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Introduction

Interest in understanding the laws that govern universal phenomena can possibly be
considered as intrinsically linked to the rational nature of humans. With the mere
observation of the phenomenon as a starting point, human reason tries to know how,
when, and why it occurs. Knowledge of the Laws that govern Nature allows Man to
dominate it in some way. Man can fly, for instance, because he knows the laws of
gravity, mechanics and hydrodynamics, among others. The complexity of these laws
reflects the complexity of the physical world. The speed at which an object falls from
some height is determined by the gravitational pull of the earth on this object. Its
energy, produced by the movement of the force, can be computed by multiplying the
mass of the object, the height from which it falls, and the gravitational acceleration
(which is 9.8 m s72, as physicists have shown). In a similar and easy way, we can
compute the speed of the impact when the object reaches the earth’s surface. This is
because we know that the energy of the object does not diminish as it falls, but rather
is changed into another kind of energy: kinetic energy. If, additionally, we consider

air friction, the problem grows in complexity but also becomes more realistic.

We can add complexity to the physical model that allows us to understand a
phenomenon when our knowledge of this phenomenon improves. Laws governing the
free fall of an object are mainly deterministic. We are absolutely sure that an apple will
fall down if we toss it into the air. Moreover, the same thing will surely happen every
time we toss an apple into the air. We can study this phenomenon numerically because

our experience allows us to reject some complex factors as irrelevant in practice.

Other phenomena do not show such a deterministic behaviour. The apples on the
same branch of a tree will each have a different weight. Some of the apples grow bigger
than others, although all of them are exposed to nearly the same amount of sunlight.
The variability in the weight of the apples alerts us to the fact that we are studying a

phenomenon with diverse nature. This is not deterministic, but random. We cannot
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be sure about the weight of an apple before choosing it. But we are sure that it will
fall every time that we drop it. We say that the weight is a random variable, in a
statistical sense. Although we cannot be sure about the weight of an apple, if we
weigh all the apples harvested by a farmer, and we know that the mean weight is 200
grams, it is reasonable to expect the weight of a given apple to be close to 200 grams.
If we know that the farmer has harvested two kinds of apples, A and B, with odds of
4 : 1, when choosing one hundred apples we expect to find 80 apples of the A kind, and
20 apples of the B kind, approximately. The frequency of observation of the values
of weight, and the kind of apples, allow us to predict which event shows the highest
“probability”. Nevertheless, as in the deterministic instance, random phenomena are

affected by many factors.

In this thesis, we study the dependence between random variables from a theo-
retical perspective, at various levels. As Jogdeo ([57]) notes, “Dependence relations
between random variables is one of the most widely studied subjects in probability
and statistics. The nature of the dependence can take a variety of forms and unless
some specific assumptions are made about the dependence, no meaningful statistical
model can be contemplated”. First, it is convenient to study the probability law of
only one variable, abstracting from other factors that may unnecessarily complicate
the model. Once the law of a random variable has been characterized, we are ready
to compute the probability of this variable taking a value in a particular range. The
function that assigns to every real value, say, x, the probability of a variable to take
values equal to or lower than x is called the cumulative distribution function of the
variable. In mathematics, it is denoted as F'(x) = P (X <z). The distribution

function characterizes the probabilistic behaviour of a random variable completely.

This is an example: let a variable X be defined by assigning 0 to the event “heads”
when a coin is tossed and 1, to the event “tails”. The distribution function F'(x) of
X equals 0 if x < 0, equals % if 0 <x <1, and 1 if x > 1. Let another variable be
defined by assigning 0 to the event “even” when a die is thrown, and 1 to the event
“odd”. The distribution function is identical to that of the previous example. If we
define another variable as the number of dots on the face of the die, its distribution
function equals 0, if x < 1, it equals % ifk<r<k+1,for k=1,..,5, and it equals
1ifx > 6.

Laws governing random phenomena possibly show more complexity than those of a
deterministic nature, but a number of general models have been found that fit variables

taken from experimental fields. The law (the probability function) of variables valued



INTRODUCTION 3

on either a countable or a finite set has been described, like those in the examples
above that follow a discrete uniform law. A number of so-called continuous random
variables that take values in some continuous (sub)set of the real numbers, R, have
also been introduced. In this case, the distribution function is continuous too. The
most well-known is the Normal distribution, and it was the most useful one until
about 1930. Later on, research in a number of fields expanded, and many data
appeared whose probabilistic behaviour departed significantly from normality. Since
then many other univariate distributions have been characterized (uniform, Cauchy,
Gamma, Laplace, Pareto, Weibull, etc.). Variables with a probability function fitting
one of these models (Normal, for instance) share the “form” of the function, and they
can be distinguished from each other by other measures such as the mean value, or

the dispersion from the mean, etc.

Once the study of univariate distributions began to cover a fairly wide range
of experimental data, research focused shifted to relations between (two or more)
random variables. Multivariate models constitute an area of increasing interest, in
both Probability and Statistics. Statistical methods for multivariate data analysis
and inference aim at identifying the underlying stochastic structure when given a
specific sample of data, i.e., the goal is to specify the univariate marginals as well as
the underlying dependence structure between each pair of variables. This is the main
purpose of this thesis. We have applied the diagonal expansions method to construct

bivariate distributions with given marginals and fixed correlation (see below).

The simplest multivariate distribution is that of two random variables, X, Y, cou-
pled by a random vector (X,Y), with a bivariate (joint) distribution function. This
function models (captures) the dependence between these two variables. Dependence
can be total, in which case knowledge of one random variable determines the other.
For instance, when Y = X +3, almost surely. The other extreme is that either random
variable does not give any information about the other. We say that X and Y are
stochastically independent in this case. Between these extrema, there are many pos-
sible dependence relations that have been addressed in literature. The most studied
measure of dependence is the covariance of (X,Y’), which is defined as the expecta-
tion of the product of the differences between each variable and its own expectation.
We writte Cov (X,Y) = E[(X — E (X)) (Y — E(Y))]. This measure of dependence
is not unit-free. We can standardize it by dividing by the square root of the vari-
ances of each variable involved (i.e., the covariance of each variable with itself). This
dimension-free coefficient is Pearson’s correlation coefficient; it is bounded by —1 and

1, and reaches the bounds if there is a linear relation between the variables. Hence, it
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is considered as a measure of linear relation. In this thesis we have used the covariance
to study the relations between two random variables. Previously, we have studied the
relations between two distance matrices obtained from the same set of n objects; we
have defined some operations between matrices and we have extended all the results
to the continuous case, using kernels (i.e., real functions of two variables). We have
also studied expansions of symmetric functions of two variables, in general. These
operations involve the covariance between functions of random variables, which are
joined by a bivariate distribution. The diagonal expansions method uses complete
orthogonal sets of functions. In this particular construction, the correlation between
two variables is determined by the covariance between two specific functions of the

variables, the so-called principal components.

Some other common dependence relations are: dependence between variables with
only two possible values, whose frequencies are shown in a 2 x 2 table (contingency
table), stochastic independence (mentioned above), positive (or negative) dependence
(i.e. large values of a variable tend to go together with large (or small) values of the
other variable), etc. A large variety of dependence concepts have been studied by a

number of authors, offering proper definitions and useful properties with applications.

As in the univariate case, the Bivariate Normal Distribution has been the main bi-
variate model for years. It is easy to manage, and most of the statistical techniques of
data analysis assume this distribution (uni- or bivariate) for the data. However, such
an assumption is not easy to verify and, moreover, to hold in a number of experimental
situations, when data show evident non-normality. Nowadays, many other multivari-
ate models have been described. They are models fitting properly experimental data,
as shown by several authors. Construction of bivariate distributions with fixed mar-
ginals was first done by Hoeffding, 1940 ([52]) and Fréchet, 1951 ([42]); the latter
finds the upper and lower bound of a class (a set) of all the bivariate distributions
that share the marginals. This class is called the Fréchet class. The Fréchet class is
too broad for practical interest. Too many dependence models exist in the same class.
It is often more fruithful to build families of joint distributions with fixed marginals,
following the same dependence model, as we have studied in this thesis. The depen-
dence between the random variables involved is enclosed by one (or more) parameter
different from the parameters of the univariate marginals. These parameters should
be easy to understand. Kimeldorf and Sampson, 1975 ([65]) give five conditions that
any parametric family of distributions must satisfy (see Chapter 1). There are many
families, with applications in a wide range of fields, satisfying such conditions: the Bi-
variate Normal, Farlie-Gumbel-Morgenstern (FGM) family, Ali-Mikhail-Haq, Frank,
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Cuadras-Augé, Plackett, bivariate Pareto, Regression, Clayton-Oakes, etc. The range
of dependence covered by any such family is a meaningful research subject. For in-
0

stance, the FGM parameter 6 takes values in [—1,1] and Pearson’s correlation is 3
1

hence, the maximum correlation is 3. If a bivariate sample shows a correlation co-
efficient of, for instance, 0.7, the probability of the sample drawn from a population
with bivariate distribution FGM is extremely low. On the other hand, we expect to
observe stochastic independence when the parameter values 0, and maximum depen-

dence when the parameter attains its maximum value.

Hence, the study of the joint distribution of two variables belongs to the broadest
field of the study of multivariate relations. One of the main objectives of Statistics
is to establish conclusions about population phenomena from data samples. Data
allow us to estimate population parameters, and to test hypotheses regarding these
parameters with specified statistical confidence. From this global perspective our
purpose has been to study the dependence between two random variables by means

of the covariance.

Suppose we study several characteristics of individuals in a population. Each
characteristic can be interpreted as a random variable. One sample of each random
variable allows us to construct a data matrix with p columns, one for every variable,
with all the data of one individual in a row. This matrix has a finite number of rows,
equal to the number of individuals in the sample. From a theoretical perspective, con-
tinuous random variables require infinite matrices (bounded linear operators) to cover
the whole range of their values. If we obtain two (finite) matrices from the same set
of n individuals with different statistical distances, as well as defining two real-valued
kernels over the same spaces, we can study the relationships between the two matrices
(and the two kernels) by means of a suitable operation that involves the covariance
between two random “objects”. Subsequently the covariance between random vari-
ables and between any functions of random variables can be further studied. Clearly,
the dependence between these pairs of random objects (matrices, kernels, functions
of random variables) is perfectly defined by their joint distribution function. If we are
able to construct a bivariate family of distributions with one (or more) multivariate
parameters, we must study the theoretical aspects of the multivariate parameters:
whether they are indeed dependence parameters, the range of dependence covered,

possible values, etc.

In the following section, we describe the most relevant subjects that motivate this

thesis.
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Overview of the thesis and main results

We begin by studying dependence between random variables at various levels, and
the last two chapters are devoted to the construction of bivariate distributions via
principal components. Although we refer to classical bibliography on these topics for
an overview, every chapter includes further explanations about less standard issues
such as Related Metric Scaling, Principal Components of Random Variables, and
finally, Diagonal Expansions of Bivariate Distributions. Readers familiar with any
of these topics may skip these sections. Nevertheless, some specific concepts appear
recurrently throughout this thesis, so Chapter 1 of Preliminaries is devoted to them.
Nomenclature and notation are introduced for some specific dependence concepts. We

briefly discuss Fréchet classes, copulas, and parametric families of distributions.

In Chapter 2, we generalize the operation introduced in [28] between two distances
(the union and intersection operations of two distance matrices) to symmetric non-
negative definite matrices. These operations are shown to be useful in the geometric
interpretation of Related Metric Scaling (RMS), and possibly in other approaches of
Multivariate Analysis. When two distance matrices associated with the same finite
set of n objects are available, the underlying dependence between these matrices can
be taken into account building an intersection distance matrix; on the other hand,
the complete and possibly redundant information may be included in a joint distance
matrix, considered as their union. These operations show relevant properties that are
studied in this chapter. The behaviour of the operations is, in some way, analogous to
that presented by the intersection and union between vector spaces (for instance, those
spanned by the columns of the matrices); in particular, we prove that the intersection
of orthogonal matrices is the null matrix, while the union is the direct sum of the
matrices. Matrices that share their eigenvectors form an equivalence class, and a
partial order relation is defined. This class is closed for the union and intersection

operations.

A continuous extension of these operations is presented in Chapter 3. Infinite ma-
trices are studied in the context of bounded integral operators and numerical kernels.
Metric Scaling has already been studied from a continuous perspective by Cuadras
and Fortiana ([24], [25], [26], [27]). We put the basis for extending RMS to continuous
random variables and, hence, infinite matrices. The starting point is Mercer’s Theo-
rem, which ensures the existence of an orthogonal expansion of the covariance kernel
K (s,t) = min{F (s),F (t)} — F(s) F(t), where F is the cumulative distribution

function of each marginal variable. The sets of eigenvalues and eigenfunctions of K,
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whose existence is ensured by the cited theorem, allow us to define a product between
symmetric and positive (semi)definite kernels, and, further, to define the intersection
and the union between them. Results obtained in the discrete instance are extended

in this chapter to continuous variables, with examples.

Such covariance kernels (symmetric and positive definite) are associated with sym-
metric and positive quadrant dependent (PQD) bivariate distributions. Covariance
between functions of bounded variation defined on the range of some random variables,
joined by distributions of this type, can be computed by means of their cumulative
distribution functions (see [18]). In Chapter 4, further consequences are obtained, es-
pecially some relevant relations between the covariance and the Fréchet bounds, with
a number of results that can be useful in the characterization of independence as well
as in testing goodness-of-fit. The intersection of two kernels (defined in Chapter 3) is
a particular instance of the covariance between functions. Covariance is a quasi-inner
product defined through the joint distribution of the variables involved. A measure

of affinity between functions with respect to H is defined, and also studied.

In Chapter 5, from the concept of affinity between functions via an extension of
the covariance, we define the dimension of a distribution, we relate it to the diagonal
expansion and find the dimension for some parametric families. Thus we find a finite, a
countable and a continuous dimension for the generalized Farlie-Gumbel-Morgenstern,

Ali-Mikhail-Haq and Cuadras-Augé families, respectively.

Diagonal expansions of bivariate distributions (Lancaster, [71]) allows us to con-
struct bivariate distributions. It has proved to be adequate for constructing Markov
processes (see [5], [94]), and has also been applied to engineering problems (see [103]),
among other uses. This method has been generalized using the principal dimensions
of each marginal variable that are, by construction, canonical variables. We intro-
duce in Chapter 6 the theoretical foundations of this method. In Chapter 7 we study
the bivariate, symmetric families obtained when the marginals are Uniform on (0, 1),
Exponential with mean 1, standard Logistic, and Pareto (« = 3, § = 1). Condi-
tions for the bivariate density, first canonical correlation and maximum correlation of
each family of densities are given in some cases. The corresponding copulas are also

obtained.

We conclude this thesis with a brief description of the derived ongoing and future

research.
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Chapter 1

Preliminaries

In the Introduction we intuitively discussed the concept of statistical dependence. The
concept of marginal and joint distribution function is now properly introduced. Let
(22, A, P) be a probability space, i.e., ) is a set, A is a o —algebra, family of parts of 2,
and P is an application P : A — [0, 1] such that (:) P (2) = 1, and (i7) if {A,, n > 1}
is a sequence of sets of A, with A,, A, disjoints, then P (U2, A,) = > > P(A,).
Let B(R) be the o—algebra generated by the borelian sets in R. A random variable
(r.v.) X is an application X : Q@ — R such that VB € B(R), X! (B) € A. That is,

a random variable is a measurable function on a probability space.

Definition 1.0.1 Let X be a random wvariable. The cumulative distribution func-
tion of the random wvariable X is the function F : R — [0,1] defined by F (x) =
(PoX 1) ((—o0,2]) = P(X <), forx € R.

The cumulative distribution function (or distribution function) is non-decreasing,
right-continuous, and lim,_, o, F'(z) = 0, lim, ., F' (x) = 1. This function assigns to
x € R the probability of X € (—o0, x].

The joint distribution function is an extension. Let (5 x Q5,41 ® A, P X P,)

be the product space of two probability spaces.

Definition 1.0.2 Let X = (X,Y') be a random vector. The joint distribution function
of X is the function H : R* — [0,1] defined by
H (z,y) = (PoX™") ((—00,] x (=00,y]) = P(X < z,Y <)

for (z,y) € R%
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The random variables X,Y are called the marginal variables of the random vec-
tor. The distribution functions of X and Y, say, F' and G, are called the marginal
distributions of (X, Y’). The joint distribution function is right-continuous, and must

also satisfy the following properties:

1. lim H (z,y) = G (y), lim H (x,y) = F (z), where F,G are the marginal dis-
T—00 y—00
tribution functions of X, Y, respectively,

2. lim H(z,y) = 1, where (z,y) — (00, 00) stands for both variables x,y

(2,y)—(00,00)
tending to infinite,

3. lim H(z,y)= lim H(x,y)=0,

T——00 y——00

4. for all (x1,2), (y1,y1) with x1 < x9, y1 < Yo,

H (x9,y2) — H (x1,92) — H (w2,y1) + H (21,51) > 0.

As mentioned above, the joint distribution function encloses the dependence rela-

tion between the variables. Hence, we introduce some definitions.

1.1 Some dependence concepts

Some measures of dependence are specially relevant, with properties that make them
useful to explain the meaning of a statistical model. The concept of total dependence

is opposite to stochastic independence and appears in this context.

Let (€2, A, P) be a probability space, and let (E;,&;), ¢ € I be a measurable space.
One collection of events {A;, i € I} is said to be independent if for any finite subset
J C I, P(NjesA;) =1lje; P (Aj). We say that the family of measurable applications
{X;, 1 € I},

Xi: (A — (E, &)

is independent if the collection of o—algebra {X{l (&),iel } is also independent. In
particular, if {X;, ¢ € I} is a family of r.v.’s (i.e., & is the o—algebra of the borelian
sets in R), the family (or the variables) are said to be independent if the collection of
o—algebra {X; ' (B(R)), i € I} is also independent (see, for instance [40], [90]).

The following properties are useful in the characterization of stochastic indepen-

dence between r.v.’s.
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Properties

1. Xy, X, ..., X, are stochastically independent r.v.’s if and only if (iff) the law of
the random vector (X1, X, ..., X,) is equal to the product of the marginal laws.
This is equivalent to

H(zy,...,2p) = Fi(z1) - ...« Fp(zy),

where H and I3, ..., F}, are the joint and marginal cumulative distribution func-

tions (cdf’s), respectively.

2. If Xy, Xy, ..., X, are independent and integrable, then the product X; -...- X,

is integrable, and
EX, ...-X,)=E(Xy)-...- E(X))

where F is the expectation. Note that this condition is necessary but not suffi-

cient for stochastic independence.

3. If {X;, i € I} are independent r.v.’s and g; : R — R are measurable functions,
then the r.v.’s {g; (X;), @ € I} are also independent.

Property 1 provides a very useful characterization of independence using the law
of the random vector involved. Non-independence or dependence between random
variables means some kind of relation between them. Two r.v.’s X,Y are said to be
implicitly dependent if there exist two functions f, g such that f(X) = g (Y), with
Var (f (X)) > 0, where Var denotes the variance of a random variable (see below).
The random variables X, Y are said to be functionally dependent if there exist some
functions f, g such that either Y = f(X), or X = ¢ (Y). The random variables X,Y
are said to be mutually completely dependent if there exists a one-to-one function f
such that, P (Y = f (X)) = 1. If f is linear we say that XY are linearly dependent.

In the next two sections we review some of the most useful measures of dependence.

We will focus on the best known measure, its derivation and consequences.
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1.1.1 Dependence Measures
Covariance and Pearson’s Correlation coefficient
Let X,Y € L?(Q, A, P) be two square integrable random variables. The covariance
between X and Y is defined by
Cow(X,)Y)=E[(X-FEX)(Y—-E({Y))]|=E(XY)-E(X)E().
From Property 2 it can be easily proved that if XY are square integrable and
independent, their covariance is zero. We say that both variables are uncorrelated. It

has been noted that zero correlation does not imply stochastic independence. Observe
that the variance Var (X) of a square integrable r.v. X is Cov (X, X).

The Pearson correlation coefficient is defined as

B B Cov (X,Y)
p=Cor (X, Y)= VVar (X)/Var (Y)

This coefficient is one of the most useful measures of dependence. If X,Y are centred

r.v.’s on L?(Q, A, P), their covariance coincides with the ordinary inner product of
X and Y defined in the Hilbert space L? (2, A, P) and hence, Pearson’s correlation

coefficient p can be interpreted as the cosine of the angle between X and Y, which in
turn can be viewed as vectors with norms /Var (X) and /Var (Y'), respectively.

Canonical correlations

Suppose that X = (Xy,...,X,), Y = (Y1,...,Y,) are two second-order random vec-
tors. The first set of canonical correlations and variates is defined as the linear combi-
nations X® = ¢, X1 +... + apXp, YO =p Vi +... + bsY, such that Cor(XM, y ()
is maximum. The second set of canonical correlations and variates is defined as sim-
ilar linear combinations X ® Y ® such that Cor(X® Y ®) is maximum given that
Cor(XW X@) = Cor(Y®, Y®P) = 0. This procedure is continued until min{p, ¢}

sets are obtained.

It is of interest to extend this type of analysis to more general classes of multivariate
distributions. Lancaster [70] applied the methods of the theory of integral equations
to find the canonical correlations and variables in the joint normal distribution and

generalized the canonical correlation theory. The canonical variables {a;},{b;} are
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two sets of orthonormal functions defined on the marginal distributions in a recursive
manner such that the correlation between corresponding members of the two sets is
maximal, given the preceding canonical variables. The p; = Cor (a; (X),b; (Y)) are
the canonical correlations and can be assumed positive. If a bivariate distribution
is ¢*—bounded!, it can be expanded in an eigenfunction expansion. The canonical
variables on each marginal variable are the eigenfunctions (except for a factor) and
form a subset of a complete orthonormal set. The canonical correlations are the

eigenvalues of the expansion.

