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Principals of Risk: 
Finding Value-at-Risk Through Factor-Based Interest Rate Scenarios 

 
 
 

Abstract 
 
 
The Factor-Based approach to calculating VAR begins with a principal components 
analysis of the yield curve.  This decomposes yield curve movements into a small number 
of underlying factors including a “Shift” factor that allows rates to rise or fall and a 
“Twist” factor that allows the curve to steepen or flatten. Combining these factors 
produces specific yield curve scenarios used to estimate hypothetical portfolio profit or 
loss. The greatest loss among these scenarios provides an intuitive and rapid VAR 
estimate that tends to provide a conservative estimate of the nominal percentile of the 
loss distribution. 
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Principals of Risk: 
Finding Value-at-Risk Through Factor-Based Interest Rate Scenarios 
 
This article describes a method to assess the value-at-risk (VAR) of portfolios containing 
interest rate sensitive instruments. The Factor-Based Scenario Method calculates profit or 
loss for the entire portfolio under several specially constructed hypothetical interest rate 
scenarios that in turn derive from a principal components analysis of the yield curve. The 
VAR estimate equals the greatest loss that results in any of the scenarios. 
 
The Factor-Based Scenario Method provides the user with several advantages relative to 
alternative calculation strategies. First, it includes options in its analysis without 
modifications. By contrast, options can provoke extremely misleading results in VAR 
calculations that linearize profit as a function of market variables. Second, the Scenario 
Method produces estimates of risk quickly, unlike methods that depend on extensive 
simulation. A VAR estimate has little value unless it arrives in time to allow adjustments 
to the portfolio. Third, the method provides a useful and easily understood summary of 
the qualitative nature of the risk facing a portfolio. One can immediately see that the 
portfolio is sensitive, say, to rising interest rates or to a steepening yield curve.  Fourth, 
the method identifies whether an additional trade will increase or decrease risk, which 
provides insight into hedge strategies. Finally, the method allows the straightforward 
aggregation of risks across portfolios maintained and valued on different computer 
systems.  The response to a given scenario of the combined portfolio is simply the sum of 
the responses of the individual portfolios. 
 
The Factor-Based Scenario Method is not foolproof, however, and the user must judge 
the appropriateness of the technique for the portfolio at hand. Nonetheless the method 
works well for a class of portfolios that is quite important in practice—portfolios that 
display a concave response to changing market prices, such as portfolios dominated by 
short positions in standard options. The negative gamma of such positions creates 
particular concern for risk control purposes.  
 
The following section considers four alternative measures of VAR in the context of a 
single underlying market. The next two sections provide an orientation to the Factor-
Based Scenario Method and to the statistical technique of principal components analysis 
(PCA).  The subsequent section places PCA in the more familiar context of regression 
analysis. “From Components to Scenarios” presents the steps that convert the generic 
results of PCA to specific scenarios useful for risk control.  The final sections of the 
article examine the performance of the Factor-Based Scenario Method applied both to 
randomly generated sample portfolios and to an actual trading portfolio. 
 
 

Measuring Risk From a Single Market 
 
VAR is usually defined as a specific percentile of a distribution of loss over a specific 
length of time. We will consider a one-day, 99th percentile VAR: 
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P[one-day loss > VAR] = 1% 
 
Suppose we seek VAR for a portfolio tied to only a single market price. Figure 1 depicts 
a delta-hedged short position in a short-term, out-of-the-money call option on a Treasury 
Bond futures contract. Possible changes to the futures price have been stated in standard 
deviations. Consider four alternative VAR calculations: Monte Carlo simulation, 
historical simulation, variance-covariance, and the Factor-Based Scenario Method. 
 
The Monte Carlo approach randomly selects a hypothetical movement for the Bond 
futures price and then values the portfolio. Many such hypothetical valuations reveal a 
distribution of profit and loss. The 99th percentile of the loss distribution provides the 
VAR estimate.  
 
This approach has some significant drawbacks in practice. A portfolio of fixed income 
instruments might require minutes of computer time to value. Even if several machines 
are devoted to risk calculations, they can complete only a few hundred calculations in the 
allotted production cycle.  This relatively low number of simulations does not allow for 
the accurate estimation of the higher percentiles of the loss distribution.  The loss that 
might occur one time in a thousand—one day in four years, on average—has 
considerable practical importance but would be estimated quite inaccurately. Second, the 
result of a Monte Carlo simulation is a random number that depends on random inputs.  
In a trading situation where a position may need adjustment, decision making is not 
enhanced by the idea that a second run might have a different result. Finally, Monte 
Carlo results may be difficult to interpret and communicate when dissimilar random 
scenarios result in nearly the same loss. 
 
One suggestion to speed the calculation and make it non-random is to use actual 
historical price movements—perhaps the last 100 days of price changes—rather than 
simulated movements. This obviously puts a cap on the number of simulation runs, but 
again it cannot provide good estimates of high percentiles of the loss distribution.  
 
Perhaps the most frequently discussed method for the VAR calculation is the variance-
covariance method. The variance-covariance method approximates the response of the 
portfolio by a process called ‘mapping,’ by which the risk of a position is represented as 
quantities of standardized instruments. The standardized instruments respond linearly to 
underlying markets and have no optionality.  Essentially, the portfolio response is 
approximated by a linear function.  
 
If the portfolio has a nonlinear response to market variables such as seen in Figure 1, this 
approach can produce very misleading results. In particular, it assigns zero risk to a delta-
hedged short option position. Far from having zero risk, this position loses considerable 
money when the market moves either up or down a large amount. It is exactly this sort of 
position that risk controllers need to limit in order to avoid large losses when the market 
moves strongly. 
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The Factor-Based Scenario Method first devises the scenarios, generally with reference 
to the quantiles of the normal distribution. It may try scenarios at various levels of 
intensity such as ±2.33 standard deviations, ±4 standard deviations, and ±6 standard 
deviations.  (A different limit would apply to each set of scenarios.)  For the portfolio of 
Figure 1 there is only one “factor,” the price of the T-Bond contract. Second, it revalues 
the portfolio under each scenario.  Figure 1 shows valuations under the “Up 2.33 SDs” 
and “Down 2.33 SDs” scenarios.  For this portfolio, both the Up scenario and the Down 
scenario produce losses.  The Up scenario produces the greater loss, $1.45 million, taken 
as the VAR estimate. 
 
The Factor-Based Scenario Method performs a complete revaluation of the portfolio 
under each of the hypothetical scenarios it selects.  In this way it resembles the Monte 
Carlo method more strongly than the variance-covariance approach.  Yet the Scenario 
Method produces its result much more quickly than Monte Carlo because the number of 
revaluations it employs is small—two in this case.  
 
