. 

The value as seen at node (n,  j )  of a bond maturing at time (n+ 2)At  is 

where E is the risk-neutral expectations operator and r(i) is the value of r at time 
iAt.  The value at time zero of a discount bond maturing at time ( n  + 2)At  is 
therefore given by 

If ~ ( n ,  r(n)Ir(n) r;),j )  is defined as the value of {r(n+ 1 )  - = 

Expanding e-'(",~)*' as a Taylor series, taking expectations, and ignoring terms of 
higher order than At2,  

Since the drift of the short rate, pn,;, is a known function of O(nAt), O(nAt) can be 
determined from (A-1)and (A-2). For example, in the models in (10)and (14), 

pn,; = O(nAt)- ar;, 

so that 

The estimates of O(nAt)given by this equation are found to be satisfactory 
for most purposes. They lead to a tree where discount bond prices calculated from 
the tree at time zero replicate those in the market to at least four significant figures. 
Any errors in the estimates tend to be self-correcting. For example, if the estimate 
for O(nAt)is slightly low, the estimate for O[(n+ l ) A t ]  tends to compensate for this 
by being slightly too high. If an even better fit to the initial yield curve is required, 
more terms in the Taylor series expansion can be used or an iterative procedure 
can be developed. 

1 5 useful byproduct of storing the Qs is that all discount bond prices and European-style derivative ~ 

securities can be valued immediately as x.Q(N, j )U(N,  j ) ,  where N A t  is the time when the security 
matures and U ( N , j )is the payoff at node (h,j ) .  
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In the case of the extended-Vasicek model in (lo), the expectation in (A-2) is 
known analytically 

Using (A-1), this leads to 

This is an improvement over the estimate in (A-4) and leads to a tree that replicates 
discount bond prices at time zero with about eight significant figure accuracy.16 

Appendix B 

This appendix describes how O(nAt) and $(nAt) are calculated when a model 
is being fitted to both the term structure of interest rates and the current volatility 
structure. It is assumed that the tree has been constructed up to time n d t .  Define: 
Qu(i, j): the value as seen at node U of a security that pays off $1 if node (i, j )  is 

reached and zero otherwise, 
Qd(i,j): the value as seen at node D of a security that pays off $1 if node (i, j )  is 

reached and zero otherwise. 
It is assumed that the Q,(i, j )s  and Qd(i,j)s are known for i _< n. As with the Qs 
in Appendix A, it is possible to calculate them as the tree is being constructed. 

Analogously to (A-1), when n 2 2, the values as seen at nodes U and D of 
bonds maturing at time (n + 2)At are given by 

and 

respectively. 
Equation (A-3) is still true. In this case, pn,j is a known function of both 

@At) and 4(nAt). Using (A-3) in conjunction with (B-1) and (B-2), therefore, 
provides a pair of simultaneous equations for determining Q(nAt) and $(nAt). In 
the case of (16), the equations are linear in these unknowns, 

16T'he tree does not replicate the discount bond prices exactly even though Equation (A-5) is exact. 
This is because the trinomial distribution for interest rates in the tree is not a perfect representation of 
the normal distribution being assumed. 



254 Journal of Financial and Quantitative Analysis 

References 
Black, F.; E. Derman; and W. Toy. "A One-Factor Model of Interest Rates and Its Application to 

Treasury Bond Options." Financial Analysts Journal, 46 (Jan.-Feb. 1990). 33-39. 
Black, F., and P. Karasinski. "Bond and Option Pricing when Short Rates are Lognormal." Financial 

Analysts Journal, 47 (July-Aug. 1991). 52-59. 
Chan, K. C.; G. A. Karolyi; F. A. Longstaff; and A. B. Sanders. "An Empirical Comparison of 

Alternative Models of the Short-Term Interest Rate." Journal of Finance, 47 (July 1992), 1209- 
1227. 

Courtadon, G. "The Pricing of Options on Default-Free Bonds." Journal of Financial and Quantitative 
Analysis, 17 (March 1982), 75-100. 

Cox, J. C.; J. E. Ingersoll; and S. A. Ross. "A Theory of the Term Structure of Interest Rates." 
Econometrica, 53 (March 1985), 385467. 