Maximal correlation

Gebelein, 1941 ([43]) introduced this relevant measure of dependence between two
r.v.’s X and Y, defined by

p =supCor(a(X),B(Y)),

where the supremum is taken over all Borel-measurable functions o and [, with
Var (a (X)), Var (8(Y)) > 0. Rényi, 1959 ([93]) proposed a set of seven axioms
that a measure of dependence must satisfy (see conditions 1 to 7, below), and showed

that the maximal correlation satisfies all of them. One problem is that it often equals
1.

If the bivariate distribution is ¢?—bounded, then the maximal correlation equals

p1, the first canonical correlation.

If the supremum is taken over all monotone functions « and 3, such that
Var (a (X)), Var (B (Y)) > 0 we have the monotone correlation, a measure of the
degree of monotone relation between two variables X, Y. The concept of monotone

dependence was suggested by Kimeldorf and Sampson ([67]).

IPearson’s contingency coefficient ¢2 is defined by

b d
& 1= / / (dH ()% /(dF (2)dG (y)),

as a measure of association of the r.v.’s X and Y, with [a, ], [c, d] the ranges of XY, respectively.
We say that H is ¢?—bounded if ¢? < oo.
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Conditions on a Measure of Dependence

Hutchinson & Lai [54], p. 180, lists nine conditions proposed by a number of authors
([75], 193], [98]), with further comments. We reproduce this list and the comments.
The quantity 0 (X,Y) denotes an index of dependence between X,Y.

1. 0 (X,Y) is defined for any pair of random variables, neither of them being con-

stant with probability 1. This condition avoids trivialities.

2. 6(X,Y) =6 (Y, X). Notice, however, that while independence is a symmetric
property, total dependence is not, as one variable may be determined by the

other, but not vice versa.

3. 0 <(X,Y) < 1. Lancaster ([75]) says that this is an obvious choice, but not

everyone agrees.

4. 0(X,Y) = 0 iff X and Y are mutually independent. Notice how strong this

condition is made by the “only if”.

5. If the functions f and g map the spaces of X and Y in a one-to-one manner,
respectively, onto themselves, then ¢ (f (X),g(Y)) = ¢ (X,Y). This condition
means that the index remains invariant under one-to-one transformations of the

marginal variables.
6. 0(X,Y)=1iff X and Y are mutually completely dependent.
7. If X and Y are jointly normal, with correlation coefficient p, then 6 (X,Y) = |p|.

8. In any family of distributions defined by a vector parameter 6, § (X,Y") must be

a function of 6.

9. If (X,Y) and (X,,,Y,), n = 1,2,... are pairs of random variables with joint
distributions H and H,,, respectively, and if {H,} converges in distribution to
H, then lim,, . 0 (X,,Y,) =46 (X.,Y).

1.1.2 Concordance measures

Consonni and Scarsini, 1982 ([9]) define the concordance between two variables and

a partial order relation between cdf’s. Let H and H' be two continuous joint cdf’s,
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with the same marginals, say F,G. If a point (zg,yo) € R? is fixed, we can determine
four subsets of R?:

Ql (x07y0) = {(xay) ERQI.’L'SlEO,ySyO},
Q2 (ro,y0) = {(z,y) eR*:x <o,y >0},
QB (x07y0) = {(l’,y) ER23$>$07y>y0}7
Q4 (0, %) = {(xay) €R*: x> mp,y < ?JO}-

We say that H is more concordant than H' if, for all (x,y) € R?,

P{(X,Y) € [Q1(z,y) UQs(z,y)] | (X,Y) ~ H} (1.1)
> P{(X,Y) € [Qi(z,y) UQs (x,y)] | (X,Y) ~ H'},

where (X,Y) ~ H means that H is the cdf of (X,Y’). Concordance gives the intuition

of large values of one variable join with large values of the other variable.

Spearman’s rho, and Kendall’s tau

Let X,Y be two r.v.’s with cdf’s F, G, respectively. Spearman’s p, 1904 ([101]),
denoted by pg, is defined as

ps = Cor (F (X),G(Y)). (1.2)

This measure is invariant with respect to strictly increasing transformations of the

variables. Notice that if the variables are uniformly distributed on the interval (0, 1),

ps = p-

Let (X,Y), (X', Y") be independent random pairs of variables, identically distrib-
uted with common joint distribution H. Then Kendall’s 7, 1938 ([64]) is defined
as

T=P{X-X)(Y-Y)>0}—P{X-X)(Y-Y) <0}, (1.3)

i.e., Kendall’s 7 is the difference of the probability of two random concordant pairs

and the probability of two random discordant pairs.

This measure is also invariant under strictly increasing transformations (see [6]).
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Conditions on a measure of concordance

Scarsini, 1984 ([95]) lists the axioms that a measure of concordance must satisfy.
They are analogous to those conditions given for measures of dependence. Consider
the space H of joint cdf’s with continuous marginals. The partial order relation
defined by (1.1) allows us to establish a total order relation on H. Let I be a totally
ordered set (usually, I C R). Let (X,Y’) be distributed according to the cdf H and
define the map J : H —1I. We define the concordance between X and Y (6 (X,Y))
as J (H). This map J is called a measure of concordance if it satisfies the following

axioms:

1. Domain: 6 (X,Y) is defined for any (X,Y) with continuous cdf.
2. Symmetry: 0 (X,Y)=6(Y, X).

3. Coherence: 6 (X,Y’) is monotone in the corresponding copula C'xy (see Section
1.2 below), i.e., if Cx,y; > Cx,y,, then 0 (X1,Y7) > 0 (X5, Y5).

4. Range: —1 <0 (X,Y) <1.
5. Independence: 6 (X,Y) =0 if X and Y are stochastically independent.
6. Change of sign: 0 (—X,Y)=—-0(X,Y).

7. Continuity: If (X,Y) ~ H and (X,,Y,) ~ H,, n € N, and if H, converges
pointwise to H (H and H,, continuous), then lim,,_... 0 (X,,Y,) =0(X,Y).

1.2 Bivariate distributions

1.2.1 Fréchet classes

Two random variables X,Y with marginal cdf’s F, G may show total complete de-
pendence, and then we can predict one from the other; or they may show stochastic
independence, or any other dependence relation. Dependence between the marginal
variables lies on the joint cdf, say H; the joint cdf determines the marginals, but the

opposite is false.
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The set of joint cdf’s with the same marginals forms an equivalence class. This
class is the Fréchet class of distributions (see [42]) with marginals F, G. This is denoted
F (F,G). The independence distribution H® (x,y) = F (z) G (y) belongs to F (F,G).

An order relation is defined on F (F,G). We say that H; is lower than H,
(Hy < H,) iff for every pair (z,y) € R? H; (x,y) < Hy(x,y). It can be shown that
every H € F (F, Q) satisfies

H <H<HT

Y

where

H™ (z,y) = max{F(z)+G(y) - 1,0},
H' (z,y) = min{F(2),G(y)}.

These relevant cdf’s are called the lower and upper Fréchet bounds, respectively, for
obvious reasons (see [20] for a number of results involving the upper bound). The case
of discrete random variables is studied in [86]. The best bounds for arbitrary sets of

distributions are studied in [88].

The correlation coefficient of (X,Y’) can be |p| = 1 if F = G, but in general, if
F and G are different (e.g., normal and exponential) then |p| < 1. The minimum
and maximum correlations between X and Y, say, p~, p", are called the Hoeffding
correlations, and they satisfy:

L p~<p<ph,

2. p=p it H=H ,and p=p" iff H=H".

The proof can be found in [42], [52], or [77].

1.2.2 Copulas
A 2—copula is a function C': [0, 1] x [0, 1] — [0, 1] which satisfies:

1. For every u,v in [0, 1],
C(u,0) =C(0,v) =0,

and

C(u,1l)=u, C(1,v)=nw.



18 CHAPTER 1. PRELIMINARIES

2. C is 2-increasing, i.e., for every uy,us,vy,v9 in [0,1] such that u; < uy and
(%1 S V2,
C (UQ,UQ) — C (U,l,vg) — C (Ug, 1)1) + C (Ul,?}l) Z O

Sklar’s theorem (see [100]) says that every joint cumulative distribution function

H has an associated copula C' such that:
H(z,y) = C(F(z),G(y)), w,y€R,

where F'is the cdf of X, and G is the cdf of Y. If XY are absolutely continuous
r.v.’s, C'is unique. The r.v.’s F(X), G (Y) (i.e., the composition of the cdf and the
corresponding random variable) follows a Uniform distribution on (0,1). Hence, the
change of variables F'(x) = u, G(y) = v gives the corresponding copula. In some way,
copulas are “independent” of the univariate marginals, and represent the dependence
structure, separately. Simplicity of copulas allows us to perform analysis which may
present high difficulties using H. Let F (U, U) denotes the Fréchet class of the copulas,
i.e., U denotes the cdf of a uniform r.v. on [0,1]. Every C' € F (U, U) satisfies

C-<Cc<CT,
where, for u,v € [0, 1],

C™ (u,v) = max{u+v—1,0},

C* (u,v) = min{u,v},
are the Fréchet bounds.

Schweizer and Wolf (see [98]) connect Spearman’s p and Kendall’s 7 with copulas
(see also [85]). See Nelsen, 1999 ([89]) for an excellent introduction to this topic. See
also [32], [41], [44], [66], and [91].

1.2.3 Parametric families of distributions

Statistical modelling needs to characterize the dependence between X and Y (the
bivariate distribution H), and the marginal distributions (the Fréchet class) as well.
But the Fréchet class f (F,G) of bivariate distributions with the same marginals is
very wide, as already mentioned. It is much more interesting to model bivariate
distributions of F (F,G), with the same dependence structure given by a vector of

parameters. For instance, if F' is the univariate Normal distribution with parameters
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(u1,01) € R x [0,00), G is the Normal distribution with parameters (uq,02) € R X
[0,00), and p € [—1,1] is the correlation coefficient of (X,Y"), then H, € F (F,G) is

the class of all bivariate distributions with these marginals.

Into this class we can find mixtures of Bivariate Normal Distributions (BND),
densities defined piecewise, and a wide number of bivariate distributions whose shape
is absolutely different from the Bivariate Normal (see, for instance, [69] for examples).

The bivariate density function

h(l’,y) = w1¢1 (x,y) +w2¢2 (x,y) )

where w1, wy are probability weights, and ¢;, ¢ = 1,2, is the density of a standard BND
with correlation coefficient p;, is non-normal, if p; # po, with Normal marginals. The
correlation between X and Y is p = wip; + wops. Taking wy = ws = p; = —py = 0.5,

we have p = 0. The density is
2

27T1\/§ (exp (_§ (2* —zy + y2)> + exp (—g (2 +ay +y2))> ’

(z,y) € R% Notice that, in this example, X and Y are not stochastically independent.

h(l‘,y) =

The parameter p encloses the dependence (the linear correlation) between X and Y.
If H, is the Bivariate Normal Distribution (BND), we have p = 0 iff X and Y are
independent r.v.’s (i.e., Ho(x,y) = F(x)G(y)). If |p| = 1 we have the singular

bivariate Normal.

It is evident that this bivariate distribution with Normal marginals shows a behav-
iour absolutely different from the BND, even though both joint distributions belong to
the same Fréchet class. The density of the Bivariate Normal distribution with p # 1

1S
hoy) = e (5@ ()

2mo109

for (z,y) € R?, where

Q(z,y) = ! <(9€—2,ul)2 _2p(x_,ul) (y — p2) n (y—éLQ)z)'

1—p? o1 0109 o

We say that all densities with this representation belong to the family of Bivariate
Normal distributions. For instance, let X, Y be two r.v.’s following a standard Normal
distribution N (0,1). If (X,Y") follow a BND with p = 0 their joint density is given
by

1 1
h(w,y) = 5—exp (—5 (2 +y2)) . (z,y) R,
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i.e., X,Y are independent r.v.’s. Figure 1.1 shows this density.

=5
—
__——."

Figure 1.1: Bivariate Normal distribution with independent marginals

Parametric families of distributions have been constructed by a number of authors
(Fréchet [42], Kimeldorf and Sampson [65], and Mardia [78], among others). Some
of these families include the Fréchet bounds. Kimeldorf and Sampson, 1975 ([65])
proposes five conditions on one-parameter families of distributions. For any family of
distributions { Hy, — 1 < 6 < 1}, with absolutely continuous marginals, and parame-
ter 0: (i) if @ = 1, H; is the Fréchet upper bound (see Section 1.2); (i7) if @ = 0, Hy is
the independence distribution; (izi) if § = —1, H_; is the Fréchet lower bound; (iv)
for fixed (x,y), Hy (z,y) is continuous in 6 € [—1,1]; and (v) for fixed 6 € [—1,1], Hy
is an absolutely continuous distribution function. We introduce some 1-parametric
families which are shown to be useful in applications, and which appear through this
work. See also [68].

Farlie-Gumbel-Morgenstern family (FGM)

Let (X,Y) be a random vector with absolutely continuous cdf Hy € F (F,G). We
write (X,Y) ~ Hy. The Farlie-Gumbel-Morgenstern of distributions (see [10]) is
defined as

Hy(,y) = F(2)G(y) [L+0 (1= F(2)) (1 -G )],

for every pair (x,y) in the product of the ranges of X and Y, and with 0 € [—1,1].
The density is

ho (z,y) = f () g (y) 1+ 0 (1 = 2F (2)) (1 = 2G (y))],
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where f = F’, g = G'. The corresponding copula is
Co(u,v) =uv[l+60(1—u)(1l—0),
for 0 < wu,v <1, with density
co(u,v)=140(1—2u)(1—-2v).

The Fréchet bounds do not belong to this family (i.e., H- < H.; < Hy < HT). If
6 = 0 we have independence (Hy = FG).

It can be proved that Pearson’s correlation coefficient is given by Cor (X,Y) = g. If
marginals are uniform, the maximum correlation is reached (%)7 for Normal marginals
Cor(X,Y) = 1; for exponential marginals Cor (X,Y) = 1 (see [49], [97] for the
proofs). For logistic marginals Cor (X,Y) = % (see Chapter 7).

This family has been studied by Eyraud, 1936 ([38]), Morgenstern, 1956 ([84]),
Farlie, 1960 ([39]) and Gumbel, 1960 ([48], [49], [50]). A number of applications
have been published (for a extensive list, see [54]). FGM distributions have been
used in statistical modelling, in studying test of association, and in other statistical

applications such as generation of random variables ([33], [59], [60]).

Regression family (RG)

This family was proposed by Cuadras, 1996 ([13]). If the ranges of XY are the

intervals [a, b], [¢,d], and ¢ : [a,b] — [c,d] is an increasing function, the family
Hy(a,y) = 0F (minfa, o~ (0)}) + (1~ 6)F (1) Joly), 0<0< 0%,
is a bivariate cdf with marginals F, G,

Jo(y) = (G(y) — 0F (™' (y))) /(1 — 0)

is a cdf. Here 67 is the maximum value for § such that Jy is a cdf. The regression
curve is linear in ¢, and Hy(x,y) has a singular part with mass on the curve y = ¢(z).
It can be proved that P[Y = o(X)] = 6. See [12], [13].

The simplest version of this family appears with ¢ = G~ o F:

Hy(z,y) = min{F(z), G(y)} + (1 — 0)F(2)G(y), 0<0<1.
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The density with respect to the measure p? + pu; is

ho (z,y) = 0f (z) dy=ay + [ (%) (9 (y) — Of (y)) Sy

where 42 is the Lebesgue measure on R2, ji; is the Lebesgue measure concentrated in

y = x, and ¢ is the indicator function. The corresponding copula is
Co(u,v) = Omin{u, v} + (1 — Quv, 0<60<1,

with density
Co (u, ’U) = Gd{uzv} + (1 — 9) 5{1#1,}.

The Fréchet upper bound is attained at 6§ =1, it F = G.
For this family, and assuming F' = G the correlation is Cor(X,Y) = 6.

With this family we can generate bivariate data given either a linear or non-linear

regression function.

Ali-Mikhail-Haq family (AMH)

Ali et al., 1978 ([1]) describes the bivariate cdf

F(x) G (y)
1-0(1-F(x)(1-Gy)

H9 (33', y) =
with density that may be written as

ho (z,y) = f(x)g(y) x[1+60(1—2F(x))(1-2G (y))

) KL= F(2))" (1 -G ). (1.4)

The corresponding copula is

T 1-0(1—-u)(1—v)

Cy (u,v)

with densi
t ty 1—0+20uv/(1—0(1—u)(l—0))

(1-0(1—u)(1—0v)?
The Fréchet bounds do not belong to this family. There is independence for ¢ = 0.

co (u,v) =

The first term of this family includes the FGM (if the series in (1.4) is null).
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Cuadras-Augé family (CA)

This distribution was introduced by Cuadras and Augé, 1981 ([22]), and is a weighted

geometric mean of the independence distribution and the Fréchet upper bound:
Hy (z,y) = min {F (x),G ()}’ (F (2) G ()",
with density with respect to the measure p? 4 i

ho (,y) = (1= 6) f (x) g (y) min {F () .G (y)} " +60f () (F ()" Sirwr=cw)+

where p? is the Lebesgue measure on R?, p; is the Lebesgue measure concentrated on

the curve F'(z) = G (y), and ¢ is the indicator function. The copula is
Cy (u,v) = min {u, v}’ (uv) ™,

with density
co (u,v) = (1 — 0) min {u,v} " + Ou' 05y

The Fréchet upper bound is attained at § = 1. There is independence if § = 0.

36

g and the maximum

Pearson’s correlation for uniform marginals is Cor (U, V') =

correlation is 6.

This distribution is the distribution of Marshall and Olkin if marginals are expo-
nential (see [82], [83]), and provides a survival copula for the Marshall-Olkin family

of distributions. Nelsen studies a generalization (see [87]).

Further results about these parametric families as well as many other families can

be found in, for instance, [54].
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Chapter 2

Dependence concepts and

operations on matrices

The connection between matrix theory, geometry and statistics is natural in the con-
text of several statistical methods such as multidimensional scaling (see [46], [92],
[96], [105]), correspondence analysis, principal component analysis, as well as in many
other distance-based approaches in multivariate analysis (see [14], [81]). For exam-
ple, consider the well known relation between orthogonality and linear independence,

where the geometric approach often makes the statistical interpretation clearer.

The main purpose of this chapter is to establish a theoretical framework which
allows us to study the underlying dependence structure of a class of matrices. Inter-
section and union of vector spaces (spanned by the column vectors of two matrices,
for example) are well known operations. Analogously, we define and study the in-
tersection and union operations on symmetric, non-negative definite matrices. The

choice of this terminology will be justified by the properties of these operations.

2.1 Symmetric non-negative definite matrices: ba-

sic definitions and properties

In this section we review some basic properties of symmetric non-negative definite
matrices (see, for instance, [47], [51], [102]). Let M,, denote the set

M, ={A | A is an n x n symmetric, positive (semi)definite matrix} .

25
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That is, A = A’ and all its eigenvalues are strictly positive (positive definite, p.d.) or

non-negative with at least one null eigenvalue (positive semidefinite, p.s.d.)!.

Let X and Y be n X n matrices with rank (X) = rank (Y) = p and p < n, and
define

A = XX, B=YY'" (2.1)

Then A, B € M,,. By the symmetry of A and B, there exist (spectral decomposition

theorem) orthogonal matrices U,V and real diagonal matrices A = diag (A, ..., \n),
M = diag (1, ..., ftn), such that
A=UAU =) Nuuj, B=VMV' => v,
i=1 i=1
where u; and v;, ¢ = 1,...,n are the orthonormal columns of U and V|, respectively.
The symmetry and the positive semidefiniteness ensures the existence of the rational

. r ey . . .
powers of a matrix, say As, r < s, for any positive integers r,s. In particular, its

square root can be expressed as

Az =UAU =) Nuuj,
i=1
which are also symmetric and p.(s.)d. matrices. Note that X,Y in (2.1) can be found
from A, B by taking X = UA2, Y = VM?. Also note that, if

)\(1) > )\(2) > ... > )\(p) > )\(erl) =..= )\(n) =0

1
(so /\(2].) =0,7=p+1,...,n), the spectral decomposition A = UA U’ reduces to
p
A=U,A, U, => Xpuguy,,
i=1

where A, = diag ()\(1), . )\(p)) and U, = [u(l); o u(p)}.

2.2 Orthogonality of matrices

The term orthogonality is extremely useful in algebra and geometry. Two vectors

u,v € R" are said to be orthogonal if their inner product is zero:

n
(u,v) =u'v :Zuivi =0.
i=1

n this work, non-negative definite or p.(s.)d. matrices are equivalent to p.s.d. or p.d. matrices,

indistinctly, when the cited properties hold for both types of matrices.
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Two vector subspaces E, F' of R" are said to be orthogonal if every vector in E is
orthogonal to every vector in F'. In this case, the only vector belonging to E'N F' (the
intersection subspace) is the null vector. It is obvious that, if u is orthogonal with
respect to v, then v is also orthogonal with respect to u (i.e., the inner product of
two vectors of R is commutative). The (usual) inner product of two matrices A, B
is defined as

(A,B) =tr (AB),

provided the dimensions allow the operation. The trace of a squared n x n matrix C
is the sum of the elements in its diagonal, i.e., tr (C) = Y " | ¢;. This is, obviously,
commutative. Harville [51] defines two orthogonal matrices as two matrices whose
inner product (tr (AB')) equals 0.

A natural definition of two matrices being orthogonal should express orthogonality
between every row (or column) vector in the matrix on the left and every column (or
row) vector in the matrix on the right. The column (row) space of a matrix is the
subspace spanned by its columns (rows). Since the ordinary product of two matrices
is not commutative we may have AB = 0 while BA # 0, being 0 the null matrix.
Following the terminology used by Graybill [47], A and B are “disjoint”, while B and
A might not be “disjoint”. Thus, the definition of orthogonality using the ordinary
product is questionable. Nevertheless, if A and B are symmetric, AB = 0iff, BA =0
and also tr (AB) = tr (AB’) = tr (BA’) = 0. Therefore we introduce the following

definition of orthogonality between symmetric matrices.