Something is lost in this otherwise favorable bargain: the resulting estimate does not 
exactly equal the 99th percentile of the loss distribution.  This is partly because the T-
Bond futures price is not normally distributed; for example, it tends to rise by 2.33 
standard deviations more than 1% of the time.  Even treating the market as normal, the 
factor-based estimate understates the 99th percentile loss.  That is because there is 1% 
chance that the price rises by more than 2.33 standard deviations (causing a loss greater 
than $1.45 million), and in addition there is a 0.000000006% chance that price falls by 
more than 6.4 standard deviations (this occurs to the left beyond Figure 1 and also causes 
a loss greater than $1.45 million). Where the 0.01 quantile was sought, the 
0.01000000006 quantile was found. Should the portfolio show the same loss under both 
the Up scenario and the Down scenario, the resulting estimate represents the 98th 
percentile of loss rather than the 99th percentile. The actual 99th percentile loss would 
correspond to 2.58 standard deviations (two-tailed 1%) rather than 2.33 standard 
deviations (one-tailed 1%), a 9.7% error.  The potential for this degree of error is the cost 
of the several advantages of the Factor-Based Scenario Method for a portfolio of hedged 
short options in the case of one market. 
 
One can easily construct portfolios where the estimation error is large. The simplest is 
when the portfolio is long a put and long a call as in Figure 2. Valued at either the Up 
scenario or the Down scenario, this portfolio makes money, so the Scenario Method sets 
VAR equal to $0 despite what can be seen in the diagram. If the profit function tends to 
have important interior minima such as this, the Scenario Method is not appropriate and 
the remainder of this article assumes the portfolio at hand lacks interior minima.   
 
 

Interest Rate Scenarios and Principal Components Analysis 
 
The most common yield curve scenarios posit a shift of a given number of basis points at 
all maturities. However, portfolio value usually depends on the steepness of the yield 
curve as well as its overall level. This recognition might lead to additional scenarios: a 
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“curve steepening” scenario, a “curve flattening” scenario, and a “curve rising and 
steepening” scenario. More scenarios might be devised to reveal the risk of more 
complicated positions, and so forth. Unfortunately, this ad-hoc process quickly loses 
contact with the probabilities revealed in interest rate data. 
 
The Factor-Based Scenario Method takes a more rigorous route to derive interest rate 
scenarios. The method views movements in the yield curve as stemming from the 
movements of several underlying factors. As in Litterman and Scheinkman (Journal of 
Fixed Income), the factors emerge from the use of the multivariate statistical technique of 
Principal Components Analysis (PCA). Of the several types of factor analysis described 
in the statistical literature, PCA results in an explicit statement of the factors themselves. 
It also supplies the associated standard deviations to measure the relative importance of 
each component in describing the data. The first principal component has the greatest 
effect on the data and the greatest standard deviation; the other principal components 
follow in turn.   
 
The first few principal components of the yield curve data represent the most typical 
movements of the yield curve. The first principal component appears similar to a “level 
shift” factor. This corresponds to the intuition that the most important event affecting the 
yield curve on a given day is whether yields generally tend to rise or to fall. The second, 
less important, component appears similar to a “curve steepening” factor. This factor 
allows the yield curve to pivot steeper or flatter. The third principal component allows 
intermediate-term yields to rise (fall) while both short-term and long-term rates fall (rise). 
 
Nothing about PCA is intrinsically difficult. Still, several facts conspire to make it 
unfamiliar even to market participants familiar with statistical regression. The technique 
of PCA is usually taught in multivariate statistics courses where most of the applications 
come from social sciences such as psychology, rather than finance. Different texts on 
PCA do not agree on the meanings of some key terms. The geometric intuition imparted 
by some texts may not seem relevant. Nonetheless, PCA applies directly and simply to 
the problem at hand because it reduces the apparent complexity of the interest rate world 
while retaining its essential richness. Anyone acquainted with linear regression can 
understand and interpret the results of PCA. 
 
 

Principal Components Results 
 
This section provides an orientation to the PCA results produced by standard software. 
The data consists of 1543 daily observations at ten points along the yield curve: six and 
one quarter years (1/89 through 3/95) of daily changes in constant-maturity U.S. Treasury 
yields (in basis points) observed at tenors of 3, 6 and 12 months and 2, 3, 4, 5, 7, 10, and 
30 years.  
 
The first step in the analysis removes the downward drift of interest rates—about 200 
basis points (less than 0.2 basis points per day) at each point on the curve over the sample 
period. The mean of each adjusted series is zero. (This has no effect on the results 
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produced by standard statistical packages, but facilitates the analogy to regression 
analysis presented below.) Table 1 shows the mean-adjusted data for the first ten dates. 
 
Several statistical software packages offer PCA. Running any of them produces a wealth 
of results that include (1) the loadings1 of each principal component, (2) the factor scores, 
and (3) the standard deviation of each component. Table 2 presents selected PCA results 
for the interest rate data. 
 
Table 2 shows the loadings of all ten principal components that arise from the analysis of 
the ten points on the yield curve.  The first three have the character of typical movements 
of the yield curve as understood by market participants. PC1 causes every interest rate to 
rise, PC2 causes the yield curve to steepen, and PC3 causes one-year to five-year rates to 
fall while both long-term and short-term rates rise. Thus the first few principal 
components correspond to the intuitions that traders have about how the market moves on 
a daily basis. 
 
The factor scores restate each day’s yield curve movement as a combination of the 
movements of principal components. For example, Table 1 shows that on 1/5/89 all 
interest rates rose and that short term rates rose more than long term rates. Table 2 
restates this movement as a combination of factors: PC1 enters with a large positive score 
(the curve shifts up) and PC2 enters with a large negative score (the curve flattens). The 
scores of the first two principal components shown in Table 2 have nearly as much 
information as all ten data points shown in Table 1. 
 
The standard deviations of the ten factor score series determine their ordering. In Table 2, 
the volatility of the scores of PC1 exceeds that of any other component, the volatility of 
the scores of PC2 exceeds that of any component except PC1, and so forth.  The squares 
of the standard deviations—the variances of the components—have an interesting 
property.  The sum of the variances of the components equals the sum of the variances of 
the original data. The total variance in the original data is thus 
 

17.49² + 6.05² + 3.10² + 2.17² + .... = 367.9 
 
and the proportion of this data explained by the first factor is 17.49²/367.9 = 83.1%. The 
proportion explained by the first two principal components is  
 

(17.49² + 6.05²)/367.9 = 93.1% 
 
Since all ten of the components explain 100% of the variation in the original data, the 
principal component scores provide an exact restatement of each day’s activity that is 
equivalent to the original data. The principal components description is simpler, though, 
because most of the variance in the original data concentrates in the first few principal 
components. A movement in the first principal component explains movement at all 
points of the yield curve and explains as much of that movement as possible. 
 

Analogy to Linear Regression Analysis 
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A comparison with regression analysis will elucidate the previous statement. In 
regression, one has a dependent variable that one wishes to explain with the independent 
variable. Most interest centers on the regression coefficient and on R2. The least-squares 
procedure maximizes R2 by minimizing the sum of the squares of the errors produced by 
the regression equation.  
 
