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Part I

9.4: Factor Rotation

1 Review:

1.1 Covariance Structure for the Orthogonal Factor Model

1. Cov(X) = LLt+

Var(Xi) = l2i1 + · · ·+ l2im + Ψ

(1)

Cov(Xi) = li1lk1 + · · ·+ limlkm + Ψ

2. Cov(X,F) = L
or

Cov(Xi, Fi) = lij



2 Definition:

Factor Rotation: An orthogonal transformation of the factor loadings, as well as the implied orthogonal
transformation of the factors.

Let Tm×m be an orthogonal matrix, (TT t = T tT = Im×m).

If L̂ is the p×m matrix of estimated factor loading obtained by any method (PCP, ML, etc.) then

L̂∗ = L̂T, where TT t = T tT = I (2)

is the p×m matrix of ’rotated’ loadings. L̂∗ is an orthogonal transformation of the factor loading matrix.
The estimated covariance (or correlation) matrix remains unchanged.

L̂L̂t + Ψ̂ = L̂TT tL̂t + Ψ̂

= L̂∗(L̂∗)t + Ψ̂ (3)

indicates that the residual matrix remains unchanged.

Also, the estimated specific variances and communalities, Ψ̂i, and hence the ĥ2
i , are unchanged by orthogonal

transformations of L̂.

Therefore, can still use either L̂ or L̂∗.



The examples illustrate graphical and analytical methods for determining an orthogonal rotation to a
simple structure.

3 Examples

3.1 Example 9.8 (First look at factor rotation.) Oblique transformation.

Presented with the sample correlation matrix of examination scores in p = 6 subject areas for n = 220 male
students. The correlation matrix is

[Table 1:]http://www.stat.fsu.edu/˜jfrade/example98.htm



4 Varimax Criterion

Define the ’scaled’ loading, l̃∗ij, of the i-th variable on the j-th factor after rotation. Rotated coffecients scaled
by the square root of the communalities.

l̃∗ij =
l̂∗ij

ĥi

Then the varimax procedure selects the orthogonal transformation that maximizes

V =
1

p

m∑
j=1

 p∑
j=1

(l̃∗ij)
4 − 1

p

(
p∑

i=1

(
l̃∗ij

)2
)2
 (4)

Interpretation of (4),

V ∝
m∑

j=1

(Variance of squares of scaled loading for the j-th factor) (5)

Notes: Scaling gives the variables with smaller communalities more influence. Overall, maximizing V (4)
corresponds to ’spreading out’ the squares of the loadings on each factor as much as possible. Therefore, we
hope to find groups of large and negligible coefficients in any column of the rotated ladings matrix, l̃∗ij.

4.1 Example 9.9(2) (Rotated loadings for stock-price data.)

Returning to the data discussed in example 9.3 pg 493. The original factor loadings (obtained by PCP), the
communalities, and the (varimax) rotated factor loadings are shown in Table (??) below. SAS code given as
well.

[Table 1:]http://www.stat.fsu.edu/˜jfrade/example9-10-1.htm
It is clear that the bank stocks (JP Morgan, Citibank, and Wells Fargo) load highly on the first factor,

while the oil stocks, (Shell and Mobil) load highly on the second factor. Factor 1 may indicate those unique
factors that case bank stocks to move together. (??) and factor 2 represents conditions affecting oil stocks.

[Table 2:]http://www.stat.fsu.edu/˜jfrade/example9-10.htm
The factor loadings for the variables are pictured below with respect to the original and (varimax) rotated

factor axes in below figure. After rotation each of the p variables should have a high loading on only one
factor, however, this is not always possible.

[Figure 3:]http://www.stat.fsu.edu/˜jfrade/example9-10-2.htm
The general market factor was destroyed by rotation. Analyze the relationship to pattern of correlations.



Part II

9.5: Factor Scores
Factor analysis centers the focus on the parameters in the factor model, however the estimated values of
the common factors, factor scores, may also be of interest. These quantities are often used for diagonstic
purposes, as well as inputs to a subsequent analysis.

Factor scores are estimates of values for the unobserved random factor vectors, Fj, j = 1, 2, ldots, n.

f̂j = estimate of the values fj attained by Fj (j th case)

However, estimation is complicated by the fact that unobserved quantities, fj and εj, outnumber the
observed xj. The following two methods, Weighted Least Squares and Regression Methods, describe ways to
overcome this complication.

5 Estimation of Factor Scores for both models

Suppose that the mean vector, µ, the loading factors, L, and the specific variance Ψ are known for the factor
model,

(Xj − µ)(p×1) = L(p×mF(m×1) + ε(p×1 (6)

regard the specific factors ε′ = [ε1, ε2, . . . , εp] as errors. Since the Var(εi) = Ψi, i = 1, 2, . . . , p need not be
equal, thus

Var(εi) = Ψ =


Ψ1 0 0 . . . . . .
0 Ψ2 0 . . . . . .
0 0 Ψ3 . . . . . .
...

...
...

. . .
...

0 0 0 . . . Ψp

 (7)

will use the weighted least squares to estimate the common factor values.



6 Weighted Least Squares Method

WLS estimation of f̂j of fj is

fj =
(
L′Ψ−1L

)−1
L′Ψ−1 (x− µ) (8)

Using (8), take estimates L̂, Ψ̂, &µ̂ = x̄ as true values to obtain the factor scores for the j -th case:

f̂j =
(
L̂′Ψ̂−1L̂

)−1

L̂′Ψ̂−1 (xj − x̄) (9)

In (9), the estimates L̂, Ψ̂ are obtained by the maximum likelihood method and must satisfy the uniqueness

condition, L̂′Ψ̂−1L̂ = ∆̂, a diagonal matrix.
Note: Ordinary (unweighted) least squares estimation is sometimes used when factor loadings are ob-

tained from the principal component method, since specific variances tend to be more nearly equal. (i.e.

Ψ̂1 = · · · = Ψ̂p)
The factor scores are then,

f̂j =
(
L̃′L̃

)−1

L̃′ (xj − x̄) (10)

=
(
L̃z

′
L̃z

)−1

L̃z

′
zj (11)

where, (11), is for the standardized data.
Since, (see (9-15) pg. 490

L̃ =



√
λ̂1ê1√
λ̂2ê2

...√
λ̂mêm

 (12)

Using (12), into (10) will obtain

f̂j =



1√
λ̂1

ê′1 (xj − x̄)

1√
λ̂2

ê′2 (xj − x̄)

...
1√
λ̂m

ê′m (xj − x̄)


(13)

Comparing, from princpal component analysis, (see (8-21), pg 443), can obtain the ith principal compo-
nent ŷji = ê′i(x− x̄) for any observation vector, x.

Comparing (13) with above (8-21), f̂j is the first m (scaled) principal components evaluated at xj.



7 Regression Method

Starting from original factor model in (6), treat the loadings matrix, L and Ψ as known values.
Consider the joint distribution of (xj −µ) and Fj. Assume the multivariate normality as in the maximum

likelihood approach to factor analysis. [
xj − µ

Fj

]
∼ Np+m

(
0,
∑∗)

(14)

7.1 Example 9.12 (Computing Factor Scores by WLS and Regression.)

Part III

9.6: Perspectives and a Strategy for Factor
Analysis

8 Suggestible steps for factor analysis

1. Perform PCP factor analysis

a.

b.

2. Perform a maximum likelihood factor analysis, including a varimax rotation

3. Compare the solutions obtained from the two factor analysis

a.

b.

4. Repeat the first three steps for other numbers of common factors m.

5. For large data sets, split them in half and perform a factor analysis on each part.

8.1 Example 9.14 (chicken-bone data)