Definition 2.2.1 Two symmetric n x n matrices A and B, are said to be orthogonal

iof their ordinary product equals the null matriz; i.e., AB = BA = 0.

The following proposition characterizes p.(s.)d. orthogonal matrices:

Proposition 2.2.2 Let X and Y be n x n matrices. Consider A = XX’ and B =
YY'. The following statements are equivalent:
(1) A and B are orthogonal,
(i) X'Y =0,
(1ii) the column spaces of X and Y are orthogonal.
PROOF. Equivalence between (iii) and (i7), as well as the implication of (i) by

(17), is evident. It suffices to prove that (i) implies (iz7), although we will prove their

equivalence. Let Vg, V,,V;, V, be the column spaces of A, X, B,Y, respectively. The
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columns of A and B are linear combinations of the columns of X and Y, respectively.
Then

‘/;L g an ‘/b g Vy- (22)
It is known (see, for instance, [47]) that the number of linearly independent columns
of these matrices (the rank) satisfies
rank (A) = rank (XX') = rank (X),
rank (B) = rank(YY') =rank (Y).
Thus inclusions in (2.2) are equalities, and equivalence between (i) and (ii7) is proved.

O

Remark 2.2.3 If either A or B have at least one null eigenvalue, AB = 0 does
not necessarily imply U'V = 0, where U,V are the orthogonal matrices with the

eigenvectors of A, B, respectively.
Corollary 2.2.4 The square roots of two p.(s.)d. orthogonal matrices are also or-
thogonal.

PROOF. Let X = UA? and Y = VM? such that A = XX’ and B = YY'.
Proposition 2.2.2 gives the equivalence between AB = 0 and XY = 0. So, premul-
tiplying XY by U and postmultiplying by V' the desired result is obtained:

X'Y=0<=A3UVM: =0
«——= UAUVM:V' =0
< A%B% =0

2.3 Intersection and union of matrices

2.3.1 Definitions

Let A,B € M,,. Consider their square roots Az =UA %U', B: = VM:V".
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Definition 2.3.1 The intersection A N B and the union AV B of A,B € M,, are
defined by

AAB = (A%B%+B%A%),
AVB = A+B-AAB.

DN | —

Proposition 2.3.2 Let A,B € M,,. Then AANB and AV B are symmetric. More-
over AVB e M,,.

PrROOF. The symmetry of A implies the symmetry of A:. Thus:

1.1 11\’
(AAB) = %<A2B2 +B§A§)

SHIOIOROILN

= AAB.

The symmetry of the union is straightforward.

Let us write the union as:

1 1. 1/ .
AVB—=-A+-B —(Aa—B
VB =gAtoB g

NI

)2, (2.3)

where all terms are symmetric and p.(s.)d.. Since the linear combination with non-
negative coefficients of p.(s.)d. matrices is a p.(s.)d. matrix (see, for instance, [47]),

the positive (semi)definiteness of the union is proved. n

Remark 2.3.3 The intersection is not a p.s.d. matrix, in general; it is the sum of two
matrices with all its eigenvalues being non-negative (recall that all the eigenvalues of
the product of two p.s.d. matrices are non-negative, [53]), but the linear combination
with non-negative coefficients of such matrices, when they are not symmetric, is not

necessarily a matriz with all its eigenvalues being non-negative. The matrices

A 93,B:42,
3 1 21

provide a counterexample, as

5.9397 2.4749
AAB = . A =06.9648, A\, = —0.0352.
2.4749 0.9899
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2.3.2 Basic properties

In this section we obtain some basic properties of the intersection and union operations
between matrices, which in some aspects are analogous to the intersection and union

of sets.

Proposition 2.3.4 Let A,B € M,,. The intersection and union of A and B have
the following properties:

(a) Commutativity:
AAB=BAA, AVB=BVA.
(b) Orthogonality: AB = 0 iff
AAB=0, AVB=A+B.
(¢) Equality: if A = B then
ANMA=A, AVA-A

(d) Null element: the zero matriz is the null element for the intersection and the

neutral element for the union:
AANO=0, AvVvO0o=A.

Moreover, AVB =0 iff A=B =0.

PROOF. Properties of the union follow from the properties of the intersection.
(a) follows from the definition of the operations and the commutativity of the sum of
matrices.
The direct implication in (b) is evident. The proof of the reverse is based on the
fact that AB = 0 implies A:B: = B2A:z = 0, as established in Corollary 2.2.4.

Conversely, recall that the set of eigenvalues of a matrix C satisfies
{A (C)} ={X (C)}. (2.4)

1 1 ! 1 1
From the symmetry of A and B, note that <A§B§> = B2Az2. The hypothesis
A ANB = 0 is equivalent to



2.3. INTERSECTION AND UNION OF MATRICES 31

This equality combined with property (2.4) implies

(v (im0} o (-arm)

Thus all the eigenvalues are 0, and A:2B: is the zero matrix.

(¢) is clear from the definitions.

To prove (d), observe that any orthogonal matrix U satisfies UQU’ = 0, and its square
root is also 0. Then the proof is straightforward. Elementary algebra provides the
uniqueness of the zero element (with the obvious restrictions on its dimension).

The proof of the last statement is based on the above mentioned result: the linear
combination with non-negative coefficients of p.(s.)d. matrices is a p.(s.)d. matrix,
and this is equal to the null matrix iff all the matrices being summed are the null
matrix (see also [47]). Consider the decomposition (2.3) of the union and apply the

cited property to the matrices

NI

111
AvB:§A+—B+—<A

1 2
—W):O:A:B:Q
27 T3

Remark 2.3.5 Unfortunately a neutral element for the intersection does not exist.

Thus no matrix E exists such that, for all matrices A € M,,,
ANE=A. (2.5)
If E satisfies (2.5) for any A € M,,, then for the identity matriz 1,
I:IAE::%(ﬁE§+Eh%

1
= -—<E%+-E%>

A=ANT =
_ Al

4 0 1 2 0
This is not possible. For example, A = ( ) # Ax= ( ) )

Remark 2.3.6 In general, the intersection and the union are not associative.
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2.3.3 Rank

Let C be an n x p matrix. The rank r of C is the number of linearly independent
row or column vectors. Thus » < min {p,n}. Here we study the rank of the matrices
obtained by the operations intersection and union. We assume in this section that X
and Y are of the same rank. It is not necessary, and similar results can be obtained

if this condition does not hold.

Consider the matrices A = XX’ = UAU’ and B = YY' = VMV'. Obviously,
A B, AMe M, and X, Y, U, V are also n x n. Recall that such matrices satisfy,
for p <mn,
rank (A) = rank (A) = rank (A%> = rank (X) = p.
The following proposition gives bounds for the ranks of the intersection and union of

matrices A and B. Of course, these bounds are meaningful only if either 2p < n or

4p < n; otherwise, the result of the proposition is trivial.

Proposition 2.3.7 Let X and Y be n x n matrices, with rank (X) = rank (Y) = p,
p<n, A=XX and B=YY'. Then:

(a) 0 <rank (A AB) <min{2p,n} and rank (A AB) =0 iff AB =0,

(b) 0 < rank (A V B) < min{4p,n} and rank (AVB)=0iff A=B=0.

PROOF. The non-negativeness of the rank of any matrix can directly be derived
from the definition. It is also evident from the definition that the rank of any n x p
matrix cannot exceed min{p,n} = p. To prove the second inequality in the first
statement of (a), two additional properties are useful (assume that the dimensions of

the following matrices allow the operations). Let C, D be two matrices, then
rank (CD) < min (rank (C) ,rank (D)), (2.6)

rank (C + D) < rank (C) + rank (D). (2.7)

From the symmetry of A and B we have that B2A: and A2B2 have the same rank.
From the definition of A A B and (2.6) applied to A2Bz and B2A? we see that the

(common) rank satisfies
rank (A%B%) < min {rank (A),rank (B)} < p.
As A2B2 + B2A: is n x n, from property (2.7) we have

rank <A%B% + B%A%> < min{2p,n}.
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The proof of the second inequality in the first statement of (b) can be obtained by
applying (2.7) and (a) to AVB =A +B — A AB. Thus

rank (AVB) <p+p+min{2p,n}.

The second statement in (a) follows from the fact that rank (AAB) =0iff AANB =
0. And AAB =0iff AB = 0 (see Proposition 2.3.4, (b)).

To prove the second statement in (b), analogously to the proof given for (a), note
that rank (A V B) =0 iff A v B = 0. This is equivalent to A = B = 0, as shown in
Proposition 2.3.4. O

2.3.4 Trace

The following results on traces of matrices involved in the definitions of the intersection
and union can easily be obtained from well-known general results on traces (see, for
instance, [47]). In the following, A,B € M, are such that A = XX' = UAU/,
B=YY = VMV’, where A and M are diagonal matrices with the eigenvalues.
Matrix A satisfies:

(Pr. 1) tr (A) =tr (A) =" =200, >0 @3 >0,

(Pr.2) tr (AB) >0 and tr (AB) = 0 iff AB =0,
(Pr. 3) tr (atA+bB) = a tr (A) + b tr (B).

Results on the traces of the intersection and union of the n xn symmetric matrices

A and B, are given next.

Proposition 2.3.8 The traces of the intersection A N B and union AV B satisfy:
(a) tr (AAB) >0, and tr (AANB) =0 iff AB =0,
(b) tr(AVvB) >0, andtr(AVvB)=0iff A=B=0.

PROOF. Property (Pr.2) applied to A:B: gives the non-negativeness of the trace
of this n x n matrix. The same result is obtained for B2Az2, from (Pr.1). From

(Pr.3),

tr(AANB) =
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Then the second statement in (a) follows from (Pr.2) and Corollary 2.2.4.
Now, since AV B € M,, the non-negativity of the trace is direct. Obviously, if
C € M, then tr (C) = 0 iff C = 0. Thus, from Proposition 2.3.4

AVB=0if A=B=0,

and Part (b) is proved. O

The properties found in the previous sections are analogous to those that appear
in the context of the theory of vector spaces. Now we must define the concept of
inclusion. We may expect that if a matrix (subspace) A is “included” in another B,
then the intersection should be the “smallest” matrix and the union, the “largest” in

a sense.

2.4 Binary relations between matrices

In this section, we define an order relation among symmetric p.(s.)d. matrices under

certain restrictions. The order of the (real) eigenvalues is used.

2.4.1 Equivalence relation

Let A,B € M,,. Suppose that there exists a vector u € R™ such that
Au = )\u, Bu = puu,

for some A\, u € R. We will say that u is a common eigenvector of A and B. In other

words, A, B share the same eigenvector u.

An interesting result follows from this definition.

Lemma 2.4.1 If A and B share an eigenvector u, with eigenvalues \, i, respectively,
then:

1. AANB and AV B share the same eigenvector u.

2. )\%/ﬁ and A+ p — )\%/ﬁ are the eigenvalues of A A B and AV B corresponding to
this etgenvector u.
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PROOF. A2 and ,u% are eigenvalues of A: and B%, respectively, with common

eigenvector u (see, [47]). Then

(AAB)u =

N RN NN -

Similarly

(AvVB)u = (A+B—-AAB)u
= Au+Bu—-(AAB)u
= )\u+uu—)\%/ﬁu
= <)\+u—)\%/ﬁ> u.

n

Definition 2.4.2 Let A,B € M,,, with normalized eigenvectors {w;};_ and {v;}._,,
respectively. We say that A is equivalent to B if {u;};_; = {v;}._,. We write A ~ B.

Thus A, B are related by the equivalence relation ~ iff they share all their eigen-

vectors. This implies that we can rearrange the eigenvectors
VO = [V, v] = T,
where v is the column vector after rearranging.
Given an n x n orthogonal matrix U, we can define the equivalence classes by

[U={CeM,|C=UAU for some diagonal matrix A > 0}.

2.4.2 Partial order relation

n

Definition 2.4.3 Let A,B € M,,, A ~ B with eigenvalues {\;};_, and {p;};_,,

respectively and common matrix of eigenvectors U. We say that A is smaller than
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B, and we denote this partial order by A < B, if A ~ B and
)\ZSILLZ, izl,...,n,

where the index i refers to the i — th eigenvector.

Example 2.4.4 The following matrices are ordered

L D I P L A o A
00 0 0.5 01 01

2.4.3 Properties of equivalent matrices
Intersection and union

We can obtain the union and intersection of matrices belonging to the same equiva-

lence class [U].

Lemma 2.4.5 Let A = UAU’ and B = UMU’ matrices of M,, such that A ~
B, with U, the (common) orthogonal matriz containing the eigenvectors, A and M
diagonal. Then ANB, AvB e M, and

AAB=UTU, AVB=UZU,
where T = A2 M3 and £ = A +M — A2 M3 are diagonal.

PrOOF. Recall that AVB € M, and the symmetry of A AB was proved
for every A,B € M, in Proposition 2.3.2. Then it suffices to obtain the spec-
tral decomposition of these matrices. U is orthogonal and A%, M: are diagonal, so
Az M3 = M3 A? and

AAB = - (UAUUMIU + UMPU'UA U
(UAIMIU + UME ASU)

U (A%M% +M%A%> U’)

Il
(@i IR R N e
/N

=
a

(2.8)

11
with I' the diagonal matrix with elements v, = A\’ p”, i =1, ..., n.
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Similarly,

AvB = UAU +UMU —-UTU
= UA+M-T)U
- UzU, (2.9)

11
with 3, the diagonal matrix with elements o; = \; + p; — A2 7, i = 1,...,n. Alterna-
tively, we may prove this result by applying 2) of Lemma 2.4.1 to the eigenvectors of
U. 0

The properties of the ordered matrices are summarized by the following result.
However, note that A is “smaller” than A A B, whereas A V B is not “larger” than
B.

Proposition 2.4.6 Let A,B € M,,, with A < B. Then
(1)) ANB~A (~B) and also AVB ~ A (~B),
(i) ASAABSAVBSB.

PROOF. Let A = UAU’ and B =UMU'. Part (i) is a direct corollary of Lemma
2.4.5. To prove (ii), we may use the expression for the eigenvalues of the intersection
and the union of ordered matrices obtained in Lemma 2.4.5, (2.8),(2.9), and the
inequalities

AigAfufg/\ﬁui—A?ufgm, i=1,..,n.
To prove these inequalities it suffices to consider that A < B iff \; < pu; and the fact
that A, B are p.(s.)d.. Thus, fori=1,...,n:

A

ol
S ol
Sl

A= ARAZ < A7
2

1 11
(W =) =Xt — 20k,

=

0

IA

and this is equivalent to
11 11
A

Finally, - L

These computations have some implications, as illustrated below.
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Example 2.4.7 Let u; uy, and ug be orthogonal vectors in R? and Ay > Ay > A3 > 0.

Consider the matrices belonging to Msy

M = /\111111/1 —+ )\211211/2 + )\311311;’,
A = \uu] + Ouguj + Ouguy,
B = X\uyu, + Ouju) + Ouzuj,
C = /\111111/1 + )\311311& + 011211/2.
The “reference” matriz is M = UAU’, with U = [u,uy,u3] and A =

diag(A1, Ao, A3). Observe that
A:UAlU/, B:UA2U/, C:UAlgU/,

with Ay = diag(A1,0,0), Ay = diag(0, X2,0), and A3 = diag(A1,0,A3) and these
matrices may be related. Thus we cannot compare B to A and B to C, whereas A, B,
and C are smaller than M and A < C < M. Next, their intersections and unions

are found, applying the previous lemma:

AAB = UA,A,U =0,
AAC = UA AU =A,
AAM = UA AU =A,
BAC = UA,A ;U =0,
BAM = UA,AU =B,
CAM = UAAU =C.

Hence,
AvB =A+B-0 =A+B,
AvC =A+C-A =¢C,
AVM =A+M-A =M,
BvC =B+C-0 =B+C,
BvM =B+M-B =M,
CvM =C+M-C =M.

Thus, the non-ordered matrices turn out to be orthogonal (the intersection is O and
the union is the direct sum). On the other hand, the ordered matrices present the
expected properties, for instance, A < C, being ANC = A (SC) and AvVC =C
(< C). Finally, observe that the intersection and union matrices (even 0, A + B,
and B + C) belong to the same equivalence class [U], all of them being smaller than
M.
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Bounds for ordered matrices

We investigate the existence of bounds (minimum and maximum elements) within
a subclass of ordered matrices included in a class of matrices related by the above
equivalence relation. However, the largest eigenvalue might be unbounded, so we
focus on the case that the largest eigenvalue is finite and bounded. We are interested
in fixing a finite (arbitrary) upper bound for the largest eigenvalue. Without loss of
generality we can normalize this bound to 1.

Proposition 2.4.8 Let [U] be the class of all the p.(s.)d. symmetric n X n matrices
whose eigenvectors are the columns of the orthogonal matriz U and the corresponding
eigenvalues are bounded by 1. Then if 0, =0, I, =1,
(i) 0,1€[U'];
(i) 0 S AT forall Ae[UY.

PROOF. (1) follows from 0 = UQU’, I = UIU'. To avoid confusions, let us denote

Ak (A) the k—th eigenvalue of the matrix A. To prove (ii) note that, for every
A € [U, A\ (A) <1and )\, (A) >0, so:

M(0) = =M (0)=0< A (A) < <A (A) < 1=y (D) = ... = A (T),

Rank

The rank of A € M,, is the number of non-null eigenvalues (see, for instance, [51]).
The proposition below gives the rank of A from the rank of the diagonal matrix of

its eigenvalues.

Proposition 2.4.9 Let A,B e M,, A <B. Then
rank (A) < rank (B) <mn,

with equality in the left if both matrices have the same number of non-zero eigenvalues.
The second equality holds if B is p.d..

Proor. If k,[ are the number of positive eigenvalues of A, B, respectively, then
E<lif ;(A)< A\ (B),i=1,...,n. 0
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Trace

Proposition 2.4.10 Let A,B € M,, with A~ B, such that A=UAU,
B = UMU’, where A = diag (\i),_, ., M =diag (jt:);_, . ,,- Then:

(@) tr (A AB) = Z A/ il

0) tr(AVB) =3 (At~ Aoif).

PRroOOF. This is a consequence of (Pr. 1) applied to the set of eigenvalues of the
intersection and union obtained in Lemma 2.4.5. 0

Lemma 2.4.11 Let A < B be matrices satisfying the hypothesis of Proposition
2.4.10. Then tr (A) < tr(B).

PROOF. A < B is equivalent to A\; < p;, i =1,...,n,80 > N < > py. O

Corollary 2.4.12 Let [U] be the class of the n x n symmetric matrices sharing the
eigenvectors. If the subclass [U'] C [U] consists of the matrices having their largest
eigenvalue \; < 1, then any M € [U!] satisfies:

0<tr(M)<n.

Proor. We have 0 < M < I. Then apply Lemma 2.4.11. 0

Theorem 2.4.13 Let A,Be M,, with A<B. IfA=UAU’, B=UMU, where
A = diag (N\;), M =diag (;), then

tr(A)<tr(AAB)<tr(AVvB)<tr(B).
PROOF. From Proposition 2.4.6 we have
A<AANBSAVBSB.

The proof follows from Lemma 2.4.11. n
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2.5 An application to Related Metric Scaling

We conclude this chapter presenting some theoretical results of an extension of mul-
tidimensional scaling. Multidimensional Scaling is a well-known method designed to
construct a configuration of n points on the Euclidean plane from a distance matrix
related to n objects (see [14], [81]).

Related Metric Scaling (RMS) is an extension. This is a distance based method
of multivariate analysis proposed in [15], [28]. Some applications can be found in [2],
3], [4], [37]. The present chapter on operations on matrices is in fact a framework

where the use of this technique appears in a natural way.

RMS is useful when two distance matrices are available on the same objects, and a
joint representation has interest. This method defines a joint distance matrix from two
distance matrices. Let 04 and dg be two related Euclidean distances on n objects and
A, and Ap the respective distance matrices. The inner product matrices associated

with A4 and Ap are the n X n matrices
A=XX, B=YY,

where X and Y are the centred n X p matrices of coordinates, with p = rank (X) =
rank (Y), and p < n.

Matrices A and B are the double-centred product matrices and can be obtained

from A, and Ag, by,
1 1
A:H<—§Af)) H, B:H(—iAg))H (2.10)

being H the centring matrix and A = (62 (i,5)), A% = (6% (i,5)). Consider the

spectral decompositions
A =UAU/, B=VMV/,

and the square roots
V/

S

A:=UA:U, B:=VM
Then the above matrices of coordinates are
X =UA2, Y=VM:.

X,Y are the n x p matrices of principal coordinates of the n objects relative to the
distances matrices A4, Ap, respectively. That is, the row vectors x; and y; are the

principal coordinates of the i — th object relative to A, and Ap.
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The inner product matrix associated with the joint distance

We define the joint distance d g between the i — th and j — th objects by
04 (i,5) = 0% (i,4) + 05 (6, 5) = 7 (i, ), (2.11)

being
.. _1 12 _1 /
7(i,j) = (X —x;) A 2 X'YM ™2 (y; —y;)

The quantity 7 (i, 7) encodes the redundance between A, and Ag.

Theorem 2.5.1 Let A and B be the inner product matrices associated to the dis-
tances 64 and ép, respectively. The inner product matriz associated with the joint

distance dap 1s the p.(s.)d. matriz

1
Gup=A+B— (A%B% +B%A%) .

This matrix is obtained by applying principal coordinates analysis on d4p via
diagonalization of G4p, (see (2.10)), on Afj)g = (635 (i,7)). Clearly, G p, the inner
product matrix related to the joint distance (2.11) is the union of the inner product
matrices related to the marginal distances, whereas the matrix related to the above

redundance quantity is the intersection.

We next derive some properties of the joint distance in order to obtain analogous

properties of the associated inner product matrices. We use the following definitions:

Definition 2.5.2 Let A4 and Ap be two distance matrices and let X and Y be

the corresponding principal coordinates. We say that Ay and Ap are orthogonal if
XY =0.