Intuitively, PCA “makes up” the data on the right hand side of the regression equation. 
Instead of beginning with known data, PCA finds the data that provides the best fit. If 
one had only one day of yield curve data to explain, the best explanation would be the 
data itself. The statistical puzzle that PCA solves is to find the best explanatory variable 
for all days in the sample period.  
 
Continuing the analogy to regression analysis reveals some insights.  It is helpful to think 
of PCA as operating by iteration.  The iteration begins with a guess: the uniform-shift 
variable [1,1,1,1,1,1,1,1,1,1]. This variable serves on the right-hand side of each of 
N=1543 regression equations. Each regression separately estimates its coefficient to 
minimize the sum of squared errors within that regression.  The total of the N sums of 
squared errors from these regressions measures the overall explanatory power of the 
independent variable. A good explanatory variable will produce a lower cumulated sum 
than a poor one. One can imagine the iterative procedure improving on the uniform shift 
variable until no further improvement is possible. The cumulated sum of squared errors 
reaches its minimum when the explanatory variable equals the first principal 
component.2 No other variable explains the data as well as the first principal component. 
Starting with nothing, PCA finds the optimal independent variable.3
 
Continuing the regression analogy, the coefficients that arise from the N regressions on 
the first principal component equal the factor scores as produced by PCA. For example, 
regressing the data for 1/5/89 on the PC1 column of the loadings matrix results in a 
regression coefficient of 23.6−−the factor score for PC1 that appears in Table 2 for 
1/5/89. One could say that the market on 1/5/89 experienced 23.6 “units” of PC1. The 
restatement of market movement provided by the factor scores has the character of a 
regression relationship where the components play the role of the explanatory variables 
and the factor scores play the role of regression coefficients. 
 
Finally, the standard deviation of the set of coefficients that arise from the N regressions 
equals the standard deviation of the first principal component. Any day’s coefficient 
estimates how strongly the first component affects that day’s interest rate movements. 
The standard deviation of the 1543 coefficients tells the volatility of the component as 
revealed by the data. In the case of PC1, the standard deviation equals 17.49. Thus we 
can say that on 1/5/89 PC1 took the unusual value of 23.6/17.49 = 1.35 standard 
deviations. 
 
If asked to write down the explanatory variable that would do the best job explaining 
daily variation in the yield curve, many practitioners would choose a level shift in which 
all rates rise or fall by the same amount. The first principal component of the yield curve 
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data improves on the intuitive idea of “all rates go up or down by the same amount” to 
provide a calibrated and non-uniform shift in rates. 
 
Though the first principal component gives the best single explanation of daily 
movements, it leaves some variation unexplained. The remaining variation can act as data 
in a second set of N regressions. The best explanatory variable for these regressions 
equals the second principal component. The second principal component of the yield 
curve data improves on the intuitive idea “the yield curve tends to steepen or flatten” to 
provide a precise quantification of the relationships along the curve as it steepens or 
flattens.  
 
The first two principal components taken together explain over 93% of the variation in 
the original data. Combinations of them provide a rather accurate impression of yield 
curve movements on most days. Since these two factors provide an approximate 
description of the historical data, it is natural to use them to develop an idea of the sorts 
of yield curve movements that may arise in the future. Combinations of the principal 
components produce yield curve scenarios that reveal the interest rate risk of a portfolio 
of transactions. 
 
 

From Components to Scenarios 
 

This section derives four scenarios from the first two principal components. No formal 
statistical test can judge that two components adequately capture yield curve movements.  
Instead, we pursue the practical test that the resulting scenarios are rich enough to reflect 
both the movement of individual interest rates and the movement of various spreads 
between interest rates.  To capture the variation of certain spreads, sixteen scenarios 
produced from the first four components appear needed, and this is the model finally 
adopted. 
 
The upper section of Table 3 shows the calculation of the “Shift” factor and the “Twist” 
factor, the two building blocks for four scenarios. Shift equals the standard deviation of 
PC1 times the loadings of PC1, and Twist equals the standard deviation of PC2 times the 
loadings of PC2. Thus the Shift factor moves the thirty-year yield by 17.49 x 0.25 = 4.4 
basis points, and the Twist factor moves the thirty-year yield by 6.05 x 0.33 = 2.0 basis 
points. The lower section of Table 3 shows the resulting scenarios as combinations of 
Shift and Twist. In the UpUp scenario, both factors operate in the positive direction. The 
yield of a thirty-year instrument rises by (4.4 + 2.0) x 2.33 = 14.9 basis points, where 
±2.33 standard deviations corresponds to the 1st and 99th percentiles of a normal 
distribution. Repeating the calculation of scenario UpUp for each point on the curve, all 
yields rise, though long-term yields rise more than short-term yields. In the UpDn 
scenario, all yields rise, but short-term yields rise more than long-term yields; the thirty-
year yield rises by (4.4 - 2.0) x 2.33 = 5.6 basis points. 
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The bold lines in Figure 3 show the 1st and 99th percentiles of the data. For example, on 
only one day in 100 does the three-month rate rise by more than 15.2 basis points. By 
contrast, scenario UpDn (interest rates generally move higher while the yield curve 
flattens) moves the three-month rate higher by 16.4 basis points. Thus one of the 
scenarios approximates the 99th percentile at the three-month point on the curve. The 
same is true at every point of the curve: the amount of movement represented by the 1st or 
99th percentile is approximated by one of the four scenarios. If matching the movement of 
individual rates on the yield curve were the only test, four scenarios would appear 
adequate. However, if the portfolio to be analyzed responds to differences between rates, 
one would prefer also to check the modeling of spreads along the curve. 

 
To investigate the adequacy of two factors to explain spreads along the yield curve, 
scatterplots appear to provide the most insight. Figure 4 compares the daily changes in 
the three-month yield and the six-month yield to four points corresponding to the four 
factor-based scenarios. For example, the scenario DnUp moves the three-month rate 
down 16.4 basis points and moves the six-month rate down 17.6 basis points; it appears 
as the lowest of the four scenario points on the graph. A polygon connects the four 
scenario points in Figure 4. 
 
The immediate impression is that many data points lie outside the polygon. The outliers 
tend to clump along the broad sides of the polygon rather than at the “points” of the 
polygon in the first and third quadrants. That is, the scenario points reflect the cases 
where the three-month and six-month rates rise together or fall together, but fail to 
adequately reflect cases where the rates move in different directions. While the first two 
principal components describe the broad movements of the yield curve, they fail to 
describe movements in the six-month/three-month interest rate spread. This suggests 
adding a third or fourth factor. 
 