Dothan, L. U. "On the Term Structure of Interest Rates." Journal of Financial Economics, 6 (March 
1978). 5949 .  

Heath, D.; R. Jarrow; and A. Morton, "Bond Pricing and the Term Structure of Interest Rates: A 
Discrete Time Approximation." Journal of Financial and Quantitative Analysis, 25 (Dec. 1990). 
419440. 

. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology 
for Contingent Claims Evaluation." Econometrica, 60, (1, 1992), 77-105. 

Ho, T. S. Y., and S.-B. Lee, "Term Structure Movements and Pricing of Interest Rate Claims." Journal 
of Finance, 41 (Dec. 1986), 101 1-1029. 

Hull, J., and A. White. "Valuing Derivative Securities Using the Explicit Finite Difference Method." 
Journal of Financial and Quantitative Analysis, 25 (March 1990a), 87-100. 

. "Pricing Interest-Rate Derivative Securities." Review of Financial Studies, 3 
(4, 1990b). 573-592. 

. "Bond Option Pricing Based on a Model for the Evolution of Bond Prices." 
Advances in Futures and Options Research (forthcoming, 1992). 

MacBeth, J. D., and L. J. Merville. "An Empirical Examination of the Black-Scholes Call Option 
Pricing Model." Journal of Finance, 34 (Dec. 1979), 1 173-1 186. 

Nelson, D. B., and K. Ramaswamy. "Simple Binomial Processes as Diffusion Approximations in 
Financial Models." Review of Financial Studies, 3 (3, 1990), 393430. 

Rubinstein, M. "Non-Parametric Tests of Alternative Options Pricing Models Using All Reported 
Trades and Quotes on the 30 Most Active CBOE Options Classes from August 23, 1976, through 
August 31,1978." Journal of Finance, 40 (June 1985), 455480. 

Vasicek, 0 .  A. "An Equilibrium Characterization of the Term Structure." Journal of Financial Eco- 
nomics, 5 (Nov. 1977), 177-188. 



You have printed the following article:

One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities
John Hull; Alan White
The Journal of Financial and Quantitative Analysis, Vol. 28, No. 2. (Jun., 1993), pp. 235-254.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199306%2928%3A2%3C235%3AOIMATV%3E2.0.CO%3B2-D

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Footnotes]

4 Simple Binomial Processes as Diffusion Approximations in Financial Models
Daniel B. Nelson; Krishna Ramaswamy
The Review of Financial Studies, Vol. 3, No. 3. (1990), pp. 393-430.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%281990%293%3A3%3C393%3ASBPADA%3E2.0.CO%3B2-E

5 Valuing Derivative Securities Using the Explicit Finite Difference Method
John Hull; Alan White
The Journal of Financial and Quantitative Analysis, Vol. 25, No. 1. (Mar., 1990), pp. 87-100.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R

5 Valuing Derivative Securities Using the Explicit Finite Difference Method
John Hull; Alan White
The Journal of Financial and Quantitative Analysis, Vol. 25, No. 1. (Mar., 1990), pp. 87-100.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R

14 A Theory of the Term Structure of Interest Rates
John C. Cox; Jonathan E. Ingersoll, Jr.; Stephen A. Ross
Econometrica, Vol. 53, No. 2. (Mar., 1985), pp. 385-407.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C385%3AATOTTS%3E2.0.CO%3B2-B

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-1090%28199306%2928%3A2%3C235%3AOIMATV%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0893-9454%281990%293%3A3%3C393%3ASBPADA%3E2.0.CO%3B2-E&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C385%3AATOTTS%3E2.0.CO%3B2-B&origin=JSTOR-pdf


References

An Empirical Comparison of Alternative Models of the Short-Term Interest Rate
K. C. Chan; G. Andrew Karolyi; Francis A. Longstaff; Anthony B. Sanders
The Journal of Finance, Vol. 47, No. 3, Papers and Proceedings of the Fifty-Second Annual
Meeting of the American Finance Association, New Orleans, Louisiana January 3-5, 1992. (Jul.,
1992), pp. 1209-1227.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28199207%2947%3A3%3C1209%3AAECOAM%3E2.0.CO%3B2-T