Definition 2.5.3 Let A = (J;;) be a distance matriz. The rank order of A is defined

as
5(i1j1) < 6(i2j2) <SS 5(imjm) m = n(n - 1)/2'

The following basic properties of the joint distance d 45 hold:

(a) dap = dpa.

(b) If 64 and dp are orthogonal, i.e., X'Y = 0, then §%5 = 0% + 0%.
(¢) If 04 = 0p then dap =04 = 0p.
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(d) If 04 =0 then d4p = dp, and if 65 = 0 then dap = 4.

(d') If 64 is any distance and 0p is a constant (i.e., 0 if i = j; ¢ if i # j) then dap
preserves the rank order associated with d 4.

Observe that these properties show how d 45 encodes the possible redundance between
04 and dp. It remains invariant if distances are the same, it does not change if one of
them is null. If one of them is not informative, then the joint distance is equivalent

to the other one.

By means of (2.10), these properties of the joint distance give similar properties for
the inner product matrix G 4, which can also be obtained by applying Proposition

2.3.4 directly to Gap. Here A,B are the inner product matrices associated with

54,05

Proposition 2.5.4 The inner product matriz for the joint distance satisfies:
(a) Gap = Gpa,
(b) If 4 and dp are orthogonal, that is AB = 0, the redundance is zero and

Giz=A+B.

(¢) If 64 = 0B, A = B, the redundance is total and

Gip = A.
(d) If g =0 then dap = 04, the redundance is zero and

G = A.
Lemma 2.5.5 Ifd4 and dg share a common principal axis (eigenvector of A, B) with
eigenvalues Ay (A), Aw) (B), respectively, then:
1. 0ap shares the same principal azis (eigenvector).

2. The corresponding eigenvalue is

1

Aty (Gag) = Ay (A) + Ay (B) — (A (A) Ay (B)) 2

PROOF. The proof follows from Lemma 2.4.1 to the common principal axis (eigen-
vector) of the RMS solution for G 45. O

Further properties are next presented. See [15].

Lemma 2.5.6 If 04 and 0 are Euclidean distances with principal coordinates X, Y,

then dap is also Euclidean and does not depend on X, Y.
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Note that

A:B: = UA:U'VM:V’' = XRapY’
where
Ry = UV (2.12)

is the p; X ps matrix whose entries are the correlation coefficients between the p;

columns of X and the ps columns of Y.

Proposition 2.5.7 Let Rap be the correlation matriz in (2.12) and let Rpa = R/y5.

Then the inner product matriz associated with d g can be written as

1
Gap = XX+ YY' — 2 (XRapY' + YRpaX').

Remark 2.5.8 (1) The correlation between the principal axes in the marginal dis-
tances is always 0. Moreover, zero correlation between principal azes in A and B
is equivalent to Rag = 0. Then Gap = XX' + YY' (orthogonality). (2) Total cor-

relation between the principal axes in both matrices is equivalent to Ra = I,,, being

p = min {p1,pa}.

2.6 Concluding remarks

The intersection and union operations between symmetric matrices provide a the-
oretical framework useful in Related Metric Scaling. These operations have similar
properties to the intersection and union of vector subspaces (for example, subspaces
spanned by the columns of a matrix). We have defined a partial order relation be-
tween positive (semi)definite matrices with interesting results. Nevertheless, further
research is required to understand some surprising results. For instance, according
to this partial order, if a matrix A is lower or equal () to another matrix B, then
A < AAB < AVB < B. The theoretical aspects developed in this chapter may facil-
itate the geometric interpretation of RMS and may open the way to future research on
similar multivariate techniques. The operations bring out the dependence structure
underlying the information presented in a multivariate context. A continuous version

of this framework is the subject of the next chapter.



Chapter 3

Continuous extensions of some

operations with matrices

The union and intersection operations of symmetric non-negative definite matrices
introduced in [15] and studied in Chapter 2, are a way of studying multivariate de-
pendences between data matrices of the same dimension, with applications in related
multidimensional scaling. When we work with random variables, multidimensional
scaling can be extended in a continuous way, (see [25]). Extending this approach
from matrices to functions of two variables and using some tools of functional analy-

sis, we study the redundant relation between functions.

3.1 Symmetric positive definite kernels

Let (21, F1, My) and (2, F2, M3) be two measure spaces.

Definition 3.1.1 A real valued function K (s,t) which is measurable on the product
space (Qq x Qo, F1 X Fo) is said to be a kernel. K is said to be symmetric if for every
pair (‘1'73/) € Ql X Q2; K(l’,y) = K(y,l’)

It is evident from the definition that symmetry implies equality of sets 2; and €.

As in the discrete case (finite matrices), we focus on symmetric kernels. Suppose
that X,Y is a pair of identically distributed (i.d.) r.v.’s with common cdf F' (z) and
finite variance. We can consider that F, k = 1, 2, is the Borel c—field and M, is the

45
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space of bounded regular Borel signed measures on (€, Fi), which contains the space
of probability measures, say, P. We denote by (X, B (R)) this measurable space, and
by F' the probability measure induced by the cdf F'. Let K (x,y) be a symmetric real
valued function defined on X x X = [a,b] X [a,b] C R?, being [a, b] the range of X.

If K is a (symmetric) Hilbert-Schmidt kernel, i.e.

/ab/asz(S,t)dF(s)dF(t) o

there exists an eigenfunction expansion of K, convergent in mean square with respect
to the product measure dF (s) dF (t). Thus there exists a complete orthonormal basis
{&} over L?([a,b], F), such that

K (z,y) = i N ()& (9) (3.1)

where the countable sets of eigenvalues and eigenfunctions {\;}, {&;} of K on F satisfy
b
| 6@ @y)aF @ =rsw), 32)

with i)\f < oo. Notice that E [ (X) K (X,y)] = Né& (y), and F[K? (X,Y)] =
i=0

>~ A2, See, for instance, [35].
i=0

An orthonormal sequence of functions {&;} on F satisfies

b
E (6 (X)& (X)) = / & (2) & (x) dF (1) = by (3.3)

where dy; is Kronecker’s delta. If each &, & > 0, has 0 mean, i.e.,

B (6 (X)) = / & (2)dF (1) =0, Yk >0,

then condition (3.3) is equivalent to pairwise zero correlation and unit variance. There-
fore p;; = Cor (& (X), & (X)) is pi; = Cov (& (X)), &, (X)) = 045 = d;5, and we denote

Pii = Piy T4 = 04

An orthonormal sequence {&;} is complete if, given any function g, the r.v. g (X)

with finite variance has an expansion, convergent in the mean square sense

o0

g(X)= Zaifi (X),

=0
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where a; = E (g (X) & (X)) . The expansion is in the sense that

lim F (g(X)—S,)*=0,

n—o0

where
n

Sp = Zaifi (X)

1=0

An equivalent condition uses
Var (g(X)) = 3 af.
i=0

o0
If > a? < oo, the series converges with probability one.
i=0

Let us consider the quadratic integral form J associated to K

b b
J(so,w:/ / K (5,8) ¢ (5) o (1) dsdt

where ¢ is any continuous or piecewise continuous function in the basic domain [a, b].

A quadratic integral form J is said to be positive semidefinite (p.s.d.) if
Vo eC([a,b]), J(p,p)=0
and positive definite (p.d.) if

0 # 0= J(p,¢) >0.

A symmetric kernel K is said to be p.(s.)d. whenever its associated quadratic integral

form J is either p.s.d. or p.d. (see [11]).

Let
Kxxx = {continuous, symmetric p.s.d. kernels K on X x X'} .

Mercer’s theorem (see, for instance, [11]) states that for some sets {\;},{&;} expan-
sion (3.1) holds for such kernels, and the series converges absolutely and uniformly. A
kernel K is p.s.d. iff all the non-zero eigenvalues \; are > 0. It is p.d. iff all eigenval-
ues are > 0 and the corresponding eigenfunctions {;} form a complete orthonormal

system (see [63]).

We introduce a relevant, specific class of kernels which arises in the context of the
asymptotic study of U-statistics.
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Definition 3.1.2 A square integrable symmetric kernel K is said to be degenerate if

the mathematical expectation exists and

By (K (2,Y)) = / K (2.) dF ()

18 a constant a.e. in x.

From the symmetry of these kernels we can also define degeneracy by
Ex (K(X,y)) =c
where ¢ is a constant a.e. in y.

The following result characterizes degenerate kernels (see [35] for a proof).
Theorem 3.1.3 The following statements are equivalent:

1. The square integrable kernel K is degenerate.

2. One eigenfunction of K, say, &y, is a constant.

This theorem has some relevant consequences as we show below: a) the com-
plete orthonormal set of eigenfunctions in (3.1) starts with a constant function &,
for example the constant 1, and the corresponding eigenvalue is A\g = 0; b) If the
kernel is symmetric and degenerate, then it is double-centred (see below), and every

eigenfunction &, k > 0, has zero expectation.

Example 3.1.4 Let K (z,2') = xa’ and X,Y independent i.d. as X with cdf F,
E(X)=0, Var (X) = 0? and [a,b] is the range of X. This kernel is degenerate

By (K (X,2)) = / w2/ dF (z) = /B (X) = 0.

The eigenexpansion is
x
K (z,2") = 0*=~—,
oo
since the only non-null eigenvalue is \; = o with eigenvector & (x) = x/o. Note that

&o(z) = 1 is also eigenvector with eigenvalue 0.
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Example 3.1.5 Let ¢i(x,y), ca(x,y) be two symmetric bivariate densities with uni-
form marginal densities on [0, 1]. Let us consider the (symmetric) kernel K = ¢1 — c,.
Then

lﬁUﬂXwﬁzl(quw%%M%wﬂw=1—1=Q

for almost all y € [0,1], so K is degenerate.

3.2 The product of symmetric kernels

Our aim is to define the intersection and union operations of continuous, symmetric

kernels, generalizing the above similar operations with finite matrices.

Let us denote by * the integral operator ® with symmetric kernel K (s,t),t € X
(see [29])

Bu() =K ()xul) = [ K(Hudr.
X
Thus * stands for the integration with respect to the repeated variable ¢.

Let (X,Y’) be a random vector defined on X' x ) with bivariate cdf H and marginal
cdf’s F, G, respectively. Thus H belongs to the Fréchet class F (F,G). The product
of kernels K7 € Kxyxx, and Ky € Kyxy is next defined. Let us preserve the above

notation and write x for double integration with respect to two repeated variables.

Definition 3.2.1 Let H € F (F,G) be a bivariate cdf absolutely continuous with
respect to the product measure FG. Let K1 € Kyxx, Ko € Kyxy. The H—product
Ky % K5 is a kernel defined on X x Y by

(Kl *KQ)H (l’,y):COU (Kl (va)vKQ (Ky))7 (34)

for every pair (z,y) € X x Y, with (X,Y) ~ H.

Remark 3.2.2

1. Covariance (3.4) is

//K1 (x,8) Ko (t,y)dH(s,t)—/ K (:c,s)dF(s)/Kg (t,y)dG (t) (3.5)
xJYy X y
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and can be computed by

/X/)}(H(S,t) — F(s)G(t))dK, (-, 8) dKy (1, ),

provided K (-, s) is of bounded variation on X and K; (t,-) is of bounded vari-
ation on ). See [18], Theorem 1.

2. The convergence of the first integral is ensured by assuming H absolutely con-

tinuous with respect to FG.

Theorem 3.2.3 Let K1 € Kyxx, Ko € Kyxy satisfying conditions of Definition

3.2.1, and consider their eigenexrpansions

Ky = ;))\ifi ® &i, Ky = Z i) & 1 (3.6)

=0

where §®E; stands for &; (x) & (2') for every pair (z,2') € X x X and similarly n; @mn;.
For a given random vector (X,Y') with bivariate cdf H, defined on X x ), then

KiwKa = 55 AgsCou (6(X) 15 (V)& @ (3.7
i,j=
PROOF. Recall the orthonormality of the sets {&},{n:}. Then for each pair
4,720
Cov (& (X),m; (V) = Exy [&(X)n; (V)] = Ex [& (X)] By [n; (V)]

- /X /y & ()m; (£) dH (s, 1)
— [ & ars) [ nwace. (3.8)
X Yy

By Mercer’s theorem, the expansions of kernels (3.6) converge absolutely and uni-
formly. By the dominated convergence theorem we can exchange integration and

infinite sums, and by Fubini’s theorem:

/x/yKl (2,5) Ko (t,y) dH (5,1) =

- /X [i A& (2) & (S)Jg:oﬂjnj () n; (y)] dH (s,1)

y |i=0

= A (2) 1 () /X /y & (s)m; (1) dH (s.1)

1,j=0
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[ miwsare) = [ Sa6@s 6

- > A& ) /X & (5) dF (5),
/y K t)dc () = [ i s (8)my () dG (1)
- i ps ) | 03 (046 (0.

Using (3.4) and substituting these results in (3.5)

K x Ky (1y) = 30 Mgt (2) / / & (s)m; (t) dH (s,1)

4,j=0

=SS N (@) (9) / & (s) dF (s) / 0y () dG (1)

i,j=0

= & (@) //f Sy (£) dH (5,1) +

4,7=0
- [ &are) / 1 (1) dG (1)
X Yy
Expansion (3.7) follows by substituting (3.8) in the last expression.

Note that since {& (X)},{n; (Y)} have finite variances, Schwartz inequality

S NECou? (& (X),m; (V) < 5 A2u2Var (& (X)) Var (n; (V)

i,j=0 4,=0

provides a proof of the convergence of (3.7) in the mean-square sense. O

Corollary 3.2.4 Let (X,Y) be a random vector on X x Y, with H = FG, i.e., X
and Y are independent. Let K1 € Kyyxx and Ko € Kyyy. Then K1 x Ko = 0.

PrRoOOF. The covariance between two functions §;,n; of the r.v.’s XY can be

computed by

Cov (& (X) / / (5,4) = F () G (1)) d&; (s) dn; (1)

as mentioned above (see [18]). If H = F'G all covariances in (3.7) are 0. O

Remark 3.2.5 As the ordinary product of matrices, (3.4) may not give a symmetric

kernel. Furthermore, the associative property does not hold.



52 CHAPTER 3. CONTINUOUS EXTENSIONS OF SOME OPERATIONS WITH MATRICES

Example 3.2.6 Let Kx (s,t) = st with (s,t) € X x X, and similarly, Ky (s,t) = st
with (s,t) € Y x Y. Consider two r.v.’s X, Y with ranges X, and bivariate cdf
HeF (F,G), such that E(X)=FE(Y)=0, Var (X) =0, Var (Y) = 03. The only
non-zero eigenvalue of Kx is \y = 0%, with eigenfunction & () = x/0y, orthogonal
to & (z) = 1, with eigenvalue N\g = 0; similarly for Ky, u; = o2 is the non-zero
eigenvalue, with eigenfunction ny (y) = y/o2. Both kernels are degenerate for both
variables and the H—product is

(Kx % Ky)y (1,y) = o203 (£ . i) Cov (E, X)

01 O3 01 02
= Cov(X,Y)uy,

Notice that the product kernel Kx x Ky does not depend on o},03. It only depends
on the mathematical expectation of the variable X -Y (i.e., on its covariance). If
X,Y are stochastically independent r.v.’s, Kx * Ky = 0 for every pair (z,y) € X x Y.
o109 s an upper bound for the covariance; it follows from Cauchy-Schwartz inequality.
Finally, the eigenexpansion of Kx * Kx 1s

(Kx % Kx)y (5,0) = a;lgil - Uil

Kx x Kx and Kx share their eigenfunctions but the eigenvalues of Kx x Kx are the

squared of the eigenvalues of Kx.
The H—product of kernels has some properties.

Proposition 3.2.7 Let K| € Kxxx, Ko € Kyxy. For every (z,y) € X x Y, K1 % Ko
satisfies:

(K1 %K)y (7,y) = (Ko x K1)y (y, @)
where H' is the bivariate cdf of the random vector (Y, X) such that H' (y,z) = H (x,y)
for every x € X and for every y € ).

PRrROOF. The proof follows as an immediate consequence of the symmetry of the

covariance and K, Ks. 0

Proposition 3.2.8 Let K1, Ky € Kxxx. If a > 0 is an eigenvalue with eigenfunction
& of the H—product Ky x Ky with respect to I, i.e.,

/X € (3) (I, + Ka) g (5.1) dF (s) = o€ (1) (3.9)
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where H is symmetric and H € F (F, F), then « is also an eigenvalue of Kqx K with
respect to F'.

PROOF. Proposition 3.2.7 allows us to substitute (K K7)(t,s) for
(K; * K3) (s,t) in (3.9). m

We are now interested in the product of kernels defined on the same product space,
ie,, X =Y. If, in addition, X =Y almost surely (a.s). some relevant simplifications
hold. In this case, H attains H", the Fréchet upper bound (see Section 1.2 in Chapter
1). Then (3.4) can be obtained by integration with respect to F, as integrating
dH™(s,t) on s =t is the same as integrating dF'(s) on s. Thus (see [18])

/R2 a(s)B(t)dH* (s,t) = / a(s)B(s)dF(s). (3.10)

R

It suffices to consider
Ki(,s)=al(s), K(t,-)=p(1)

and apply (3.10). Then (3.4), (3.7) reduce to
(K% Ka)y (2, y) = /)(Kl (z,8) K2 (s,y) dF (s) — Ex (K1 (2, X)) Ex (K2 (X,y)),

and

Ky« Ky = Y \pjCovg+ (&,m5) & @ nj, (3.11)
ij=0

where Covg+ (&, n;) stands for Cov (& (X),n; (X)). Expansion (3.11) is derived di-
rectly from (3.7).

Recall that intersection and union operations involve square roots of matrices. In
the context of metric multidimensional scaling, in finding principal coordinates from
an n x n distance matrix A = (¢;;), the inner product matrix related to A must be

double-centred. Double-centred kernels are next defined.

Definition 3.2.9 A kernel G € Kxxx is double-centred with respect to a cdf F if for

every r,x' € X:
Ex (G(X,2") = / G (z,2")dF (x) =0,
X

By (G (2, X)) = /X G (2,2 dF (2') = 0.
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The continuous version of the centring matrix H (see (2.10) in Chapter 2) is the
double-centring of K (see [29])

GK (Z‘,.’L'/) =K (l’,l‘l) - EX (K (Xa lj)) - EX/ (K (an/>> + EX [EX/ (K (Xa X/))] :
It is straightforward to see that Gx € Kyxx, the double-centring of K, satisfies
Ex (G (X,2")) = Ex (Gg (2, X")) =0, Va2 e€X.

Thus a double-centred kernel is always degenerate.

Proposition 3.2.10 If a non-constant kernel K € Kxxx is degenerate then it is

double-centred.

PROOF. Theorem 3.1.3 establishes that a degenerate kernel K has one constant
(non-null) eigenfunction, &, and Ex [ (X)] = 0, for every k£ > 0. Then

Ex[K (X)) = By |5 n6 ()6 ()
k=0
= Aoéi.
On the other hand, &, is (a non-null, constant) eigenfunction of K with eigenvalue Ag
iff
/ Sk (z,2") dF (z) = Moo
X

or, equivalently, Fx [K (X,2')] = Ag. The only possible values of \y are 0 or 1. If
Ao = 1 then K (z,y) = & (i.e., is a constant) for almost every (z,y) € X x X'. Hence,

if K is not a constant, it is double-centred. 0

In the following, we only consider double-centred kernels on Ky, unless the

contrary is stated.

Definition 3.2.11 Let K € Kxxx be double-centred, such that K = > \& ® &; for
i=1

every pair of values (x,z") € X x X. The square root of K, say, K%, is defined as
the kernel of Kxyxx

NI

K2 =% A& ®¢&,
i=1

provided >" \; < co. Any rational power K=, m < n is similarly defined.
i=1
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Theorem 3.2.12 K2 is well defined as the square root of K, in the sense that the
H—product satisfies Kix K2 = K, if, for all i,j >0, Cov (& (X),& (Y)) = d;5. In
particular, K% is well defined if K is symmetric and H = H™ .

PrROOF. From (3.7)

(K3 K3) (my) = 3 AN Cou(6(X), & (1)) & (0)& (5).

ij=1
assuming that, if \g = 0 is an eigenvalue of K, this series starts at i, j = 0. Thus, the
product K2 « K2 = K if Cov (& (X), & (Y)) = 8, for every i,j > 0.

If H= H", we have
/X /X £(5) € (1) dH™ (s,1) = /X £(5)€ () dF ().

where F' is the cdf of X, and the last integral is d;; for every ¢,j > 0 (see condition
(3.3)). O

3.3 Intersection and union operations

3.3.1 Definitions

Let K1, Ky € Kyxx. The definition of the H—product and the square root of kernels

allow us to define the union and intersection operations of kernels.

Definition 3.3.1 Let H € F (F, F) be a symmetric bivariate cdf, each marginal vari-
able with range X. The intersection K1 N\ Ks and the union K1V Ky of K1, Ky € Kyxx
are defined by

1 1 1 1 1
KinKs = 5 <Kf « K2 + K *Kf> , (3.12)
Kl\/KQ == K1+K2—K1AK2, (313)

where x stands for the above H—product.
It is obvious that K1 A Ko, K1V K5 are also symmetric kernels on X x X.

Proposition 3.3.2 Let K1, Ky € Kxxx. The union K1V Ky is a positive semidefinite

kernel. However, K1 N\ K5 is not positive semidefinite in general.
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PRrROOF. Consider the following well-known results on eigenvalues of kernels:

1. Let a be any real number, and let A\, ¢ be an eigenvalue and its corresponding
eigenfunction of a kernel K € Kyxy. Then ) is also an eigenvalue of oK, with

eigenfunction ¢’ = a.

2. Each positive eigenvalue of the sum K + K+, where K is a positive definite

kernel, is not lower than the corresponding eigenvalue of the kernel K (see, [11]).