The third factor, “Bow-1,” equals PC3 times its standard deviation. Adding that to Shift 
and Twist results in eight scenarios. Each of the previous four scenarios gives rise to two 
offspring, one in which Bow-1 rises and one in which Bow-1 falls. Adding “Bow-2” 
(PC4 times its standard deviation) results in the sixteen scenarios displayed in Figure 5 
along with the market data of Figure 4. Eight of the scenario points define the periphery 
subject to stress, and eight others lie within the area. (The latter are not wasted; they 
appear on the periphery of scatterplots involving other points on the curve.) The resulting  
polygon appears to adequately contain the historical data on three-month and six-month 
rates, and a similar conclusion follows from inspection of each of the other forty-four 
scatterplots involving pairs of variables. 
 
Figure 6 displays the loadings of the first four principal components. PC1 appears as 
nearly a uniform shift and PC2 appears as nearly a linear twist. PC3 allows the short end 
of the yield curve to steepen (flatten) while the long end flattens (steepens). PC4 
introduces contrast between the three-month and the six-month, and between the one-
year and the two-year points on the curve. As seen in Figures 4 and 5, these contrasts 
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provide an improvement in explaining some spreads that may have significance for 
certain portfolios. 
 
Figure 7 shows eight of the sixteen scenarios that stem from the first four factors. These 
eight contain the Shift factor operating in the positive direction. The other eight scenarios 
would appear as mirror opposites of these. The message of Figure 7 is simply that the 
scenarios resulting from the first four factors display a very wide range of yield curve 
movements. Even if a portfolio contains long and short positions and depends on spreads 
and subtle interrelations on the yield curve, its risks should be revealed by one or another 
of these scenarios. 

Non-Option Portfolios 
 
Most of the issues that affect the accuracy of the Factor-Based Scenario Method make 
themselves felt within simple portfolios that do not contain options. Still, the Factor-
Based Method approximates the percentile of loss observed in historical data. The error 
of approximation tends to be one of overstatement––the conservative result from the 
perspective of most users of risk control. For example, using 2.33 standard deviations to 
construct scenarios tends to result in a VAR estimate greater than the 99th percentile of 
the loss distribution.  
 
The basic conservatism of the Factor-Based Method stems from the interaction of three 
competing influences on the precision of the resulting estimate.  The first two of these 
influences would lead, in isolation, to an understatement of risk and the third to an 
overstatement: 
 
(1) The factors may have a non-normal distribution with “fat tails.”  A factor would 
exceed 2.33 standard deviations in more than 1% of cases.  Other things being equal, this 
influence would cause the Factor-Based estimate of VAR to understate risk. 
 
(2) The portfolio may depend on factors of higher order than those used in constructing 
the scenarios. Scenarios based only on the first four factors would underestimate the risk 
of such a portfolio.  
 
(3) The portfolio may depend on two or more of the first four factors.   
 
The last situation occurs in the majority of cases and warrants further exploration. To 
allow visualization and to simplify the discussion, assume that only two factors matter, 
Shift and Twist, and that they have a bivariate normal distribution. Figure 8 displays the 
scatterplot of the factor scores for the 1543 days of data and the four scenario points.  
If the portfolio in question responds linearly to the two factors, within the region of a 
rectangle such as that in Figure 8, the portfolio will achieve its maximum loss at a corner. 
Suppose the greatest loss occurs at point UU. The linearity of the profit function implies 
the set of points at which loss is equal to that at UU will appear as a straight line through 
UU. 
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Consider three cases.  In the first, a portfolio depends only on the Shift factor and not on 
the Twist factor. Its loss will exceed the loss at point UU only if the factor score for Shift 
exceeds 2.33, that is, only if the data point appears to the right of the vertical line passing 
through point UU. The probability that this occurs equals 1% under the normality 
assumption. Therefore the portfolio loss that arises from scenario UU will represent the 
99th percentile loss. Second, consider a portfolio that depends only on the Twist factor. Its 
loss will exceed that at point UU only if the factor score for Twist exceeds 2.33 and the 
point appears above the horizontal line through UU. Again, the probability equals 1% 
and the portfolio value at point UU will again represent the 99th percentile loss. Finally, 
consider a portfolio that depends on both Shift and Twist. It will have a loss greater than 
at point UU only if the combination of Shift and Twist results in a point located above a 
line such as AB in Figure 8. A slanted line such as AB is farther, on average, from the 
center of the distribution than either the horizontal or vertical line through UU and 
isolates less of the probability space. The probability that a point will be above AB is less 
than 1%, so the value at UU represents a percentile of the loss distribution above the 99th 
percentile. The Factor-Based Method therefore tends to overstate risk for portfolios that 
depend on more than one factor. 
 
Figure 9 examines the practical importance of these three sources of estimation error.  
Each point in Figure 9 represents a randomly generated portfolio of fixed income 
instruments.4 Each random portfolio was subjected to two experiments.  First, the daily 
P&L was simulated for each of the 1543 days of data.  The 99th percentile of the 
distribution of these losses establishes the horizontal position of the point.  Second, the 
VAR of the portfolio was estimated by the Factor-Based Scenario Method.  That is, the 
portfolio was valued under each of the sixteen scenarios (eight of which appear in Figure 
7), and the greatest loss among these establishes the vertical position of the point.  When 
a point lies on the 45° line, the Factor-Based Scenario Method has succeeded in 
estimating the 99th percentile of the loss distribution for that portfolio. 
 
Figure 9 makes several points.  First, understatements of risk are few and small.  This 
serves the risk control function by protecting against unpleasant surprises.  Qualitatively, 
the conservatism introduced by influence (3), above, tends to dominate the influences of 
(1) and (2).  Second, the Factor-Based Scenario Method tends to greater accuracy (as a 
fraction of the 99th percentile historical risk) for the portfolios that have greatest risk.  
This partly reflects the fact that the most risky portfolio will tend to respond to the most 
volatile factor rather than to a combination of several factors. Third, the average 
overstatement of risk (20.2%) and the variation in its overstatement (standard deviation = 
15.7%) are within a range that senior managers (if not traders) may find acceptable. 
When options enter the picture they tend to absorb some, but generally not all, of this 
inherent conservatism. 
 
 

Portfolios Containing Options 
 
Introducing options adds two elements to the analysis. First, option values depend on an 
additional parameter, volatility, and changes in volatility can affect portfolio value just as 
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much as changes in interest rates. For the Factor-Based Method, this adds one or more 
dimensions to those already identified. The resulting scenarios combine an interest rate 
shift and a volatility shift.  
 