The Pricing of Options on Default-Free Bonds
Georges Courtadon
The Journal of Financial and Quantitative Analysis, Vol. 17, No. 1. (Mar., 1982), pp. 75-100.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28198203%2917%3A1%3C75%3ATPOOOD%3E2.0.CO%3B2-O

A Theory of the Term Structure of Interest Rates
John C. Cox; Jonathan E. Ingersoll, Jr.; Stephen A. Ross
Econometrica, Vol. 53, No. 2. (Mar., 1985), pp. 385-407.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C385%3AATOTTS%3E2.0.CO%3B2-B

Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation
David Heath; Robert Jarrow; Andrew Morton
The Journal of Financial and Quantitative Analysis, Vol. 25, No. 4. (Dec., 1990), pp. 419-440.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199012%2925%3A4%3C419%3ABPATTS%3E2.0.CO%3B2-R

Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent
Claims Valuation
David Heath; Robert Jarrow; Andrew Morton
Econometrica, Vol. 60, No. 1. (Jan., 1992), pp. 77-105.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28199201%2960%3A1%3C77%3ABPATTS%3E2.0.CO%3B2-D

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-1082%28199207%2947%3A3%3C1209%3AAECOAM%3E2.0.CO%3B2-T&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28198203%2917%3A1%3C75%3ATPOOOD%3E2.0.CO%3B2-O&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198503%2953%3A2%3C385%3AATOTTS%3E2.0.CO%3B2-B&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28199012%2925%3A4%3C419%3ABPATTS%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28199201%2960%3A1%3C77%3ABPATTS%3E2.0.CO%3B2-D&origin=JSTOR-pdf


Term Structure Movements and Pricing Interest Rate Contingent Claims
Thomas S. Y. Ho; Sang-Bin Lee
The Journal of Finance, Vol. 41, No. 5. (Dec., 1986), pp. 1011-1029.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28198612%2941%3A5%3C1011%3ATSMAPI%3E2.0.CO%3B2-H

Valuing Derivative Securities Using the Explicit Finite Difference Method
John Hull; Alan White
The Journal of Financial and Quantitative Analysis, Vol. 25, No. 1. (Mar., 1990), pp. 87-100.
Stable URL:

http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R

Pricing Interest-Rate-Derivative Securities
John Hull; Alan White
The Review of Financial Studies, Vol. 3, No. 4. (1990), pp. 573-592.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%281990%293%3A4%3C573%3APIS%3E2.0.CO%3B2-Z

An Empirical Examination of the Black-Scholes Call Option Pricing Model
James D. Macbeth; Larry J. Merville
The Journal of Finance, Vol. 34, No. 5. (Dec., 1979), pp. 1173-1186.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28197912%2934%3A5%3C1173%3AAEEOTB%3E2.0.CO%3B2-W

Simple Binomial Processes as Diffusion Approximations in Financial Models
Daniel B. Nelson; Krishna Ramaswamy
The Review of Financial Studies, Vol. 3, No. 3. (1990), pp. 393-430.
Stable URL:

http://links.jstor.org/sici?sici=0893-9454%281990%293%3A3%3C393%3ASBPADA%3E2.0.CO%3B2-E

Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and
Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 Through August
31, 1978
Mark Rubinstein
The Journal of Finance, Vol. 40, No. 2. (Jun., 1985), pp. 455-480.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28198506%2940%3A2%3C455%3ANTOAOP%3E2.0.CO%3B2-T

http://www.jstor.org

LINKED CITATIONS
- Page 3 of 3 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-1082%28198612%2941%3A5%3C1011%3ATSMAPI%3E2.0.CO%3B2-H&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1090%28199003%2925%3A1%3C87%3AVDSUTE%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0893-9454%281990%293%3A4%3C573%3APIS%3E2.0.CO%3B2-Z&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28197912%2934%3A5%3C1173%3AAEEOTB%3E2.0.CO%3B2-W&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0893-9454%281990%293%3A3%3C393%3ASBPADA%3E2.0.CO%3B2-E&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28198506%2940%3A2%3C455%3ANTOAOP%3E2.0.CO%3B2-T&origin=JSTOR-pdf