Write K; V K5 as

1 1 1\2
K1VK2:§(K1+K2+<K12_K22) >7

1 1y 2 1 1 1 1
where (Kf — Kf) stands for K1+ Ky — K7 x K5 — K3 =« K}, which is positive. Thus
K,V K, is also positive as a consequence of 2.

Next, let us consider the kernel K € Kxyyx

t
K (s,t) = o2

o o

and the r.v.’s XY, with range X, identically distributed, with E (X) = E(Y) =0,
Var (X)=Var(Y)=o0?and Cov(X,Y) = 015 <0 for a fixed H. If Kx, Ky denote
the kernel K when defined on the random vectors (X, X), (Y,Y), respectively, both
kernels are positive definite, double-centred, with eigenvalue o2 and corresponding

eigenfunction ¢ (s) = 2. Direct computations show that
(Kx A Ky)y (2,y) = 0wy

Thus Kx A Ky is negative definite because the covariance is negative and the only

non-null eigenvalue is o502 < 0. O

Remark 3.3.3 K, and Ks, must be defined on the same spaces X =), in coherence
with definitions (3.12) and (3.13) .

Example 3.3.4 Consider the kernel K = > & ® & with X =Y (a.s.). Then the
i=0

intersection of K and Kz with respect to HT is

© 3
KAK? =Y N&®E
=0



3.3. INTERSECTION AND UNION OPERATIONS 57

3.3.2 Basic properties

Let (X,Y) be measurable functions on the product space X x X with joint cdf H
and common marginal cdf’s F. Let us consider the expansions (3.6) of K; € Kyxx
and Ky € Kyxxy. Note that the symmetric property of the operations allows us to
interchange Y and X when necessary. The following proposition summarizes the main

properties of the intersection and union operations.

Proposition 3.3.5 Let Ky, Ky be symmetric p.s.d. kernels as defined above and let
Ky be the null kernel, i.e., Ko (z,y) = 0 for almost every (x,y) € X x X . The

intersection and union operations satisfy the following properties:

1. Commutativity: for any H € F (F, F)
KiNKy=KyANK;, KV Ky,=K,VK;.
2. Zero element: for any H € F (F, F), Ky is the neutral element of the union of

kernels,
Kl/\KO:K07 Kl\/KO:Kl-

3. Equality: if H attains HT and Ky = K, i.e., for almost every (z,y) € X x X,
Kl (:an) = KZ (:an); then

Kl/\KQZKlzKQ, K1VK2:K1:K2.

4. Orthogonality: if X, Y are stochastically independent (H (x,y) = F (z) F (y) for
almost every (z,y) € X x X), then

Kl/\KQIKo, K1VK2:K1—|—K2.

Proor. Commutativity is directly derived from the commutativity of the sum
of measurable functions on the product space.The proof of 2 is also straightforward.
That H attains H' is a necessary condition for K sx K=K (see Theorem 3.2.12);
then 3 is evident. Statement 4 follows from Corollary 3.2.4. 0

Remark 3.3.6 A neutral element for the intersection does not exist. In other words,
there 1s no kernel Kg, such that

KANKp=K (3.14)
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for every kernel K defined on (X,Y). We may consider a suitable class of kernels,

for example those which share the same set of eigenfunctions. Let K = > 1:& ® &
i=0
denote the possible neutral kernel and let K be the kernel with eigenfunctions {&; ()}

and whose eigenvalues are all 1. Observe that
i=0

1s not convergent. Let us consider, finally, the subclass of degenerate symmetric
p.d. kernels (a finite number of eigenvalues higher than 0) with eigenfunctions
{&i (¥)}io. n- If we denote Ky = Sy, the partial sum of the N + 1 first terms of
(3.15), the intersection of Kg and Ky is

(Fin A Kg) (2,9) = % & (1) 6 ()

1
which, by hypothesis (3.14), must be equal to Krn. Then v} =1 and Ky = Kg is

the possible neutral element. However, for any kernel K € Kyxx

(Kiy AK) (2,y) = %A & (1) 6 ()

with {\;} being the (possibly infinite) set of eigenvalues of K. Thus Kin NK # K, in
general. These results are similar to those obtained in Chapter 2 for the case of finite

dimensional matrices but using the identity matrix.

Remark 3.3.7 The intersection and union operations of symmetric kernels are not

associative in general.

Example 3.3.8 Let us consider Ezample 3.2.6 with 02 = 03 = 1. Then K(z,y) =
xy, (K« K)y (z,y) = pry, where p = Cor (X,Y) with respect to a given bivariate cdf
H and

(KANK)y(z,y) = pry, (KVEK)y(z,y)=2zy — pry.
All properties can be verified in this example. Thus, if p = 0 then K N K = K,
KV K =2K, and if p=1 (i.e., there is a linear relation between X and Y, as when
X=Y as)then KNK=KVK=K.

3.3.3 Dimension of kernels

The cardinal of the set of non-null eigenvalues of a kernel K determines its dimension,
denoted by dim (K'). First, let us introduce some relevant concepts and results, proved
in [11].
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Definition 3.3.9 A kernel K (s,t) which can be written as a finite sum of products

of functions of s and functions of t
K (s,t) =3 ()0 (1) (3.16)
i=0

1s called a finite dimensional kernel.
Theorem 3.3.10 The following properties hold:

1. Every continuous symmetric non-null kernel possesses eigenvalues and eigen-

functions with cardinality 3¢ iff the kernel cannot be written as (3.10).

2. If a kernel K has only a finite number of eigenvalues i, Mg, ..., A, it must be

finite dimensional and can be represented in the form

K (s,t) = 3200 Midi(s) & (1) -
Conversely, a finite dimensional kernel has only a finite number of eigenvalues.

3. All eigenvalues of a real symmetric kernel are real. The number of non-null
eigenvalues of a kernel is the dimension of the kernel. If a kernel is positive
definite (all its eigenvalues are strictly positive) its dimension is infinite. If K

18 positive semidefinite, its dimension, say, N, is finite.

Recall Example 3.1.4, with one positive eigenvalue. Observe that the null kernel

is the only kernel with all its eigenvalues equal to 0; thus, its dimension is 0.

Now our interest is to study the dimension of the kernels resulting from the in-
tersection and union operations of two kernels. The product Ky = K5 defined on the
range of two variables X and Y can be expanded on a double sum of functions of
these two variables. But the coefficients of this sum do not coincide with the eigen-
values of the product. Furthermore, their computation is not easy, in general. In the
following sections, we define a suitable class of kernels and obtain the eigenvalues of
the product as well as the intersection and union, provided they are defined. In this
case, their dimensions will be studied more extensively. Nevertheless, the following

general results hold.

Proposition 3.3.11 Let K € Kyxx and let K= be its square root. Then

dim (K) = dim (K%> :
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PROOF. The set of eigenvalues of the square root of a kernel is the set of (non-

negative) square roots of its eigenvalues. 0

Proposition 3.3.12 Let Ky, Ky € Kxyxx, not necessarily double-centred. The di-
mension of the H—product, where H is symmetric, satisfies

dim (Kl *KQ) = dim (K2 *Kl) .

PROOF. Proposition 3.2.8 ensures that the set of eigenvalues of K1x K5 and Kox K

coincide. 0

Proposition 3.3.13 Let K1, Ky € Kxyxx. The dimension of the intersection satisfies
1 1
dim (K, A K,) = dim (Kf " K;) .
1 1
PRrROOF. Let a, ¢ be eigenvalue, eigenvector of K7 « K5 . Then

[ 6 (it k) (501 aP ) = ag (0.
Proposition 3.2.8 applied to the intersection gives
/Xg(s) (K A K) (5,8) dF (s) = %/Xg(s) (KF % K3 ) (s,1)dF () +
+5 | 6 (wh o k) (5P (9
= £ (a€ () +at (1)
— ac(l).

1 1 1 1
Thus the intersection and the products K7 « K3 and K3 = K7 have the same eigen-

values. 0

Two examples of symmetric kernels (two copulas) covering finite and infinite di-

mensions are next given.

Example 3.3.14 Let C(u,v) = wv(l + 6(1 —u)(1 —v)) be the FGM copula, and
C*(u,v) = min{u,v} the Fréchet upper bound. Then C(u,v) — uv has dimension 1

whereas Ct(u,v) — uv has dimension ». Let K and KT denote the kernels

K (u,v) = C(u,v) —uv
= Ou(l—u)v(l—0o)
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and

K" (u,v) = C*(u,v) —uv
= u (1 - U) X[u<v} (U,U) +v (1 - u) X[qu] (U, U)

where Xju<y stands for the indicator function of [u < v|. Note that K satisfies con-
dition (3.16), but Kt does not. Thus K is finite dimensional while the set of eigen-
functions of KT is {v/2sin (nmt)}, n > 0, the set of eigenvalues is {W} (see [99])
and has cardinality . Moreover, \y = &, & (s) = V/30s (1 — s) satisfy condition
(3.2), and K (u,v) = \& (u) & (v) agrees with Theorem 3.3.10.

The kernels in Example 3.3.14 are covariance kernels. In Chapter 5, a definition
of the dimension of a bivariate distribution is given. The dimension of the covariance

kernel is used to study this new definition.

3.3.4 Trace

Definition 3.3.15 The trace of a linear operator KC of kernel K, measurable with

respect to a suitable measure p 1s defined by

tr (K,) = /){K(s,s) du(s).
We denote tr (K,) = tr (K).

Proposition 3.3.16 The trace of a symmetric kernel K with respect to F' is the sum

of the eigenvalues of the kernel with respect to the measure F),
tr (K) = Z /\Z',
=0

where K can be expanded as

K=3% XN&®§&,
i=0

for a suitable complete set of eigenfunctions {&;} orthonormal with respect to F.
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ProoF. This is a consequence of the dominated convergence theorem applied to
Definition 3.3.15 and the orthonormality (see (3.3)):

ir(K) = [ A& ()& (s)dF (s)

X i=0

- g)‘i/X@ (s)&i (s)dF (s)
_ fy

Remark 3.3.17 A generalized version of this result was given by Cuadras and For-
tiana [26]. Let G be a kernel defined by means of a suitable distance 0 and a measure
7. The trace of the positive semidefinite linear operator &, on the space of square

measurable functions L? (X, ) defined by the integral kernel G,

(&, - ¢) () = /X Gy (w2 o () dn (2), e L*(X.m),

i1s the sum of the eigenvalues of the kernel G with respect to the measure w. In this
context this sum coincides with the so-called geometric variability of m with respect to

J.

3.4 Binary relations between kernels

3.4.1 An equivalence class

Suppose that the kernels Ki, Ky € Kyxx share the countable set of orthonormal
functions {¢;} for some sets of eigenvalues {\;},{x;}. Assume that the subsets
{/\(i) }iel , {'U’(j)}jeJ are the sets of non-null eigenvalues with I C J, and N; < Ny < 00
are the respective dimensions, in the sense that I = {1,2,..., N1}, J = {1,2,..., No}

and

Ki =3 opbi) ®@&uy, Ko= Z]M(j)&j) ® (j)-
je

el
Notice that Ay = po = 0 may not be a proper eigenvalue of these kernels. Then we

say that K, Ky are equivalent and write Ky ~ Kj.
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Of course, if N1 < Ny, we can write the first expansion as
N>
K= \&®&,
i=0
where /\N1+1 = )‘N1+2 = ... = /\N2 = 0.

The equivalence class of symmetric positive definite kernels on X x X’ sharing the
eigenfunctions {&;}, i =0,..., N, with N < oo, is denoted by

[£N] = {K € Laxxx | K = ﬁo%& ®§Z}

Thus Kl ~ KQ iff Kl,KQ € [gN]

3.4.2 Partial order relation

Here we suppose that \;, u; are related to the same eigenfunction for each i, i.e., we

assume that the eigenfunctions &; are conveniently arranged.

Definition 3.4.1 Let us consider K; ~ K, such that dim (K;) = Ny < dim (K3) =
Ny. K is said to be smaller than Ky, and we denote this partial order by K1 < Ko,

if
)\i S,LLZ, izO,l,...,Nl.

Notice that A\; < p;, @ = N1+ 1, ..., Ny follows immediately from N; < Ns.

Example 3.4.2 FExtending Fxample 2.4.7 in Chapter 2, let &1,&,&5 be orthogonal
functions on the (common) range of the random variables X,Y and define the kernel

K with expansion
3
K =73 \&®§&,
i=1
where Ay > Ay > A3 > 0. Define
K =M @&, Ky=XE®86, Kz= M @&+ A383®&s.

These three kernels share the same set of eigenfunctions, &1, &s,&3. Ky is one dimen-
sional with eigenvalues {\1,0,0}. Ky is one dimensional with eigenvalues {0, 2,0} .

K3 has dimension two with eigenvalues {\1,0, A\s}. It is easy to check that
K1§K3§K7 KQSK

No other comparisons hold.
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3.4.3 Properties of equivalent kernels
Intersection and union

Proposition 3.4.3 Let K € [¢y] with eigenvalues {\;}. If S A < oo, then Kz €
i=0
[En] -

oo oo 1
PROOF. Hypothesis > A; < oo ensures that the series Y A\?§; ® &; converges (see
i=0 i=0
Definition 3.2.11). O

Proposition 3.4.4 The H—product of two double-centred kernels with the same set

of ergenfunctions is commutative.

ProOOF. The H—product is commutative if the kernels

(K1 * Ka2) ( Z AiptiCov (& (X),& (V) & (2) & (v)
and
(Ko x K1) ( Z NiCov (& (X),& (V))& (2) & (),

are equal for almost every pair (x, y). If H is a symmetric and PQD (positive quad-
rant dependent, see Chapter 4) then Cov (§; (X),&; (Y)) = Cov (& (X),& (Y)). But
condition &; (x) & (y) = &; (z) & (y) for all i, j does not hold, in general.

The set of eigenfunctions {¢;} is orthogonal with respect to the marginal distribu-
tion F. Thus Cov (& (X),& (Y)) = 04, it H = H* (see Theorem 3.2.12). In this

particular case

(K1 EKo) (m,y) = Y AipCov (& (X), & (V)& ()& (y)

1,J=0

= Z AipiCov (&(X), & (Y)) & () & (y)

= ZAZ/“’LZgZ &i )

= (K2*K1)( ) -
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PropOSItlon 3.4. 5 Let Ky, Ky € [En] with eigenvalues {\;}, {p:}, respectively, such
that Z)\ < 00, Z,uz < 00. Then

i=0
Ky NKy € [En]  with eigenvalues {)\Z%,u?} ,
and o
K1V Ky € [En]  with eigenvalues {/\Z- + p; — /\fuf} )
ProOOF. From Proposition 3.4.4
Ky AKy = KExKZ
i&%%mmp (3.17)

Then

KiVEKy = Y NGOG+ & ®& =3 A pi&®&
i=0 i=0 i=0
= > (W= i) et (3.18)
i=0
The convergence in the mean square sense of the series (3.17) and (3.18) follows from

the convergence of every set of eigenvalues. n

11 11
Remark 3.4.6 The sets {)\f uf} , {)\i + i — A uf} are non-negative. If \; > 0,
1

11 11
i >0, then AZ 2 >0 and N\ + p; — A7 7 can be expressed as:

1

11 1 1y 2 11
M+m—¥%=(¥—ﬁ)+¥ﬁ20
Thus the class of ordered kernels is closed under the intersection and the union as
established in Proposition 3.4.5.

Proposition 3.4.7 Let Ky, Ky be two kernels satisfying the hypothesis of Proposition
3.4.5, such that K1 < K. Then
Ki<SKiNKy S KV Ky S Ks.

Proor. K; < K, is equivalent to \; < p;, Vi. Proposition 3.4.5 shows that
11 11
{/\i2 1w} } ; {)\i + i — A uf} are the sets of eigenvalues of K; A Ky, K1 V Ky, respec-
tively. The relations are a consequence of

11 11
ANi KA < Nt = AR <
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Dimension

Proposition 3.4.5 provides the expression of the eigenvalues of K1 A Ky and K7 V K,

whenever K| ~ K.

Proposition 3.4.8 Let K; ~ K, be two kernels with dimensions dim (K;) =
Ny, dim (K3) = Ny. The dimensions of K1 A Ky and K1V Ky satisfy

dim (K1 N Kg) = min {Nl,NQ} S dim (K1 V Kg) = maX{Nl,Ng} .

11
PRrOOF. dim (K; A K5) is the number of positive products A\?p?. This product is
0 if A; or p; is zero. For dim (K3 V K3), we have 0 if both A;, u; are 0. 0

Some examples illustrate these results. We start with the simple case, K1 = Ky =

N
A& ® &. The product
i=0

N
Ki*x Ky = Z)‘?fz®§z
i=0

has the same dimension as K; and K.

N>
Suppose now Ny < N, Ky = > \& ®&;. Then
i=0

N>
Ky *x Ky = Z)‘?fz®€z
i=0

and the dimension of the product is Ny = dim (K5). Observe that this result holds for
every N < oo and Ny > 0.

No
If Ko => & @& the dimension does not change as the product is
i=0
No
Kix Ky =% \p& ®&.
i=0
Trace

Proposition 3.3.16 applied to the sets of eigenvalues of the intersection and union of
equivalent matrices provide immediate proofs for the following results concerning two

equivalent kernels K ~ Ks.
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Proposition 3.4.9 Let {\;},{u;} be the set of eigenvalues. The traces are:

tr (KinNEs) = 3 APu?,
=0

tT(Kl\/Kg) = tT(Kl)—f-tT(KQ)—tT'(Kl/\KQ)

Proposition 3.4.10 If K1 < Ko, then
tr (Kl) S tr (Kl N KQ) S tr (Kl V KQ) S tr (KQ) .

PRroOF. Use Proposition 3.4.7. n

3.5 Concluding remarks

We have obtained some definitions and results as a theoretical framework for a con-
tinuous extension of the so-called Related Metric Scaling and related topics. The

following table summarizes the main definitions and properties.

Operations with symmetric kernels
H—product x with H the cdf of (X,Y)

Definition: (K4 * Ky)p (+,-) = Cov (K (+, X), K3 (Y, )
Properties: 1. (K % Ky)y (2,y) = (Ko *x K1) 0 (y, )
2K = S NG @&, K5 = A6 @&, satisfies K3 x K3 = K
Intersection A and union V
Definitions: ) A Ky = L (Kf W K7+ K2+ K? )
KiVEKy=K + Ky — K| NKy
Properties: 1. Commutativity: Ky A Ko = Ko A Ky, K1V Ko = Ky V K,
2. Orthogonality: if X, Y are stochastically independent,
KiNnKy =Ky, K VEKy=K|+K,
3. Equality: if H = H" then K, ANK, =K,V K, =K,
4. Null element: K1 AN Ky =Ky, K1V K,=K;
5 K =Y N&E@&, tr(K)=>_\
Partial order <
Definition:  K; S Ky if K1 =) N&®&, Ko=) 16 ® & and Ay < p; Vi
Properties: 1. If K S Ky, tr(Ky) < tr (K3)
2. It K1 S Ko, tr (Ky) <tr(Kj A Ks) <tr(KoANKp) <tr(Ks)
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Chapter 4

Covariance and affinity between

functions

Cuadras (2002) generalized Hoeffding’s lemma (1940), which gives the covariance in
terms of the cumulative distribution functions, to the covariance between functions
of bounded variation. Further consequences are obtained, especially some relevant

relations between this generalized covariance and the Fréchet bounds.

4.1 Covariance and distributions

Hoeffding’s lemma [52] gives an expression for the covariance using the joint and

marginal cdf’s.

Theorem 4.1.1 (Hoeffding, 1940) Let X,Y be two square integrable random vari-
ables, with supports [a,b], [c,d] C R, bivariate cdf H and univariate marginals F and

G, respectively. The covariance between X and Y in terms of their cdf’s is given by

Cov (X,Y) = / / (H(z,y) — F(z)G(y)) dzdy.

The relevance of this formula for the covariance has been proved by several authors
in studying the covariance kernel H(z,y) — F(z)G(y) and obtaining, in an easier
way, some measures of dependence between r.v.’s: Spearman’s correlation coefficient,

Pearson’s correlation coefficient, Kendall’s tau, etc. (see Section 4.4 below). Some

69
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authors have generalized this result to the covariance between functions of r.v.’s. Thus
Mardia and Thompson [80] proved that

Cov (X", Y?) :/ / (H(z,y) — F(2)G(y)) ra" tsy* *dady,

and Cuadras [18] gave a generalized Hoeffding’s lemma to the wider class of functions

of bounded variation.

Let X, Y be two r.v.’s which satisfy the hypotheses of Theorem 4.1.1. The following
theorem is an extension. Hypotheses in the following theorem are assumed to be
satisfied by all the variables and functions that appear along this chapter. See [1§]
for another proof. Here we present a completely different integral proof. BV ([a,b])

stands for the set of functions of bounded variation on [a, b].

Theorem 4.1.2 If a(z) and B(y) are two functions defined on [a,b], [c,d], respec-
tively, such that:

1. Both functions are of bounded variation, « € BV ([a,b]), B € BV ([¢,d]),

2. E(|a(X)B(Y)]), E (la(X)]), E(IB(Y)]) < o0,

then
Cov (o / / F(#)G(y) do(@)df(y).  (41)

Proor. By Fubini’s theorem,

/] dH(m)da(x)dﬂ(y) - [ Pwae [ cwas)

Let us denote these three integrals as Iy, Ir, g, respectively. The covariance
E(a(X)B(Y)) — E(a(X))E(B(Y)) is

Q= [ @ity - [ awire) [ swaco)

where S = [a, b] X [c, d]. Integration by parts gives

A= / a(z)dF(x) = a(b) —/ F(z)da(x) = a(b) — IF,

_ / B(y)AG(y) = B(d) - / Gly)dBly) = B(d) — I
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By Fubini’s theorem for transition probabilities

-/ b (/ d¢<x,y>dcz<y>) aF (),

where G, (y) is the cdf of Y given X = x, and we can write

¢ = [ ettty - / (/B 4G ( ) (@).