Second, options on fixed-income instruments have a much more nonlinear response to 
interest rates than swaps, bonds, or futures. The nonlinear response of options presents 
two challenges to the accuracy of the Factor-Based Scenario Method.  Both challenges 
were met in the one-market environment.  The most important challenge is the potential 
that large losses might occur between scenario points.  Through a variety of means the 
user can gain confidence that this is not the case for the portfolio at hand.  Take as a 
representative portfolio the options held by an institutional participant in the fixed-
income option market.5 The portfolio reflects various market-making, hedging, and 
position-taking activities and contains options on thirteen contracts of Treasury Bond 
futures, Treasury Note futures, and Five-Year Treasury futures. Just over $100 billion of 
securities underlay the options of this portfolio. To focus on the issue of nonlinearity, a 
hedging set of T-Bond, T-Note, and Five-Year futures was included to minimize the 
maximum loss under any scenario.6
 
Figure 10 shows the portfolio profit and loss response to independent movements of each 
of the four factors. The line labeled “Shift” shows the outcome when the Shift factor 
score takes on various values (measured in standard deviations), while the other factors 
remain fixed. The portfolio is evidently “long Shift” in that it tends to make money when 
Shift has a small positive score.  However, a large absolute Shift score, either positive or 
negative, results in a loss.  One can see that the portfolio is more sensitive to Shift than 
any other factor and least sensitive to Bow-2.  Most important, the response to each 
factor has concave curvature.  On each plotted line, just as for a short option straddle, the 
maximum loss in any region occurs at one of the endpoints of the region. 
 
Figure 11 shows the portfolio’s concave profit surface as a function of the first two 
factors. The four corners of the floor of the diagram correspond to the four corners of the 
rectangle in Figure 8. The concavity of the surface implies that the greatest loss on a 
rectangular region occurs at one of the corners, specifically the corner where both Shift 
and Twist decline.  This corresponds to scenarios beginning “DD.” The portfolio has the 
character of a short straddle and can also experience large losses in the diagonally 
opposite case of scenarios beginning “UU.”  
 
The second challenge, implicit in the concavity of the profit surface, is that multiple areas 
of factor space may contribute to the probability that the loss will exceed the VAR 
estimate.  This is analogous to the situation of Figure 1, in which the portfolio suffered a 
loss exceeding VAR both when the price rose 2.33 standard deviations and when the 
price fell 6.4 standard deviations.  In the four-factor case, Figure 10 suggests the position 
could lose more than VAR given a large-enough movement in any of the four factors.  
This might seem to imply the potential for a large understatement of risk, but such is not 
the case. Consider the story told by Figure 12 for a hypothetical portfolio in the two-
factor case.  Here, all four scenarios produce the same loss, as do all the points along the 
circular level curve.  Loss exceeds VAR at any point outside the circle.  For normally 

 13



distributed factors, that probability is 0.5%.  Intuitively, the curvature of the level curve 
causes it to miss the high-density areas between it and the square connecting the scenario 
points.  It seems that the profit function cannot conform closely enough to the square to 
result in an understatement of risk, despite the chance for extreme movement of either 
factor to trigger a loss greater than VAR. 
 
The level curve of a portfolio with a concave profit function might look also like that in 
Figure 13.  Clearly, the probability outside such a curve exceeds the probability above the 
tangent line AB.  That tangent line is the level curve of a linearly responding portfolio.  
Though the VAR estimate for linear portfolios was found to be conservative in Figures 8 
and 9, introducing options might reduce confidence in the estimate.  
 
A historical simulation of the representative portfolio provides evidence that the Factor-
Based Scenario Method estimate remains conservative, nonetheless. Figure 14 shows the 
distribution of profit and loss for 300 out-of-sample days of interest rate history, the 99th 
percentile loss, and the Factor-Based Scenario VAR estimate.  The distribution resembles 
that for a short options position—many small profits and some large losses.  The VAR 
estimate appears conservative relative to this test. 
 
The Factor-Based Scenario Method can provide many benefits in estimating value-at-
risk: it produces a quick, easily interpreted result that is valid for option-intensive 
portfolios with negative gamma. However, the Factor-Based Method cannot guarantee 
accuracy for any type of portfolio sensitive to any set of risk factors. Generally the 
method works best when the portfolio appears to depend on a small number of factors. 
That would be the case for portfolios of fixed income instruments within a particular 
country or for spot foreign exchange risk among major countries. At the other extreme, a 
portfolio of options on individual stocks might be a poor candidate for factor-based VAR 
estimation if, for example, the spread between two gold stocks has a strong effect on 
profit; such a spread relationship might require many principal components to model 
adequately. Note that both the nature of the position and the statistical properties of 
market variables must be taken into any assessment of appropriateness.
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Summary and Conclusion 
 
For portfolios of fixed income instruments dominated by short options positions, the 
Factor-Based Scenario Method tends to produce conservative estimates of value-at-risk. 
The method chooses a set of interest rate scenarios and values the portfolio under each. 
The greatest loss that comes about under any scenario serves as the VAR estimate. The 
scenario that produces the greatest loss characterizes the market movement most 
dangerous for the portfolio. 
 
Each scenario combines factors, referred to here as Shift, Twist, Bow-1, and Bow-2. Shift 
appears as a nearly uniform increase (or decrease) in yields at all points of the yield 
curve. Twist appears as a pivoting of the yield curve where long-term rates rise (or fall) 
relative to short-term rates. Bow-1 and Bow-2 induce more complex movements. In each 
scenario, each factor operates in either the positive direction or the negative direction. 
 
The statistical technique of principal components analysis determines the factors. 
Principal components analysis can be viewed as equivalent to a regression study that 
finds optimal independent variables. The first principal component represents the most 
typical movement of the yield curve. Multiplying by its standard deviation produces the 
Shift factor. The other factors have similar definitions. 
 
Basing the scenarios on 2.33 standard deviations (corresponding to 99% confidence for a 
normal distribution), the risk estimate tends to overstate the 99th percentile of the loss 
distribution. That is because the Factor-Based Scenario Method tends to overstate risk for 
portfolios that depend on more than one factor—and most portfolios depend on multiple 
factors.  
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-------------------------------------------------------------------------------------- 
Appendix 1: Proof of a Duality Between PCA and Regression Analysis 

 
Given: an N*p matrix of mean-adjusted (the column means equal 0) data, Y 
Define: an arbitrary, normal p*1 vector x (that is, x'x = 1) 
Then: The cumulated sum of squares from N independent regressions of the rows of Y on 
x reaches its minimum when x equals the first principal component of the data Y. 
 
Proof: Let Yi' symbolize the ith row of the matrix Y. The ith regression takes the form  
 
 Yi = â x + ei
 
where â is the regression coefficient and ei is a p*1 vector of residuals. Minimizing ei'ei 
subject to x'x = 1 implies 
 
 â = Yi' x 
 
A row vector of regression residuals is then Yi' - Yi'xx' and the Nxp matrix of residuals 
from all regressions is Y-Yxx'. The cumulated sums of squares from all regressions 
equals 
 
 CumSSE = trace( (Y-Yxx') (Y-Yxx')' ) 
         = trace(YY' -Yxx'Y') 
         = trace(YY') - trace(x'Y'Yx) 
         = trace(YY') - N x'Sx 
 
where S = Y'Y/N is the variance-covariance matrix of Y. By definition, among all normal 
vectors x, the first principal component of Y maximizes x'Sx . Therefore CumSSE 
reaches its minimum when x is chosen as the first principal component. 
 