We first integrate with respect to y. Setting u = f(y), dv = dG,(y) (and v =
fcy dG,(t)), integration by parts gives

[ s = s [ - [ [ i)
= s~ [ [ acwany

Since dG,(t)dF(x) = dH(z,t), we have that

c = ﬁ(d)/aba(w)dF(w)—/cd(/aba( ) [ et ())dﬁ()
= o)1~ [ ([ 0w [(ar @) as)

Now we integrate with respect to x. Setting u = «(z), dv = fcy dH (z,t) (so that
v=[7 [YdH(s,t) = H (z,y)), we find

/aba(x) /Cy dH (z,t) = a(z)H (z,y)]" - /abH (z,y) da(z)
= a(b)G(y) - /abH (x,y) da(z)

Finally, we integrate with respect to y:

nzd(lba@ﬂldetuw)dﬁw)== Zﬁ(a@ﬂ?uﬁ—:LbH(Lyykm@)dﬁ@)

= Oé(b)[G — [H
Hence,
C = p(d)a(b) — B(d)Ir — a(b)lc + Iu.
Therefore the covariance Q = C — A- B is
Q = B(d)a(b) — B(d)Ir — a(b)lc + I — ((b) — 1) (B(d) — Ic),

and a final simplification shows that QQ = Iy — Ir - 1. n
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4.2 Properties of the covariance between functions

In this section, we introduce an inner product and study some properties of the
covariance between functions obtained from (4.1), most of them studied and proved
in [18]. Let us write H — FF ® F for H(z,y) — F(z)F(y). These properties are derived
from the fact that the continuous, symmetric, positive kernel H — F'® F' is Riemann-

Stieltjes integrable with respect to o and f, i.e.,
b
[ @y - F@F W) d3) € RS(a),

/ (H(2.y) — F () F(y)) da(z) € RS(P)

or, simply, H — F ® F € RS (a x 3) (see, for instance, [7], [8]).

4.2.1 Defining an inner product

The above covariance between functions motivates the following ”inner product” be-

tween two functions «, 5. This operation depends on H.

Definition 4.2.1 On the set of functions of bounded variation we define the inner

product of two functions by

(o, B)p = Cov (a(X), B(Y)). (4.2)

Note that this covariance is defined on (X, Y’) with bivariate cdf H fixed. However
the obvious equality Cov (a(X), 8(Y)) = Cov (B(Y), a(X)) does not imply («, §) ;; =
(B, ) since (B, a),; = Cov (B(X),a(Y)). Cuadras ([18]) proved some properties of
(o, B) g , regarded as an inner product, when H satisfies:

e H is symmetric, i.e., H (x,y) = H (y, x) for every (z,y) € R? and hence, F' = G,

e H is positive quadrant dependent (PQD), i.e., H (z,y) > F (z) F (y).

See [77], [56] for this and other related concepts of dependence.

The next theorem justifies that (-, -) ; can be considered as an inner product on the

vector space of the real functions of bounded variation on an interval [a, b] , BV ([a, b)),
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if H is symmetric and PQD. Observe that the Riemann-Stieltjes integral of a function
of BV ([a,b]), with respect to a given function o € BV ([a, b)),

(a,): BV ([a,b]) = R
B—> <a>ﬁ>H

defines a linear form on the set of functions of bounded variation on a suitable interval.

Analogously (-, a).

Theorem 4.2.2 Suppose that H(x,y) is symmetric in z,y and PQD. Let o, €
BV ([a,b]), [a,b] CR. Then (-,-)y = (-,-) satisfies:

1. For every a € BV ([a,b]), (-,a) and («,-) are linear:

(rai + sag, 181 + qBe) = rl{an, Bi) + rqfan, B2) + sl{az, i) + sq{as, Ba) ,
where 1, s,1,q € R. If 0 is the zero constant function, then (a,0) = (0,a) = 0.
2. {a, B) = (B,a) (symmetry).
3. {a, ) > 0 (non negativity).

PROOF. Symmetry and non negativity were proved in [18]. The first statement
in 1 is an obvious property derived from properties of Riemann-Stieltjes integral (see,
for instance, [58]). To prove the second statement, it also suffices to apply linearity

of Riemann-Stieltjes integral (see, for instance, [7]). O

Remark 4.2.3 When a symmetric bivariate cdf H satisfies property 3, i.e.,
Cov(a(X),a(Y)) >0

for every real-valued function «, then (X,Y") or H is positive function dependent, [56].

These properties provide the following corollary.

Corollary 4.2.4 The vector space BV ([a,b]) is a pre-Hilbert space with the inner
product (-, ) .
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Remark 4.2.5 [t is worth noting that positivity of the inner product does not hold.
Thus (o, o) iy = 0, with a # 0 is possible. This property is analogous to that presented
by the covariance between r.v.’s. Some authors use the term quasi-inner product in
such a case. For example, if U and V are [0, 1] uniform with bivariate cdf belonging to
the Farlie-Gumbel-Morgersten (FGM) family of distributions, then the copula C(u,v)
18

C(u,v) =uv(1+0(1 —u)(l —v)), 6e€]-1,1]. (4.3)
Take as o and 3 the second shifted Legendre polynomial o(z) = v/5(62% — 6z + 1),
B = a. Clearly C (u,v) — uv is bounded on [0,1]. Let ' be the first derivative of .

Since a, o € C', (C' (u,v) — uv)a’ (u) is Riemann integrable on [0,1] so that

// C(u, v) — uv)da(u)da(v // (u,0) — wo)d (u) du o (v) dv

(see Example 3.2. in [1]). Then o # 0, but the covariance between a(U) and a(V)

with respect to C' is
11
(a,0), = / / (C(u,v) —uwv)da(u)da(v)
o Jo

= 50 /1 /1 uv(l —u)(1 —v)(12u — 6)(12v — 6)dudv
= 0.

We have established that (-,-), is a quasi-inner product of the vector space
BV ([a,b]), [a,b] C R, or, equivalently, BV ([a,b]) is a pre-Hilbert space with the

product (-, ), . Its norm is given by

el = (e, a)y -

Orthogonality of «, § is naturally defined by («, ), = 0. Example in Remark 4.2.5
provides a verification of orthogonality of a(z) = v/5 (622 — 6z + 1) with respect to
itself relative to the symmetric, PQD, bivariate copula with the FGM distribution.

Proposition 4.2.6 Leta, 5 € BV ([a,b]) and H = FQF be the independent bivariate
cdf. Then

<a7 6>F®F = O?
i.e., all functions belonging to BV ([a,b]) are orthogonal relative to F @ F.

PROOF. Note that H — F® I' =0 for H = F® F. Then («, () gy, is the (double)
Riemann-Stieltjes integral of 0. 0
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Proposition 4.2.7 Let o € BV ([a,b]) and k a real constant. Then for any cdf H
with support in [a,b] X |a,b],

(o, K) = (K, a) ;= 0.

Proor. This follows from dk = 0. O

Proposition 4.2.8 (a, 3), satisfies

<Oé,ﬁ>§{ <A{a,a)y (B, B)y (4.4)

with equality if and only if
(a+t6,0+18); =0 (45)

for some constant t.

PRrROOF. Expanding (o +t3, o + t3);; we obtain the inequality

<O[704>H+t2 <ﬁaﬁ>H +2t <a76>H 2 07

which holds only if the discriminant satisfies

4{a, By — 4 {a, @)y (B, B)y <0,

with (o +t5,a+t8),; = 0 iff this discriminant is 0. Moreover, ¢ = —gggiz is the

constant satisfying (4.5), assuming (33, 3), > 0. O

Notice that (4.4) is the Cauchy-Schwartz inequality, an expected property since
BV ([a, b]) is a pre-Hilbert space with (-, ), .

Example 4.2.9 Let C' denote the FGM copula (4.3) and let o, 3 € BV ([0,1]) such
that
L3
au)=u, p)= 3V

Straightforward computations show that

0 0 0

%7 <ﬁaﬁ>czﬁa <Oéaﬁ>C: m

Thus inequality (4.4) holds but with equality, i.e.,

<O‘7a>c =

<a?ﬁ>?{ - <a7a>H <57ﬁ>H’

in spite of o # (3. The value t satisfying (4.5) is t = —%.
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4.2.2 Two equivalence classes

Some properties of the covariance between the functions o and ( can be obtained
more easily by centring the variables a(X), 3(Y). In general, the covariance between
r.v.’s is not influenced by changes in the location parameter but is not invariant under
changes of scale. Here we study the action of some usual transformations on the space
of functions of bounded variation defined on the range of a r.v., with special attention

to their influence on the covariance between these functions.

Definition 4.2.10 Let o € BV ([a,b]). We say that v € BV ([a,b]) is equivalent to
a and write vy ~ « if there exists a real number g such that v (x) = a(x) + g (for

almost every x € [a,b]). The equivalence class containing « is noted by [a].

Remark 4.2.11 Observe that for v ~ a:

Consequently, for any 3 € BV ([a,b]),
0By = [ [-Fec)das

- //(H—F@G)dadﬁ
(o, B) -

This is a well-known result (see [8]).

Example 4.2.12 Let a € BV ([a,b]), 8 € BV ([¢,d]), and consider the centred vari-
ables ap(X) = a(X) — E(a(X)), 5o(Y) = 8(Y) — E(B(Y)). Thus ag € [a], By € [5]
and E(ag(X)) = E(Bo(Y)) =0. Then

(a0, Bo) i = Ex.y)y(ao(X)Bo(Y)).

Corollary 4.2.13 The covariance between o(X), B(Y'), where a, 5 are functions of
bounded variation defined on the ranges of the r.v.’s X andY , respectively, is invariant

under changes of position.

ProoOF. This result follows from Remark 4.2.11. It can also be derived from
Property 1 of Theorem 4.2.2 and Proposition 4.2.7. 0
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Some immediate consequences are presented. Corollary 4.2.13 states that the
covariance between elements of two equivalence classes [a] and [(3] is the same, and any
result must be considered valid for almost every element. Moreover, the computation

can be made simpler by centring the r.v.’s, i.e., by considering «q and [,.

Corollary 4.2.14 The covariance between two functions of bounded variation -y, €
BV ([a,b]), defined on the range of the r.v.’s X, Y with symmetric, PQD bivariate cdf
H, is

Cov(’y(X),é(Y)):/ / ao(z)Bo(y)dH (z,y)

for almost every v € [a], 6 € [5], where ag € [a], and [y € [B] satisfy E(ao(X)) =
E(G(Y)) = 0.

Proor. Take 7(X) = ao(X), 6(Y) = 5y(Y) and apply Corollary 4.2.13. m

A wider equivalence class including both translation and change of scale is next

defined.

Definition 4.2.15 Let o be a function of bounded variation. We say that & is
equivalent to a (€ ~ a) if there exist real numbers h,g, h # 0, such that £ (z) =

ha(x) +g a.e. This equivalence class of o is noted by [a]”.

Remark 4.2.16 Observe that for any two members of a class [a]*, € ~ a:
dé(z) = d(ha(z) + g) = hda(x)

where h, g are suitable constants. Consequently, for any 5 € BV ([a, b)),
€0 = [ [~ Focds

= //(H—F@G)hdadﬁ
h<aaﬁ>H'

4.2.3 An affinity measure between functions

Mardia and Thompson [80] used Theorem 4.1.1 to extend the concept of covariance,

even when the ordinary covariance does not exist, e.g., when the variances are zero.
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Cuadras [18] extended the correlation coefficient between functions in the same way

Cov(a(X),B(Y))
(Var(a(X))Var (5(Y)))

Cor (a (X),B(Y)) = (4.6)

N

where

Var(a(X) = / / (min {F (z), F ()} - F (2) F (4)) da () das (3).

This correlation can exist even when the variance is 0. Also note that (4.6) is Pearson’s

correlation coefficient when o and 3 are the identity function.

From inequality (4.4) in Proposition 4.2.8 we can define another coefficient
Ag (o, B3), such that A% (o, ) ranges between 0 and 1. This may provide a mea-

sure of affinity between the functions o and 3 with respect to H.

Definition 4.2.17 Let H(z,y) be a bivariate cdf, symmetric in x,y, and PQD. Let
a,p € BV ([a,b]). Then Ay (a, 3), defined by

AH (Oé,ﬁ) = <a7ﬁ>H 1

(e )y (8. B)g)?
1s the H—affinity between the functions o and 3 or affinity with respect to H.

Notice that the correlation coefficient (4.6) does not coincide, in general, with

Ay (o, B) since
Covla (X),a(Y)) # Var(a(X))
it H#HT.

Every measure of dependence should satisfy certain conditions, and these condi-
tions have been proposed and studied by various authors. There is an early work
by Rényi in 1959 [93], whose conclusions have been reviewed by Lancaster [72], [75],
Schweizer and Wolf [98] and Hutchinson and Lai [54], among others (see Section 1.1

in Chapter 1). However Ay measures the concordance between functions rather than

r.v.’s. The following result summarizes the main properties of Ap.
Proposition 4.2.18 The H-affinity measure Ay satisfies:

1. 0< A4 < 1.

2. If the rv. X and Y are stochastically independent, then A% = 0.
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3. If a, B are orthogonal with respect to (-, ), , then A3 = 0.

4. Let X,Y be two non independent random variables. If o« = hf3 + g, for some
constants h,g € R, h # 0, and o, B are not orthogonal with respect to (-,-) ,

then A% = 1; otherwise, A% = 0.

5. The H—affinity between functions of r.v.’s is invariant under the group of linear

transformations.

PRrROOF. Statement 1 follows from inequality (4.4) and Definition 4.2.17. State-
ments 2 and 3 follow from the analogous properties for the covariance: if X and
Y are stochastically independent, then H = F' ® F', as mentioned above, and obvi-
ously H — F® F = 0. Then (a,)p,r = 0, ie., a, are always orthogonal with
respect to the independence distribution F' ® F. The proof of 4 is as follows. If
a(z) = hf (z) + g, as a consequence of Remark 4.2.16 we have (o, 8); = h (5, 0)
and (a, @), = h? (3, 3),, . Then

Ao, B) =

The proof of 5 is easily derived from the analogous properties of the covariance.
Invariance under linear transformations means that if v (z) = ha(z) + g a.e. and,

analogously, ¢ (y) =16 (y) +d a.e., then

AH (’y,é) = AH (Oé,ﬁ) .

Recall that covariance is not invariant under changes of scale but is invariant under

translations:
<’776>H = hl <a76>H7
<777>H = h2 <O[704>H7
<57 6>H - l2 <ﬁ7 >H

Thus, substituting these equalities in Definition 4.2.17, the invariance under linear

transformations is proved. n

This result justifies the choice of normalized functions to compute Ay, in order to

obtain simpler expressions.
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Remark 4.2.19 Observe that o and 3 in Fxample 4.2.9 are not related by a linear

transformation while Ac (o, B) = 1. This result is generalized below.

Corollary 4.2.20 Ay (a,a)=1if H# FQF, and Ay (a,a) =0, if H=F® F.
Proor. This is a particular case of Proposition 4.2.18, with h =1, ¢ = 0. 0

4.3 Fréchet classes and bounds

Covariance and the H —affinity Ay are functions defined on the (product) vector space
of functions of bounded variation, for a fixed, symmetric, PQD, bivariate cdf H. It
is well known that if H € F (F, F), the class of bivariate cdf’s with marginals F) the

lower and upper bounds of this Fréchet class satisfy

H™ (z,y) < H(z,y) < H (z,y).

Note that H~ is not PQD, as H (x,y) < F(z)F(y), so (4.4) does not apply,
in general. Thus we can define Ay+ but not Ay-. In the following, we summarize
and obtain further results on the covariance and the affinity Ay for some particular
elements of a given Fréchet class (the upper bound and the independence bivariate

cdf) when « and 3 are fixed. Finally, we obtain bounds for the covariance and Ay.

4.3.1 Covariance and bounds

This proposition is in fact a corollary of the main theorem 4.1.2.

Proposition 4.3.1 The covariance between two functions o € BV ([a,b]), 5 €
BV ([e,d]) when the bivariate cdf H attains the Fréchet upper bound H™ is given

by
(a, B) s =/ / min {F (z),G (y)} — F () G (y)ldo (x) db (y) -

Proposition 4.3.2 Let X,Y be two r.v.’s with range [a,b], symmetric cdf H and
common marginal cdf F. Let « € BV ([a,b]) and 5 € BV ([¢,d]). Consider oy =
a—E(a(X)) and By =3 — E(B(Y)). Then

(0, Bars = / 0to(5) Bo(s)AF (s).
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ProoOF. From Corollary 4.2.14 and Proposition 4.3.1,

(@B = [ [ Imin{P(@), Pl)} - F@)F(y)}dao(e)din(v)

Also note that if H = H', then F (X) = G (Y) (a.s.). Since F' = G are continuous
cdf’s, Y = F71(F (X)) = X (a.s.). Hence, taking the diagonal of the distribution

H" (s,8) = min{F(s), F(s)} = F (s),

the result is directly obtained from Corollary 4.2.14. 0

Cuadras and Lahlou ([30]) stated the following general result:

Theorem 4.3.3 Let X be a r.v. with range [a,b] and cdf F. Suppose that o, 3 are
functions of bounded variation defined on [a,b] such that o(a)F(a) = [(a)F(a) = 0.
Then

Cov(a(X), B(X)) = / / min{F(z), F(y)} — F(2)F(y)]do(z)dA(y).

Proor. This is a direct consequence of Theorem 4.1.2. O

Corollary 4.3.4 Suppose that o € BV ([a,b]) satisfies a(a)F(a) = 0. Then
Var (a (X)) =Var (a(Y)) = (o, a) g+

for any r.v. Y, such that X =Y (a.s.).

Proposition 4.3.5 The following bounds for (o, «),, when H is symmetric, PQD,
hold:

0= <a7 a>F®F < <O‘7 a>H < <Oz, a>H+ :

PRrOOF. We have already proved that (-,-) . = 0 (see Proposition 4.2.18) and
that (o, a) ,; > 0 for every symmetric PQD cdf H and any « (see 3 in Theorem 4.2.2).
The second inequality is straightforward if « is increasing, as H < H* and H is PQD.
Thus 0 < H-FQF<H"—FQF.

For any «, let us consider the positive, continuous and bounded function K

K=Ht'-FQF—(H-F®F)>0
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It follows that K € RS (a x «) and let us use an obvious notation to define

aaK_//nyda )da(y) > 0.

The proof that (o, a), > 0 is similar to the proof of (o, ), > 0, see [18]. Now it

suffices to apply linearity of Riemann-Stieltjes integration to have
0< <ava>K = <ava>H+ - <ava>H>

s0 (@, )y < (v, @) - O

Example 4.3.6 Suppose U,V are uniform on [0, 1], with bivariate cdf belonging to
the FGM family of distributions. Let C(u,v) be their copula (4.3), and take the sec-
ond shifted Legendre polynomial a(z) = /5(62% — 6z + 1) as in the evample given
in Remark 4.2.5. We have obtained (o, ), = 0. Some computations show that
(a,) v = 19 and the inequalities given by Proposition 4.3.5 hold. Note that the
Fréchet bound C*(u,v) = min {u, v} is not a member of the FGM family.

Corollary 4.3.7 Let H be the symmetric, PQD cdf of (X,Y") with common marginal
F and o € BV ([a,b]), where [a,b] is the support of X, Y. If (o, a) 1+ = 0 then

1. {a,a)y; =A% (a,a) =0, VHeF (FF),

2. a€[0], i.e., o is a constant (a.s.).
ProOOF. 1 is directly derived from Proposition 4.3.5. To prove 2 recall that

(a, a) gy = Var (a (X)) . If the variance is zero the r.v. is a constant a.s. 0

Note that (a, §), may be negative though H is PQD. Hence, it is not possible to

obtain similar results for (a, 5) 5.

Example 4.3.8 Let o, 8 and C as in Exvample 4.2.9. Then («, 3), = 120, 0el-1,1]
and C is PQD if § > 0. As (—«, 8)o = — («, B) we see that the affinity Ac (—c«, )
s negative for 0 < 6 < 1.

This example is not contradictory with the following characterization of the PQD

bivariate distributions:

Theorem 4.3.9 (Lehmann, [77]) Let H be the joint cdf of a random vector (X,Y).
H is PQD iff for every pair of increasing functions f, g

Cov (f(X),9(Y)) =0.
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4.3.2 H-affinity and bounds

The affinity measure between two functions of bounded variation «, 3 € BV ([a,b])
relative to H defined in Definition 4.2.17 is bounded in absolute value by 0 and 1, as
has already been proved. The following result states that A% is an upper bound of
the correlation coefficient between functions (see (4.6)).

Proposition 4.3.10 Let Cor (a(X),5(Y)) be the correlation coefficient between
two functions o (X),B8(Y), and let A%(a,3) be the H—affinity measure. Then
Ag+(a, B) = Cor (a (X), B(Y)) and

A?Ff (avﬁ) < A12'-I (av ﬁ) :
PROOF. (o, )y = Cov(a(X),5(Y)). Proposition 4.3.5 shows that
0= <av CY>F®F < <av a>H < <av a>H+ )
and Corollary 4.3.4 stated that Var (a (X)) = («, o) 5+ . Hence,

(@B (B
<O‘7a>H+ <ﬁaﬁ>H+ B <O‘7a>H <Ba6>H

1
Example 4.3.11 Let C be the FGM copula and o (u) = u, B (v) = §v3 as in Example

4.2.9. We find )
(a,B)c = 1207 Ac (o, 8) =1 x sign (0) .

If C* (u,v) = min{u,v} is the Fréchet upper bound for any copula, then

1

1
<Oé,O[>C+ = Ea <ﬁ75>c+ = 57

and the correlation coefficient (4.6) is

(0 (X).B(r) = L2hp

Since § € [—1,1],

uniformly in 6.
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4.4 Concordance measures and H-affinity

Spearman’s pg and Kendall’s 7 (see Section 1.1 in Chapter 1) are examples of con-

cordance measures between two r.v.’s. These measures are based on the integrals

//H1 (z,y)dHa(x,y),

where Hp, Hy are cdf’s, and can be defined by using the respective copulas C, Cs.