------------------------------End of Appendix 1----------------------------------------- 
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-------------------------------------------------------------------------------------- 

Appendix 2: Mathematical Definition of Principal Components 
 
Most multivariate statistics texts provide an introduction to principal components 
analysis. A background in statistics and matrix algebra is helpful in exploring this topic. 
 
Let Y be an N*p matrix of data. 
 
The first principal component of Y is the p*1 vector x1 that maximizes the variance of 
x1'y subject to x1'x1 = 1. 
 
The second principal component of Y is the p*1 vector x2 that maximizes the variance of 
x2'y subject to x2'x2 = 1 and x2'x1 = 0. 
 
The other principal components are defined similarly. It can be shown that the principal 
components equal the eigenvectors of S, the variance-covariance matrix of Y. Therefore,  
 

S = PD2P′ 
 
where P is a matrix having the eigenvectors of S as its columns and D2 is a diagonal 
matrix of the eigenvalues of S in decreasing order from left to right. In the terminology of 
this article, the columns of P are the principal components loadings and the columns of 
PD are factors Shift, Twist, etc. 
 

------------------------------End of Appendix 2----------------------------------------- 
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Table 1.  
Sample of Mean-Adjusted Changes in Interest Rates in Basis Points 

 
          3m    6m     1y    2y    3y    4y    5y    7y   10y   30y  
          ---   ---   ---   ---   ---   ---   ---   ---   ---   --- 
 1/4/89   6.0   3.5   4.7   2.8   0.7   0.6   0.1  -0.2  -0.9  -1.0 
 1/5/89  19.8   7.4   8.1   7.3   8.6   6.8   6.4   6.6   5.6   2.3 
 1/6/89 -10.4   0.3   5.7   1.0   0.9   0.5  -0.3  -2.1  -2.1  -4.1 
 1/9/89   0.2   2.3  -0.4  -5.1  -1.8  -1.3  -1.1   0.1  -0.7  -0.5 
1/10/89  -8.2  -5.9  -4.4  -1.6  -1.1  -0.9   0.2  -0.2  -0.4  -0.3 
1/11/89   7.6   3.5   1.3   2.9  -1.8  -0.4  -0.7  -0.2   0.1   0.4 
1/12/89  -1.4  -7.0 -13.7  -7.8  -7.6  -8.5  -8.6 -10.9  -9.3  -8.1 
1/13/89  -6.7  -8.6  -9.0  -7.0  -8.1  -9.6  -9.7 -10.3  -8.2  -8.6 
1/17/89   4.4   5.7   3.0   2.8   2.8   1.6   0.9   0.1   0.3   0.7 
1/18/89 -13.5  -5.3  -7.3  -4.3  -3.8  -4.8  -5.0  -5.7  -6.5  -5.2 
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Table 2.  Selected Results from Principal Components Analysis 

 
Principal Component Loadings 

 
          PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
          ---   ---   ---   ---   ---   ---   ---   ---   ---  ---- 
     3m  0.21 -0.57  0.50  0.47 -0.39 -0.02  0.01  0.00  0.01  0.00 
     6m  0.26 -0.49  0.23 -0.37  0.70  0.01 -0.04 -0.02 -0.01  0.00 
    12m  0.32 -0.32 -0.37 -0.58 -0.52 -0.23 -0.04 -0.05  0.00  0.01 
     2y  0.35 -0.10 -0.38  0.17  0.04  0.59  0.56  0.12 -0.12 -0.05            
     3y  0.36  0.02 -0.30  0.27  0.07  0.24 -0.79  0.00 -0.09 -0.00 
     4y  0.36  0.14 -0.12  0.25  0.16 -0.63  0.15  0.55 -0.14 -0.08 
     5y  0.36  0.17 -0.04  0.14  0.08 -0.10  0.09 -0.26  0.71  0.48 
     7y  0.34  0.27  0.15  0.01  0.00 -0.12  0.13 -0.54  0.00 -0.68 
    10y  0.31  0.30  0.28 -0.10 -0.06  0.01  0.03 -0.23 -0.63  0.52 
    30y  0.25  0.33  0.46 -0.34 -0.18  0.33 -0.09  0.52  0.26 -0.13 
 
 

Sample of Principal Component Scores 
 

          PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
          ---   ---   ---   ---   ---   ---   ---   ---   ---  ---- 
 1/4/89   4.6  -7.4   0.0   0.1  -1.9  -0.1   0.8   0.1   0.0  -0.3 
 1/5/89  23.6 -11.8   5.9   6.9  -5.0  -0.8  -0.9  -1.4  -0.8  -0.3 
 1/6/89  -1.9   1.5 -10.7  -6.2   2.4  -1.8  -0.5  -0.3  -0.3   0.7 
 1/9/89  -3.1  -1.3   3.1  -2.1   1.3  -2.7  -1.8  -1.2   0.5  -0.4 
1/10/89  -6.1   8.8  -3.1   0.3   1.2   0.4   0.1  -0.3   0.7   0.3 
1/11/89   3.0  -6.8   3.8   1.2  -1.4   1.3   2.7   0.4  -0.5  -0.2 
1/12/89 -26.7  -1.7   1.3   6.8   1.9   1.5  -0.4   1.4   0.4   1.0 
1/13/89 -27.0   0.5  -3.2   1.8   0.2   1.4   0.1   0.1  -1.1   0.9 
1/17/89   6.6  -5.7   0.7  -0.3   1.2   0.7  -0.8   0.9  -0.1   0.0 
1/18/89 -18.1   6.4  -6.8  -1.5   5.1   0.9  -0.6   0.6   0.6  -0.4 
 
 

Principal Component Standard Deviations 
 

          PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10 
          ---   ---   ---   ---   ---   ---   ---   ---   ---  ---- 
        17.49  6.05  3.10  2.17  1.97  1.69  1.27  1.24  0.80  0.79 
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Table 3.  Construction of Two Factors and Four Scenarios 

 
Yield Curve Factors in Basis Points 

         3mo   6mo  12mo   2yr   3yr   4yr   5yr   7yr  10yr  30yr 
         ---   ---  ----   ---   ---   ---   ---   ---   ---   --- 
Shift    3.6   4.6   5.6   6.2   6.3   6.3   6.2   5.9   5.4   4.4 
Twist   -3.5  -3.0  -1.9  -0.6   0.1   0.8   1.0   1.6   1.8   2.0 
 

Yield Curve Scenarios (2.33 SDs) in Basis Points 
         3mo   6mo  12mo   2yr   3yr   4yr   5yr   7yr  10yr  30yr 
         ---   ---  ----   ---   ---   ---   ---   ---   ---   --- 
UpUp     0.3   3.7   8.6  12.9  15.0  16.7  16.8  17.5  17.0  14.9 
UpDn    16.4  17.6  17.5  15.8  14.5  12.9  12.2   9.9   8.4   5.6 
DnUp   -16.4 -17.6 -17.5 -15.8 -14.5 -12.9 -12.2  -9.9  -8.4  -5.6 
DnDn    -0.3  -3.7  -8.6 -12.9 -15.0 -16.7 -16.8 -17.5 -17.0 -14.9 
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Figure 1.  When only one market affects the portfolio, the Factor-Based Scenario Method simply 
shocks that market up and down by a fixed number of standard deviations.  In this case the portfolio 
is a delta-hedged short position in a short-term, out-of-the-money call option on Treasury Bond 
futures.  Such a position is unaffected by a very small movement in the underlying market but tends 
to lose money in large moves up or down.  In particular, the portfolio loses money under both the Up 
scenario (underlying price up 2.33 standard deviations) and the Down scenario (underlying price 
down 2.33 standard deviations).  The greatest loss among the scenarios, $1.45 million, provides the 
VAR estimate. This estimate corresponds to the 98.999999994 percentile because of the small chance 
that price might fall enough to produce a $1.45 million loss.  (This ignores the existence of daily 
limits on futures price movements.) 
 

Figure 2.  A portfolio that displays an interior minimum is a poor candidate for using the Factor-
Based Scenario Method.  In this case a loss is possible despite the fact that both scenarios result in 
profit.  This portfolio is long options, while the portfolio of Figure 1 is short options.  

 
Figure 3. The two bold lines correspond to the 1st and 99th percentiles of the historical sample. For 
example, the 99th percentile of the three-month rate equals 15.2 basis points. The four lighter-weight 
lines denote the four scenarios based on the factors Shift and Twist. The factor-based scenarios move 
the curve by an amount approximately equal to the 99th (or 1st) percentile.  If this were the only test 
of adequacy—that a set of scenarios reflects broad overall movements in interest rates—the two-
factor, four-scenario model would appear to pass. 
 
Figure 4. Historical changes in three-month and six-month yields appear as “+” signs. The four 
factor-based scenarios are connected by a polygon. Many data points lie outside the polygon, leading 
to the likelihood that a position sensitive to the six-month/three-month spread may frequently lose 
more than the worst case among the four scenarios.  Evidently, more factors are required to model 
this spread relationship. 
 
Figure 5. The data of Figure 4 with the sixteen scenarios stemming from four factors. The outliers 
are few and scatter fairly evenly around the periphery of the polygon connecting the scenario points. 
The coverage in the other 44 scatterplots is equivalent or better. 

Figure 6. The loadings of the first four principal components have natural interpretations as features 
of daily changes on the yield curve. The sum of the squares of the loadings of each principal 
component equals one. The scale of any one loading therefore lacks direct interpretation. 

Figure 7. Eight of the sixteen scenarios that stem from the first four factors. In these eight, Shift 
operates in the positive direction. The other eight scenarios equal the negatives of these. This 
illustrates the richness of the interest rate scenarios produced by the Factor-Based Method.  

Figure 8.  A scatterplot of factor scores for Shift and Twist in standard deviations. Assume that the 
portfolio responds linearly to these factors, and that the scenario point with greatest loss is point UU. 
(1) For a portfolio that depends only on Shift, loss will exceed that at UU only for points to the right 
of the vertical line through UU. This occurs 1% of the time (assuming normality) so the Factor-
Based Scenario Method accurately estimates the 99th percentile of the loss distribution.  (2) For a 
portfolio that depends only on Twist, loss will exceed that at UU only for points above the horizontal 
line through UU. Again the method is accurate.  (3) For a portfolio that depends on both Shift and 
Twist, loss will exceed that at UU only for points above a slanted line such as AB. Fewer points lie 
above AB than to the right of UU or above UU. Therefore the loss at UU overstates the 99th 
percentile loss for a portfolio such as (3).
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Figure 9. This illustrates the inherent conservatism of the Factor-Based Scenario Method.  The 
scatterplot displays results for 1000 randomly generated portfolios. The horizontal axis has the 99th 
percentile of the loss distribution from the historical data for a given portfolio.  The vertical axis has 
the Factor-Based VAR estimate. The 45° line represents the exact 99th percentile. Points above 
(below) the 45° line represent overstatement (understatement) of risk. Overstatement of  risk is more 
common, and tends to be of greater magnitude, than understatement, which occurs in about 9% of 
the 1000 portfolios. The average overstatement equals 20.2% and declines (as a fraction of the 99th 
percentile historical loss)  for portfolios containing greater risk. 

Figure 10.  Each factor score is allowed to have an independent effect on the representative portfolio. 
Concavity is most apparent for the Shift factor but is present for all factors. As any factor is 
adjusted through a range of values, the greatest loss occurs at one of the endpoints of the range. 

Figure 11.  The representative portfolio resembles a short straddle.  It loses money when factors 
move strongly either higher or lower, though the worst case is when both factors rise or both factors 
fall. Such a portfolio has its greatest loss at a corner, not at an interior point. 

Figure 12. Data points illustrate the probability density of the factor scores and a level curve 
represents the profit of a hypothetical portfolio.  This portfolio experiences the same loss at every 
scenario point and at every point along the circular line connecting the scenario points. Loss at any 
point outside the circle will be greater than at the scenario points.  Inspection shows few such points; 
for normally distributed factors the probability outside the circle is 0.5%.  Despite the potential for 
the movement of either factor to cause loss exceeding VAR, the estimate remains conservative. 

Figure 13.  Two level curves: AB represents a linearly responding portfolio such as that of Figure 8 
and the oval represents an option portfolio in which a large score for either factor can produce a 
loss.  Clearly, more of the probability density lies outside the oval than above the line AB.  This 
means an options portfolio tends to absorb some of the inherent conservatism of the Factor-Based 
Scenario Method.  