The concordance measure between C4, Cy is

Q(Cl, CQ) = 4/ CQ(U,U)dCl(U,U) — 1.
]2
Spearman’s pg (1.2) is based on H and F'G and is also defined as
__ Co(F(X),G(Y))
P8 Var (F(XO))/Var (G (Y

Thus
ps =12Cov (F(X),G(Y))
=12 [ J(H wyy — F(z)G(y))dF (z)dG(y)
=12 [,(C(u,v) — wv)dudv
=3Q(C, H),
where II(u,v) = wv is the independence copula. This coefficient ranges between —1
and 1.

Kendall’s 7 (1.3) is also defined by

r =4[ [(H — F(2)G(y))dH (2, )
_4f12 udeuv)—l
=Q(C,0),

where C'is the copula for H. Note that Kendall’s 7 cannot be expressed as a covariance

between functions, as dH (x,y) is not da(z)df(y) in general.

The H—affinity between F' and G, is
Cov (F(X),G(Y))
V/Cov (F (X),F(Y))y/Cov (G (X),G(Y))
Assuming F' = G we find the obvious result
Ag(F(X),F(Y)) =1 itH#FQ®F,
Ag(F(X),F(Y)) =0 itH=FQF.

Au(F(X),G(Y)) =

However for some cdf’s H, the value 1 is also reached for other functions.



Chapter 5

Affinities for some parametric

families

The affinity or H —affinity measure Ay («, 3) between two functions of bounded vari-
ation «, 5 € BV ([a,b]) relative to the symmetric, PQD bivariate cdf H, has been
defined in Chapter 4 by

A?'{ (a, ) =
the inner product («a, ), being

(@, 8)y = Cov(a(X),B(Y))
= [P [P (H(z,y) — F(2)G(y)) da(z)d5(y),

where, as H is symmetric, F' = G. We have proved that:

a) The correlation coefficient p (o (X), 5 (Y)) satisfies

b) If A% (o, 8) = 1 then (a +t8,a + t3); = 0 for some real ¢.

In this chapter we relate the affinity to the correlation coefficient and some con-
cordance measures, and study orthogonality and dimensionality for some families of
distributions (see Section 1.2 in Chapter 1 for further details on these parametric
families). These results are part of ongoing research, and are an application of the
H —affinity measure defined in Chapter 4. See [21] for some complete proofs.

85
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5.1 Bivariate dimensionality
Let us define the dimension of H in terms of the above inner product and affinity.

Definition 5.1.1 Let &y = (p,,1 € S) be a set of real functions of L*([a,b], F') where
F' is the probability measure induced by the marginal cdf F'. The dimension of H is
the cardinal #(®p), if these functions satisfy:

L. A%{(‘Pu‘ﬁ]) = 07 7 7é Js and A%{(%a%) = ]-7 Py Py S @H

2. A% (o, B) = 0 if o, B € Dy where the orthogonality is with respect to (-, -) .

If the dimension is finite or countable, then

#H( @) < #(Pa+),
as (o, a)y < (o, a) .y if H is the upper Fréchet bound (see Chapter 4, Proposition

4.3.5). Thus we may have (o, ), = 0 but (o, )+ # 0 for some a # 0.

Examples of dimensions are:

1. Dimension 0 in the case of stochastic independence.
2. Finite dimension n > 0 if H is the generalized FGM family.

3. Countable dimension s if H is the upper Fréchet bound, the regression family
or the Ali-Mikhail-Haq family.

4. Continuous dimension 3¢ if H is the Cuadras-Augé family.

When H(z,y) = F(z)G(y) there is no function ¢ # 0 such that (p, p), > 0 and
the dimension is 0. The cases of finite, countable and continuous dimension are given

below.

Complete orthonormal sets of functions which appear in some expansions for bi-
variate distributions might satisfy conditions of Definition 5.1.1. For instance, suppose

that H is a general bivariate cdf with marginals F, G (possibly F' # G), the measure
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dH (x,y) is absolutely continuous with respect to dF(z)dG(y) and that Pearson’s
contingency coefficient ¢? defined by

b pd
o +1= [ [ @) /aF @)
is finite. Then the following expansion holds

dH (x,y) — dF (2)dG(y) = > puan()bn(y)dF (2)dG(y), (5.1)

n>1
where p, are canonical correlations, ordered in descending order, and a,(z), b, (y) are
the canonical functions (see [74]). Thus p; = Cor(ai(X),b:1(Y)) is the maximum
correlation between a function of X and a function of Y, py = Cor(as(X),b2(Y)) is

also a maximal correlation given that the functions are uncorrelated with a;(X) and

b1(Y), ete.

Cuadras (see [17]) expresses (5.1) in terms of cdf’s

b d
Hiz.p) = F@GW = Y p. [ Leslda(s) [ Mend,o, (52
n>1 @ ¢

where L(z,s) = min{F(z), F'(s)} — F(s)F(t), M(t,y) = min{G(t),G(y)} — G(t)G(y).
In general, there is no relation between the eigenexpansion of the covariance kernel
K = H — F ® G and the above expansion. An exception is given in Subsection 5.3.1.
The set of eigenfunctions of the covariance kernel might also satisfy conditions of
Definition 5.1.1.

Proposition 5.1.2 If the above diagonal expansion exists, the dimension of H is

determined by the number of canonical variables with positive canonical correlations.

PROOF. The set of canonical functions {a, },en is a complete orthogonal system
of functions over the interval [a, b] (the range of X). An orthogonal set on L? ([a, b])
is complete iff for all «, 8 € L? ([a, b]) we have

<a7ﬁ> = Z <a7an> <ﬁ7an>

n=1

(see, for instance, Proposition 1 in [99]). Furthermore, there exist real coefficients
{an}a {ﬁn}a say, such that

%) )
o = Zanana ﬁ - Zﬁnana
n=1 n=1
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i.e., {an}nen is a basis of L?([a,b]). Suppose p; > ... > pnx > pys1 = 0. Then
Cov(a;(X),a;(Y)) >0if i <N, Cov(a;(X),a;(Y)) =0if i # jand if i = j > N + 1,

<O‘7ﬁ> = Z<ZC“nan7ai> <Zﬁmamaai>

i=1

- Z < Z B (an, a;) <am’ai>>

=1 n,m=1

xD
= Z a; 3; (au ai>2
i=1

N
= Zazﬂi (ai, a;)? (5.3)
i1

where N is finite. Define ®y = {a1, - ,an}. If a, 3 € &%, for each i = 1,..., N, we

have

(a,a;) = <Z Qi ai>

o0
= > an (an, @)
n=1

= o4 <a/iaa’i> = 07

and analogously for . Substituting this result in (5.3), we obtain (a,3) = 0 if
@, 3 € ®y. Obviously, the H—affinity A% (a;,a;) = &;j, if a;,a; € Py. 0

In general, when a distribution H can be expanded by means of a complete or-
thogonal system of functions, the number of these funtions with positive covariance

will give the dimension of H.

5.2 Finite dimension: Generalized FGM family

The Farlie-Gumbel-Morgenstern (FGM) family (see Section 1.2 in Chapter 1) is de-
fined by

Hy(z,y) = F(x)G(y)(1+0(1 — F(2))(1 - G(y)), -1<0<L
The corresponding copula is

Co(u,v) =uwv(1+6(1 —u))(l—v)), —-1<6<1.
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Thus, for this copula
Cov(a(U), B(V)) = 011
Cov(a(U),a(V)) = 01,1,
Cov(B(U),B(V)) = 0131

where ) )
I, = /0 u(l —u)da(u), Iz= /0 v(l —v)dfB(v).
The correlation coefficient is
Cor(a(X),B(Y)) =01,13/0(a)o(F) < 1/3. (5.4)
However we obtain the surprising result for any 6 # 0
Ac(a, B) = Ac(a,a) = Ac(B,5) =0, if o or ' is orthogonal to u(1 — u),
a

Ac(a, B) = (Ialp/1als) x sign (0) = £1, otherwise.

Noting that for the FGM copula the covariance kernel K (u,v) = Cy(u,v) — uv is
K(u,v) = 0u(l — u)v(l —v),
the above result can be generalized to any one-dimensional kernel.

Proposition 5.2.1 Suppose that a copula C is such that K(u,v) = C(u,v) — uv
satisfies

K(u,v) = 0p(u)p(v), with ¢(0) = (1) =0.
Then for any 0 # 0:

1 If [} p(u)da(u) = 0 then Ap(a, ) = Ap(a,a) = 0.
2. If both [ p(u)da(u) # 0 and [, @(u)dB(u) # 0 then
Ap(a,f) ==%1, and (a +t6,a+1t5), =0,
for some real t.

PRrROOF. The affinity coefficient depends on the integrals 1, = fol p(u)da(u), I =
fol o(u)df(u) and gives 1 if both integrals are # 0. On the other hand

2

(v, =10 (/01 w(u)dv(u)) —0
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if v satisfies fo w)dy(u) = 0, e.g., if 7/ exists and is orthogonal to ¢. Then we see
that (o +t6,a + th =0 for
1
i edat
=0 7
Jo p(w)dB(u)

Next let us consider the Generalized FGM family proposed by Cuadras et al. (see
[29])

H(z,y) - Zka Li(G(y)),

where L;(z) = 3Y/2(22x — 1), Lg( ) = 51/2(6x — 6x 4 1), ... are the shifted Legendre
polynomials on [0,1] and Lj(u) = [;" Lg(t)dt is given by

Li(u) = %{LkH(u)/(zk £3)2 - L))k - DY)k + DY (55)

Then L}, L} are orthogonal with respect to the measure of probability induced by the
cdf Fo X, if | i — j |# 2; so the expansion above is an eigendecomposition if we take,

for instance, 71 > y9 > v3 =...=0.
Proposition 5.2.2 Consider the Generalized FGM copula defined by
O, (u,0) —wv = 3" W Li(w)Li(v)

Suppose that the first derivatives of o, B exist. Then a sufficient condition for
Ac, (o, B) = 1 is the orthogonality of o', 3" to the space generated by L7, ..., L;.

n

PRrROOF. Condition A¢, (a, 3) = 1 is equivalent to (o + 3, o + tﬁ)c7 = 0 for some
t. But

tipatiie = [ ”22%Lk v) d (a(u) + 1B(w)) d (a(v) + 15(0)).

= Z’Ykpkza
k=1

where

P / Li(w)da(u)+t | Li(u)ds(u).

which cancels if fo Li(u)da(u) = f “(w)dB(u) = 0
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Note that the functions of the set {L7,..., L} satisfy conditions of Definition
5.1.1. Thus the dimension of this FGM generalized family is n. In a sense, this

parametric copula is similar to the Ali-Mikhail-Haq copula introduced below.

5.3 Countable dimension

5.3.1 The bivariate upper bound

Suppose that X is a r.v. with continuous cdf F' and range the interval [a,b]. Let
K(x,y) =min{F(z), F(y)}—F(x)F(y), where min{ F(z), F'(y)} is the bivariate upper
bound. Let us consider the eigenexpansion
0= 3" Atbu(s)6n(t)
n>1

Note that {t,} must be a countable set of continuous functions. If not, we could

write
min{F(z), F(y)} = F(x +Zmzn (),

with N < oo. But this is not possible, as the upper bound min{F(x), F(y)} has
a singular component. Thus, if there exists a probability density f(z) (Lebesgue
measure), we would have

2

0xdy

However, the derivative of the right-hand side of the above equation is

min{F(2), F(y)} = 0 if F(x) # F(y).

)+ Z At ()4, (y) # 0.
Let us define a,, = b, = \n 1/an, n > 1, where f,(z) = [ 4, (t)dt. Clearly L, M
in section 5.1, and K are the same kernels and
fosdak —fos/\ /wk()
= 3ot Mt (@) [} Unl) NP5 ds
= X *y(@),

and similarly for by. The canonical correlations are p, = 1, n > 1; {f,(X)}, {fo(Y)}
are canonical variables, and (5.2) reduces to (5.1). We have proved the following

result.
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Proposition 5.3.1 The dimension of H (x,y) = min{F(x), F(y)} is .

5.3.2 Regression family

If the ranges of X, Y are the intervals [a, 0], [¢, d], and ¢ : [a, b] — [c, d] is an increasing

function, the family
Hy(z,y) = OF (min{z, o (y)}) + (1 = O)F (z) Jo(y), 0<6 <6, (5.6)
is a bivariate cdf with marginals F, GG, provided that

Joy) = (G(y) — OF (¢~ ()))/(1 - 0)

is a cdf.

The simplest version of this family appears with ¢ = G~ o F:
Ry(z,y) = 0min{F(x),G(y)} + (1 - 0)F(x)G(y), 0<0<1.
For this family, and assuming F' = G
Covp,(X,Y) = [, [{(@min{F(x), G(y)} + (1 = O)F(2)G(y) — F(2)G(y))ddy
= [} S 0min{F(2), G(y)} = F(2)G(y))dady
=0Var(X).
Thus the correlation is p(X,Y) = 0.
Considering the corresponding copula

Co(u,v) = Omin{u, v} + (1 — Quv, 0<60 <1,

we have
Cov(a(U), B(V)) = 0.J,p,
Cov(a(U),a(V)) = 0J4a,
Cov(B(U), B(V)) = 055,
where

1 1
Iy :/ / (min{u, v} — wv)dy(u)dd(v).
0o Jo
Thus the affinity is given by
Jag
Aoy (a, f) = —2B__ 5.7
Ce( ﬁ) \/m ( )
which does not depend on 6 # 0. Then A¢, (o, ) = Ac+(e, 3). In other words, the
affinity only depends on the upper Fréchet bound C* (u,v).



5.3. COUNTABLE DIMENSION 93

Proposition 5.3.2 The regression family has the same dimension sy as the Fréchet

upper bound.

PrOOF. We have proved that the upper Fréchet bound has a countable dimension.

An alternative proof is as follows. Let us consider the complete orthogonal system
{V2sin(nmz), n > 1} on L*([0, 1]). This is the set of eigenfunctions of C" (see [99]),
and

1,
(sin(mnU),sin(ntV)) ot = mn7r2/ / (min{u, v} — wv) cos(mmu) cos(nmv)dudv,
o Jo

which is 0 if m # n, and # 0 otherwise. Define &y = {sin(nmrx)},>;. We have that
Ac, (sin(mnU),sin(nmV)) = 6. Since @y is complete, there is no function a # 0
orthogonal to all functions in @y (see [54]). Hence, if a, 3 € ®F;, then a = =0 and
(a, 6>C+ = 0. O

5.3.3 AMH family

The Ali-Mikhail-Haq distribution (1978, see [1]) is defined as
Hy(z,y) = F(z)G(y)/[1 = 0(1 = F(x))(1 - G(y))], -1<0<1
The corresponding copula is
Co(u,v) =w/[1 =0(1 —u)(1 —v)], —-1<6<1.

We can express this copula as

Co(u,v) = uv + Ou(l —u)v(l —v) + i@ku(l —wku(l —v)f, —1<6<1. (5.8)

The first term of this diagonal expansion is the FGM copula. However note that
1
/ (1 — ) u(l — w)du = B,k + K +1) £0,
0

where B(.,.) is the beta function, so we do not obtain for Cy(u,v) — uv an eigenex-

pansion, as these functions are not orthogonal.

Define the functional

Z(k, ¢) — /0 (1= ) (1 + (k — D)u)é(u)du. (5.9)
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Assuming [u(1 — u)*é(u)]} = 0, integration by parts gives

Z(k,¢) = —/0 u(1 — u)*de(u).

Therefore
Cov(a(U),a(V) = Y3, 0°Z(k—1,a)%
Cov(a(U),B(V)) =352,0"Z(k—1,0)Z(k - 1,53).

Thus the affinity is given by

Acy (o, ) = S 08 Z(k—1,0)Z(k—1,5)

\/220:1 QkZ(k‘ - 1? a>2\/ZZO:1 HkZ(k - 1? ﬁ>2

Proposition 5.3.3 The AMH family has dimension

(5.10)

PROOF. (¢, ¢) = 0 implies

Zek (k—1,0)

If & # 0, this is only possible for Z(k—1,¢) = 0, k > 1. But the system {(1 —
uw)*(1 + (k — 1)u)} is complete in L2([0,1]), so ¢ = ¢ (a constant). Take &gy =
{(1 —w)*(1 + (k — 1)u)}1>; and the result is proved. O

5.4 Continuous dimension: Cuadras-Augé family

5.4.1 Definition

The Cuadras-Augé bivariate distribution, 1981 (see [22]) is defined by
Hy(z,y) = min{F(x), G(y)}(F(2)G(y))'™", 0<0<1.
The copula is
Co(u,v) = minfu, v} (w0)™?, 0<0<1.
If H; is the Heaviside distribution
Hi(x) =0 ifz<l, Hi(z)=1 ifz>1,
it can be proved (see [18]) that

Cor(H1(X),H1(Y)) = max Cor(p(X),e(Y)).

Cuadras, 2004 ([21]) generalizes this result by finding the canonical correlations for

this copula. We present the main results of this ongoing research, without proofs.
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5.4.2 Eigenanalysis

Let us consider the covariance kernels

Ko(u,v) = min{u, v} (uw0) ™% —wv, L(u,v) = min{u,v} —uv.

Given two functions ¢1,¢ : I = [0,1] — R, the squared correlation between

o1(U), 92 (V) is

o _ (Cov(¢1(U), ¢2(V)))
Var(¢1(U))Var(oz(V))
(Jpo Ko(u,v)da(u )d¢2( )
fp w, v)doy(u)dey(v) [ L(u, v)dpe(u)dps(v)

A function ¢ : I — R is an eigenfunction of Ky with respect to L with eigenvalue
A if
1 1
| Kotwoast) = A [ La,o)dotw)
0 0

Let us define

~
Hme(fﬂ) =H,- (z) — mH(w«sﬁ(ﬂ?)a

where
~(2)=0 ifz<y, H-(z)=1 ifxz>7,

H
Hye(z) =0 if o <7, Ho+(x)

1 ifz>n.

Theorem 5.4.1 The set (¢, \,) of eigenfunctions and eigenvalues of Ky with respect
to L is given by
Oy = hm me Ay = o0,

where ¢, is the indicator of v, i.e., ¢,(z) =0 if x # vy, and ¢,(y) =1, for v € [0, 1].

PROOF. See [21]. 0

The definition of the canonical correlations (see Section 1.1 in Chapter 1) is

adapted to the continuous case. The following result is derived:

Theorem 5.4.2 The set (¢, \y), v € [0,1], is the set of canonical functions and
canonical correlations.
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PROOF. See [21]. 0

Proposition 5.4.3 The dimension of the Cuadras-Augé copula is ;.

PROOF. The cardinality depends on the functions ¢., where v € [0, 1]. Then

COU(¢V1 (U)> ¢’y2 (V>) =0 if T 7& Ya-

However, it can be proved that Cov(H, (U),H,-(V)) # 0. Clearly, the affinity
A} (H, . H,.)is

CO,UQ(H’}/,E(U)7 H%E(V))
COU(H%e(U), H%a(v))COMH%E(U)v H%E(V)) ’

whose limit is A% /(¢,, ¢,) = 1. .

5.5 Generalized Cuadras-Augé family

Let Cy, Cy be two continuous copulas. A generalization of the above family is
C@(”av) = Cl<u70)900<u7/0)1797 H,U,U € [07 1]
Clearly Cy reduces to Cy for § = 0 and to Cy for § = 1. The above Cuadras-Augé

copula is reached for Cy(u,v) = uv and C(u,v) = min{u, v}.

Let us study the dimension of Cy when it is constructed with the FGM and the

independence copulas.

Proposition 5.5.1 If0,« # 0, the dimension of Cy with Cy the FGM copula and Cy

the independence copula, is .
PRrROOF. The copula is
Co(u,v) = (o[l + a1 —u)(1 —v)])? [uv]*~?
=1+ a(l —u)(1 —v)]uw,

where 0, u,v € [0,1], -1 < a < 1.

The Taylor series

06 —1) ,

(1+2) =140+ TR
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gives the following expression for the copula Cy:

060 —1) , 9 5
(2! )a u(l—u)v(l —v) +...

Co(u,v) = wv+6bau(l —u)v(l —v)+
= wv+fau(l —u)v(l —v) + Z Qrocu(l —u)*v(1 — v)*,
k=2
where
00 —1)---(0—k+1)
Qro = o
Compare this expression with (5.8), the AMH copula. Both expressions are formally

similar and we can adapt to this family the proof given for the AMH. 0

5.6 Examples of H-affinities

We conclude presenting H-affinities for some functions and distributions. It is worth

noting that the affinity, in some cases, is equal to 0 or 1, independently of the functions

a, (.

Functions Bivariate cdf =~ Affinity Correlation Name
x,y H # FG 1 p Pearson
a, 3 FG 0 0 Pearson
F=G H 1 ps Spearman
F=@G FGM 1 0/3 Spearman
a,f (I, =0) FGM 0 0 Pearson
a,B (1,1 #0) FGM 1 (5.4) Pearson
Y Regression 1 0 Pearson
a, 3 Regression (5.7) 7 Pearson
a, 3 Upper bound (5.7) 1 Pearson
a, 3 AMH (5.10) (*) Pearson
x,y Cuadras-Augé 1 20/(3 —0) Pearson
Hi, Hq Cuadras-Augé 1 0 Max. correl.