Figure 14.  The simulated P&L distribution of the representative portfolio over 300 days of history.  
The distribution resembles that for a short option position, with many small profits and a few large 
losses.  The Factor-Based Scenario Method produces a VAR estimate slightly greater than the 99th 
percentile loss. 
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Profit and Loss of Hedged Short Call Option 
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Figure 15.  When only one market affects the portfolio, the scenario method simply shocks that 
market up and down by fixed numbers of standard deviations.  In this case the portfolio is a delta-
hedged short position in a short-term, out-of-the-money call option on Treasury Bond futures.  Such 
a position is unaffected by a very small movement in the underlying market but tends to lose money 
in large moves up or down.  In particular, the portfolio loses money under both the Up scenario 
(underlying price up 2.33 standard deviations) and the Down scenario (underlying price down 2.33 
standard deviations).  The greatest loss among the scenarios, $1.45 million, provides the VAR 
estimate. This estimate corresponds to the 98.999999994 percentile because of the small chance that 
price might fall enough to produce a $1.45 million loss.  (This ignores the existence of daily limits on 
futures price movements.) 
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Profit and Loss of Long Straddle
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Figure 16.  A portfolio that displays an interior minimum is a poor candidate for using the Factor-
Based Scenario Method.  In this case a loss is possible despite the fact that both scenarios result in 
profit.  This portfolio is long options, while the portfolio of Figure 1 is short options.  
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Four Scenarios with 1st and 99th Percentiles
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Figure 17. The two bold lines correspond to the 1st and 99th percentiles of the historical sample. For 
example, the 99th percentile of the three-month rate equals 15.2 basis points. The four lighter-weight 
lines denote the four scenarios based on the factors Shift and Twist. The factor-based scenarios move 
the curve by an amount approximately equal to the 99th (or 1st ) percentile.  If this were the only test 
of adequacy—that a set of scenarios reflect overall movements in interest rates—the two-factor, 
four-scenario model would pass.

 26



 
 

Four Scenarios with 3-Month and 6-Month Yield Changes
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Figure 18. Historical changes in three-month and six-month yields appear as gray “+” signs. The 
four factor-based scenarios appear as open circles with a polygon connecting them. Many data 
points lie outside the polygon, leading to the likelihood that a position sensitive to the six-
month/three-month spread may frequently lose more than the worst case among the four scenarios.  
Evidently, more factors are required to model this spread relationship. 
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Sixteen Scenarios with Three-Month and Six-Month Yield Changes
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Figure 19. The data of Figure 4 with the sixteen scenarios stemming from four factors. The outliers 
are few and scatter fairly evenly around the periphery of the polygon connecting the scenario points. 
The coverage in the other 44 scatterplots is equivalent or better. 
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First Four Principal Components
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Figure 20. The loadings of the first four principal components have natural interpretations as 
features of daily changes on the yield curve. The sum of the squares of the loadings of each principal 
component equals one. The scale of any one loading therefore lacks direct interpretation. 
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Eight Scenarios Containing Positive Shift
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Figure 21. Eight of the sixteen scenarios that stem from the first four factors. In these eight, Shift 
operates in the positive direction. The other eight equal the negatives of these. For each maturity, at 
least one scenario moves the associated rate higher than its 99th percentile, and in scatter plots of any 
pair of tenors, few data points lie outside the polygon connecting the scenario points.   
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Factor Scores and Scenarios

DU UU

UDDD

B

A

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Shift, Standard Deviations

Tw
is

t, 
St

an
da

rd
 D

ev
ia

tio
ns

 

Figure 22.  A scatterplot of factor scores for Shift and Twist in standard deviations. Assume that 
bivariate normal Shift and Twist fully explain movement in the yield curve, that the portfolio 
responds linearly to these factors, and that the scenario point with greatest loss is point UU. (1) For a 
portfolio that depends only on Shift, loss will exceed that at UU only for points to the right of the 
vertical line through UU. This occurs 1% of the time so the Factor-Based Scenario Method 
accurately estimates the 99th percentile of the loss distribution.  (2) For a portfolio that depends only 
on Twist, loss will exceed that at UU only for points above the horizontal line through UU. Again the 
method is accurate.  (3) For a portfolio that depends on both Shift and Twist, loss will exceed that at 
UU only for points above a slanted line such as AB. The nature of the bivariate normal distribution 
implies, and inspection of Figure 8 suggests, that fewer points lie above AB than to the right of UU or 
above UU. Therefore the loss at UU overstates the 99th percentile loss for a portfolio such as (3). 
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Factor-Based Risk Estimates and 99th Percentile Losses
1000 Randomly Generated Portfolios
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Figure 23. An illustration of the inherent conservatism of the Factor-Based Scenario Method.  The 
scatterplot displays results for 1000 randomly-generated portfolios. The horizontal axis has the 99th 
percentile of the loss distribution from the historical data for a given portfolio.  The vertical axis has 
the Factor-Based VAR estimate. The 45° line represents the exact 99th percentile. Points above 
(below) the 45° line represent overstatement (understatement) of risk. Overstatement of  risk is more 
common, and tends to be of greater magnitude, than understatement, which occurs in about 9% of 
the 1000 portfolios. The average overstatement equals 20.2% and appears to decline for portfolios 
containing greater risk. 
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Effect of Each Factor on Portfolio Value
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Figure 24.  Each factor score is allowed to independently affect the representative portfolio of an 
institutional participant in the fixed income options market. Convexity is most apparent for the Shift 
factor but present for all factors. As any factor is adjusted through a range of values, the greatest 
loss occurs at one of the endpoints of the range. 
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Figure 25.  The representative portfolio resembles a short straddle. It makes money when factor 
scores are low and loses money especially when the first two factors both rise or both fall. It has its 
greatest loss at a corner, not an interior point. 
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Factor Scores as SDs
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Figure 26.  The level curve of a hypothetical convex portfolio with data points to illustrate the 
probability density of the factor scores.  This portfolio experiences the same loss at every scenario 
point, and at every point along the circular line connecting them.  Loss will be greater than at the 
scenario points at any point outside the circle.  Inspection shows few such points; for normally 
distributed factors the probability outside the circle is 0.5%.  Despite the potential for the movement 
of either factor to cause loss to exceed VAR, the estimate is conservative. 
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Figure 27.  Two level curves.  Level curve AB represents a linearly responding portfolio such as 
those of Figures 8 and 9.  The oval level curve represents a convex options portfolio in which a large 
score for either factor can produce a large loss.  Clearly, more of the probability density lies outside 
the oval than above the line AB.  This means an options portfolio tends to absorb some of the 
inherent conservatism of the Factor-Based Scenario Method.  
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Figure 28.  The simulated P&L distribution of the representative portfolio over 300 days of history.  
The distribution resembles that for a short option position, with many small profits and a few large 
losses.  The Factor-Based Scenario Method produces a VAR estimate just larger than the 99th 
percentile loss. 
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Endnotes 
                                                           
1 This article defines “loading” as an element of an eigenvector of the 
covariance matrix. Some software packages may use the same word to mean 
an element of an eigenvector of the correlation matrix, a correlation between 
a data series and a component, or an element of an eigenvector times the 
square root of its associated eigenvalue.  To resolve uncertainty, note that 
the sum of the squares of the elements of an eigenvector equals one. 
2  For proof, see Appendix I. 
3 Up to a multiplicative factor.  Constraining the sum of the squares of the 
loadings to equal 1.0 results uniquely in the first principal component. 
4 The quantity of a security is a random normal with mean zero and standard 
deviation equal to $10,000,000 divided by duration. Therefore, all securities 
have the same expected dollar risk.  
5 Changes have been made to safeguard proprietary information. 
6 The hedge does not insulate the portfolio from movements in futures 
contracts or factors. 
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