Notes: 1) We always suppose 6 # 0. 2) (*) not in closed form.
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Chapter 6

Construction of diagonal
distributions via principal

components

Let X,Y be two random variables with range [a, b], [c, d], absolutely continuous bi-
variate cdf H and marginals F,G. Let h, f, g be their densities, respectively. Let
{a:},{b;} be complete sets of orthonormal functions defined on the marginal distrib-

utions F' (z) and G (y) , respectively, by

b d
/ a;(z)a;(x)dF (x) =/ bi(y)b;(y)dG (y) = i,

d;; being Kronecker’s delta. Let

pi; = Cor (a; (X),b / / a;(x)b;(y)dH (x,y)

be Pearson’s correlation coefficient.

Lancaster ([71], [72]) showed that, if Z Z py; < oo, then

i=1j=

dH (z,y) = dF () dG (y )ZZpUG’Z( )b (y),

=0 j=

where double summation is convergent in the mean square sense. It is also worth

noting that Pearson’s contingency coefficient ¢?, defined by

¢2+1—// (dH (2, )’ | (AF (2) dG (y))

99
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satisfies o w
¢2 =22 pzzj‘
i=1j=1
We say that H is ¢?—bounded if ¢*> < oo. This condition is satisfied by most of the

distributions used in the applications.

The sets {a;},{b;} can be chosen so that the correlation matrix R = (p;;), i,j >
1 is diagonal. Lancaster used the canonical variables, i.e., two sets {a;},{b;}, of
orthonormal functions defined on the marginal distributions in a recursive manner
such that the correlation between corresponding members of the two sets is maximal,
given the preceding canonical variables. The p; = p;; are the canonical correlations

and can be assumed positive. These sets satisfy the so-called biorthogonal property,
Ela; (X)b; (Y)] = 63,
and H can be expanded as
dH (x,y) = dF (z) dG (y) ;)piai () b; () , (6.1)

the diagonal expansion of H. Lancaster proves in [72] that a; (X) is also orthogonal to
every square summable function of Y, orthogonal to the canonical variables b; (Y) and,
similarly, b; (Y) with respect to X. Hence, orthonormal polynomials with respect to
the marginals have been used as an extension of this method (see [34], and Hutchinson

& Lai [54], Chapter 14, for a general description).

Notice that expansion (6.1) is equivalent to

h(z,y) = f () g (y) 1+§°§piai () bi ()| . (6.2)

since 1 can be understood as a member of zero—th order.

Cuadras and Fortiana (see [26]) showed that this expansion can be seen as a
particular instance of continuous weighted scaling. Cuadras (see [17]) proved that
this diagonal expansion can be expressed in terms of the cdf’s and introduced another
extension of this method consisting in using the principal directions of each marginal
variable as orthogonal sets of functions (see [16]). Principal components (or directions)
were obtained for X uniform on [0,1], X exponential, X logistic and, finally, when
X is Pareto (a,0), a > 2, 6 > 0. The following section introduces some definitions
and results (see, for instance, [25]) related to the method of obtaining these principal

directions.
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6.1 Principal components of random variables

Let X be ar.v. on a probability space (€2, A, P), with values on an interval I = [a,b],
absolutely continuous cdf F' and probability density f, with respect to the Lebesgue
measure. Let 6 : I x I — R, be a distance function. A continuous Euclidean
configuration representing X with respect to ¢ is defined as a stochastic process X =
{Xi}er such that for all wi,wy € €, the Euclidean distance between X; (w) , X; (w2)
defined as )
D (ena) = [ (60 () ~ o) )
I
equals 0 (X (w1), X (w2)).

Consider the function u : I x I — [0, 1] defined by

lif¢
u(t,x):{ it <uw,

0if ¢t > x.

Let X = {X;},.; be defined as X; = u (¢, x), for ¢ € I. The stochastic process X is a

continuous Euclidean representation of X, and the following results hold:

1. The covariance function of X is given by

K (s,t)=min{F (s),F(t)} — F(s)F(t), s,tel. (6.3)

2. The trace of this kernel [, K (s, s)ds equals the geometric variability Vs of X
with respect to the distance function § = /|z — y|, defined by

1

Vi) =5 [ 8 s dr () aF (),

provided that this integral exists.

3. If F[X] < o0, lims_,_ sF (s) =0, and V5 (X) < 400, from Mercer’s theorem,

the expansion
K{s,1) = 2 i (s) i (1)

is absolutely and uniformly convergent in both s and ¢ (see, for instance, [11],

vol I), where {¢;},_y is a complete orthonormal set (over £ (I)) of solutions of

/ 1 (5) K (,1) ds = A (1)

1
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Finally, from the theorem of Kac and Siegert (see [61]), the following decomposition

is obtained:
Xy = Zl Zjp; (),
]:

where {Z; }j oy 18 an orthogonal set (with respect to the covariance) of square integrable

r.v.’s defined by
7, = / Xup; () dt, jEN,
I
satisfying Var (Z;) = A;.
Each Z; is called a principal component of X. The following theorem (Theorem 1

in [25]) shows how to obtain these components.

Theorem 6.1.1 Let ¢; be an eigenfunction of K with eigenvalue \;, and consider

the function
hj(s>:/ o; () dt, s € (ab).

Then:

1. The principal component Z; corresponding to \; is given by Z; = h; (X).
2 1y = BIZ] = [,[1 - F ()] o, (D)t
3. h; is a solution of the differential equation
Al + (hj =) f =0, hj(a) =0, hj(a)=0,
where f s the density of X.

PROOF. See [25]. 0

Some principal components Z; have been obtained using this method by Cuadras
and Fortiana, 1995 [25], Cuadras and Lahlou, 2000 [30], and Cuadras and Lahlou,
2002 [31].

Examples of eigenfunctions ¢, and eigenvalues \, = Var(Z,) = Var (h, (X))
(see [25], [30]) are:

1. on(z) = V2sin (nmz), A, = 1/(n7)?, if X is [0, 1] uniform.
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2. on(x) = exp(—x/2) [J1(&nexp(—x/2))] /Jo(&n), A = 4/&2, if X is exponential
with unit mean, where &, is the n — th positive root of J; and Jy, J; are the

Bessel functions of the first kind, of order 0 and 1, respectively.

3. on(x) = ,/RQ(ZE)LQL (F (z)) f(z), \p = 1/(n(n+ 1)), if X is standard logistic,

where L/, are the first derivatives of the shifted Legendre polynomials on [0, 1],
F(x) =1/(1+ exp(—x)) is the cdf of X and f (z) = F’ ()

4. pn(z) = a, (sin (n,/z) — cos (n,/x) /x), \n = 3/n2, if X is Pareto with F(z) =
1—z73 x> 1, where a, = 21, 2 (217, — sin (277”))7% and 7, is the n —th positive

root of equation x = tan(x).

6.2 Diagonal expansions via principal components

Let {f; (X)},{g; (Y)} be the sets of principal components of two r.v.’s X and Y

respectively. The sets of standardized principal components {F; (X)}, {G; (Y)}

fi (X) = E1f; (X)]
Var (f; (X))

and similarly, GG, , are orthonormal sets of square integrable functions. Then F}; and

Fy(X) =

Y

(G; may play the role of canonical functions a;,b; in expansion (6.2). Thus

hmwszmw)l+imﬂwﬂ%® (6.4)

represents a bivariate distribution with marginal densities f, g ([16], [17]). The infi-
nite dimensional vector of correlation coefficients (p1, pa, ...) can be chosen to construct
different distributions with this representation. The dimension of A is the number of
non-null correlation coeficients (see Proposition 5.1.2 in Chapter 5). For instance,
by taking py > pyi1 = 0, we have that (6.4) is the representation of a nested
N —parametric diagonal family of distributions. Hence, this representation provides
a method to construct bivariate distributions with given marginals via principal com-

ponents. When N =1 this family reduces to the Sarmanov family (see [76]).

By construction, the following properties hold:

1. {F; (X)}, {G; (Y)} are sequences of centered and uncorrelated random vari-

ables.
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2. Cor (F (x),G; (1)) = p,dy.
3. {pj}j is the sequence of canonical correlations.

4. {F; (X),G; (Y)} is the sequence of canonical variables.

Remark 6.2.1 Ezpansion (6.4) allows us to obtain the density ¢ (u,v) of the corre-

sponding copula. Since

h(z,y)=f(z)g(y)c(F(x),G(y)),

it suffices to apply the change of variables F' (x) = u, G (y) =v. Thus:

() =14+ 3 B (F7 (1) G5 (G (v).

6.3 Stochastic independence and association

6.3.1 Characterization of Independence

X, Y are independent r.v.’s iff the law of (X, Y") is equal to the product of the marginal
laws. Thus
H(z,y) = F(x)G(y),
where H and F, G are the joint and marginal cdf’s, respectively. If X,Y are indepen-
dent and integrable, then
EXY)=FE(X)E(Y).

This condition is necessary but not sufficient for stochastic independence.

A stronger criteria was put forward in [19]: let {f; (X)}, {g; (Y')} be the principal
components of X, Y respectively. Then X,Y are stochastically independent iff all the

correlations between the principal components are zero:
Cor (fm (X),g,(Y)) =0 m,n > 0.

As a consequence, if the density of (X,Y’) can be expanded as (6.4), X and Y are
independent iff
Cov (F, (X),G,(Y)) =0, m,n > 1.

Furthermore canonical correlations p,,, = 0, V m,n > 1 and, hence, h(z,y) =

f(x)g(y).
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In particular, if the marginals are uniform on [0,1], then ¢(u,v) = 1. These

characterizations of independence also hold when expansions are diagonal (i.e., F},, =

Gn> Pmn = pn(smn)

6.3.2 One expansion for the correlation

Cuadras, 2002 ([18]) proved that the covariance between two functions can be ex-
panded by using diagonal expansions. In terms of the cdf’s, if Cov (o (X), 5 (Y)) and

expansion (6.1) exist, and we can integrate termwise, then
Cov(a (X)), B(Y)) = 2, piCov (a; (X), a (X)) Cov (b: (V) , B (Y)) (6.5)

where {a;},{b;} are canonical variables and {p;} canonical correlations (see Theo-
rem 2 in [18]). Since the canonical variables satisfy E[a; (X)] = E[b;(Y)] = 0,
Vara; (X)] = Var[b; (y)] =1, (6.5) can be written in terms of the correlations as

Cor(a(X),B(Y)) = i,oiC’or (a; (X),a(X))Cor(b;(Y),3(Y)).

If o = F, = G, then this correlation is Spearman’s correlation coefficient pg, which

can be expanded as
ps (X,Y) = il piCor (a; (X), F (X)) Cor (b; (Y),G (Y)). (6.6)

In these expansions, we can replace the canonical variables by the principal compo-
nents of the marginals X and Y, to obtain expansions for suitable diagonal families,
as defined above. Moreover, if the principal components are linearly related with the
marginal distributions, the computation of pg is very simple from expansion (6.6),

since the correlation is invariant under linear transformations.



106 CHAPTER 6. CONSTRUCTION OF DIAGONAL DISTRIBUTIONS VIA PRINCIPAL COMPONENTS




Chapter 7

Construction of some specific

diagonal distributions

7.1 Preliminaries

We apply the method described in the previous chapter (see Section 6.2) to build
families of distributions when the margins are fixed and the principal components
related to the marginals are known. We can construct bivariate distributions with
marginals being uniform, exponential, logistic, and Pareto by using the standardized

principal components F; (X) in expansion (6.4),

h(z,y)=f(z)g(y) |1+ iijj (z) Gy (y)

J

We denote h € F (f, g) when the joint density h has marginals f, g. Next on we assume
that either all the canonical correlations are positive (in this case, they constitute a
monotone decreasing sequence of positive real numbers), or just a finite number of
them are positive. We study the conditions that the constructed h (z,y) must satisfy
to be a probability density, the upper bound for the first canonical correlation, and
finally, the maximum correlation for each family. A necessary, and also sufficient

condition is found for N = 1. Otherwise, necessary conditions are given.

By construction, the canonical correlations p; are the correlations between the

j — th standardized principal components, which play the role of canonical variates.

107
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This gives a diagonal expansion
hz,y)=F(@)g(y) |1+ piai(x)b; ()|,
i=1

as it was stated by Lancaster (see [71]). See also Cuadras ( [25]), and Chapter 6.

We start with the following general result.

Theorem 7.1.1 Let XY be two identically distributed (i.d.) absolutely continuous
r.v.’s with marginal cdf F. With the change of variables F' (x) = u, F (y) = v, let us

write the diagonal family as the density of the corresponding copula

c(uv) =1+ pF} (u) Y (v),

j=1
where F} (-) stands for Fj o F~' (). Then:

1. c(u,v), as well as the corresponding h (x,y), is a density if and only if (iff)

<1. (7.1)

sup [— Z piF (u) F (v)

(u,v)€[0,1]2 1

2. The canonical correlations must satisfy the necessary condition
—me Fr) <1, (7.2)

uniformly in u € [0, 1].

3. Pearson’s correlation coefficient is given by

Cor (X,Y) (ij )/Var X),

where
I = /0 F (w) F? (u) du. (7.3)

Proor. 1) follows directly from the positivity of ¢ (u,v) for all pairs (u,v) €
[0, 1]2. If ¢(u,v) > 0 then it is Riemann-integrable. Therefore, integration with
respect to each variable gives the uniform density, and integration with respect to
both variables over the unit square gives 1.

2) follows from 1) taking v = 1.
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Next, as X,Y are i.d. r.v.’s, Cor (X,Y) = Cov (X,Y) /Var (X). From (6.4), and

by Fubini’s theorem, the covariance is given by

Cov(X,Y) = /R g () dndy /R of (x)da /R uf () dy

= /R wyf () f (y) (Z p;iFy (x) F; (y)> dxdy

N
= oo [eB @@ [ o8 6 F @y
= R R
Since dF (z) = f (z) dx, the change of variables F' (z) = u proves 3). m

In the following sections we apply this general result to some specific distributions.
If N = 1 then the supremum of {—p; F}" (u) F} (v)} is attained at u = 0, v = 1. Further
research is needed to obtain the pair (u,v) for which supremum is attained if N > 1.
With the choice of v = 1 we obtain a necessary (but possibly non sufficient) condition

for the canonical correlations.

7.2 Diagonal family with uniform marginals

In this section we construct a bivariate family with uniform marginals, i.e., we con-

struct a parametric copula.

Proposition 7.2.1 Let U,V be uniform on [0, 1], i.e., with density fu (u) = 191 (u) .
Let {p;} be a decreasing sequence of non-negative real numbers such that 1 > py >
p2 > ...>0. Then:

1. The function

c(u,v) =1+ ij 2 cos (jmu) cos (jmv), u,v € [0, 1] (7.4)

j=1
is the density of a diagonal family with uniform marginals on [0, 1] iff

N

sup | —2 Z pjcos (jmu) cos (jmv) | < 1. (7.5)
(u,v)e[O,l]Q 7j=1
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Fach pj is the correlation coefficient between the j — th standardized principal
components F; (U) = —/2cos (jwU), F; (V),

p; = Cor (cos (jmU),cos (jmV)) .

2. These coefficients must satisfy the condition
N

—2 Z p;j cos (jmu) (=1)7 <1, (7.6)

J=1

uniformly in u € [0, 1].
3. The correlation coefficient of (U, V') is given by

N
96 _
Cor (U, V) = — Llll .
= (2k - 1)

PROOF. For uniform marginals the covariance kernel (6.3) is

K (s,t) =min (s,t) — st, s,t€[0,1],
and the eigenfunctions are ¢; (t) = v/2sin (jnt). Thus the j — th principal component
is
U
£ (U) = / V2 sin (jt) dt
0

= Q (1 —cos(jnU)).

g
From E[f; (U)] = j—*/g, Var (f; (U)) = ﬁ, we obtain the j — th standardized prin-

cipal component. Substitution of F} in (6.4) gives (7.4), and we obtain conditions
(7.5),(7.6) from direct application of Theorem 7.1.1.
To prove 3) we compute /; (7.3) as in Theorem 7.1.1:

I; = —\/i/olucos(jﬂu)du
= 2 (1- ),

j2772

which is null when j is even. Writing j = 2k — 1, only odd terms are non-null, and

we have

Cor (U, V) = (Z 02k1[22k1> /Var(U),

N 2
2v/2
— 12§ ot | e |
— <(2k — 1)27r2>

A final simplification gives 3). 0
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7.2.1 The copula
The copula with density ¢ (u,v) is:

C(u,v) = /o i c(s,t) dsdt

20
— uv+z pJQSin(jwu)sin(jﬂv), (u,v) € [0,1]%.

The independence copula C° (u,v) = uv belongs to this family (take p; =0, j > 1).

7.2.2 Some finite dimensional densities

Some examples illustrate different cases which appear when considering a finite set of

strictly positive canonical correlations.

One-dimensional

If only the first canonical correlation is non-null, (7.4) attains its minimum value at

u=0,v=1, and it is a density iff p; < % Then
¢ (u,v) =1+ p12cos(mwu) cos (wv) , u,v € [0,1]

is the density of a 1—parametric copula.
Pearson’s correlation coefficient is given by

96
Cor (U, V) = 3P

We can compute the correlation corresponding to the constructed bivariate densities.
Moreover, since p; < 3, Cor (U, V) is bounded by % = (0.49277.

Example 7.2.2 Suppose that pi > po = ... = 0. Figure 7.1 shows this

1

L—dimensional density for p1 = 5.
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3P

108 06,04 03 02 04 05 03 1

Figure 7.1: Bivariate density with uniform margins: p; = %

Two-dimensional

If we consider two non-null canonical correlations, condition (7.5) holds iff

1
—p1 cos (mu) cos (mv) — pa cos (2mu) cos (2mv) < 3

uniformly in 0 < u < v < 1. The second term, ps cos (27u) cos (27v) , reachs extreme

values for some pair (u,v) # (0,1), so (7.5) is difficult to verify.

The necessary
condition (7.6) is equivalent to

p1 €os (mu) — pg cos (2mu) <

?

N | —

uniformly in 0 < u < 1. Since cos (27u) = 2 cos? (ru) — 1, this reduces to

1
—2py cos® (Tu) + py cos (Tu) + py — 50
which is a second degree polynomial in the variable cos (mu). If this polynomial takes

only negative values then the discriminant of the equation must be either null or
negative, i.e.,

2
1 p2— %
P} + 8p2 P23 §0<:>pf+7( i) <

This condition for p; > po, is illustrated by Figure 7.2.
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2nd can, corr.]
0,37

0,29

T
D 0z 04 08
1st can. corr.

Figure 7.2: First and second canonical correlations for uniform margins

The first correlation attains its maximum at p; = %, when py = i

Pearson’s correlation coefficient is also given by Cor (U, V) =

term in (7.7) is null. The bound for the correlation is higher:

= (0.69688.

Cor (U, V) < \/_6

Example 7.2.3 Let ¢ € [ (fu, fu) be the function given by

c(u,v) =142 <i cos (mu) cos (mv) + icos (2mu) cos (27w)) :

V2

Figure 7.3 shows this density.

:

oy

r;ﬁr;n* "!',-,u

-f'-l'.l!;ﬂ++1. 1,11'-

e
H'_'L"' iy

*1#‘-.“""-"-

Lhn )

05,04 02 02 04 06 03 1

=

Figure 7.3: Density with py = %, P2 =

% p1 since the second

u,v € [0,1].
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iz, but (p1, p2) lays out of the area represented by Figure 7.2,

If we take p; <
then ¢ (u,v) takes negative values in the unit square. Hence it is not a density. For

instance, ¢ (u,v) when p; = 0.6, py = 0.5 is shown in Figure 7.4:

04 02 |02 04 1

Figure 7.4: Function c(u,v) with py = 0.6, ps = 0.5

7.3 Diagonal family with exponential marginals

In this section we construct a bivariate family with exponential marginals.
Proposition 7.3.1 Let X,Y be exponential with unit mean, i.e., with common den-

sity given by f (x) = exp (—x) Lp.oo (). Let &; be the j—th positive root of J,, where
Jo, J1 are the Bessel functions of the first kind*, with 0 < p; < 1. Then:

Etr o (3) o (2))]

j:1 (7.8)

1. The function

h(z,y) = f(z)f(y)

x,y > 0, is the density of a diagonal family h € (f, f) iff

sup [— Z Pi Jo (V1 —u) Jo (§V1 — v)] < 1. (7.9)

(u,v)€[0,1)? j=1 ‘]0 (gj)Q
FEach p;j is the correlation between the j — th standardized principal components
Fy (X) = Jo(§exp (=X/2)) [ Do (&), F; (Y),

pj = Cor (Jo (& exp (=X/2)), Jo (& exp (=Y/2))) .

o0
!The Bessel function of the first kind and m — th order is given by Jp, (z) = > (_1){ . (%)21 .
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2. These coefficients must satisfy the condition

Y (VT —u
3 AT

<1, 7.10
A (710)

uniformly in 0 < u < 1.

3. The correlation coefficient of (X,Y) is given by
N

Cor (X,Y) = Z:;pj (W) : (7.11)

PRrROOF. The proof follows from Theorem 7.1.1. The eigenfunctions of the covari-

ance kernel (6.3) when the distribution is exponential with unit mean are

pj (t) = exp (—t/2) Ji (& exp (—t/2)) [ Jo (&;) -
Thus the 7 — th principal component is

X
HEO = [ ew (42 R G (-4/2) /b (6) d
= 2(Jo (& exp (=X/2)) = Jo (&) /€00 (&) -

Some computations show that p; = —2/&;, \; =4/ f?, giving the 7 — th standardized
principal components. By construction, the correlation between the j — th principal
components F;(X), F;(Y), is p;.

Substitution of Fj in (6.4) gives (7.8). Of course if h is non-negative, then h € F (f, f).
Since f () is a density, non-negativity of h (z,y) requires that

55 TR TGP (/) R (g e (—u/2) 20

j=1
for each z,y > 0. The change of variables F' (z) = u, F (y) = v gives the equivalence
with condition (7.9). Take v = 1; since Jy (0) = 1 (see Figure 7.5 below), condition
(7.10) follows.

Finally, since the variances are 1,

Cor (X,Y) Zp] (7.12)

where

log (1 —u) Jo (§v1 —u) du

[ (1)
&) i [ ()

(
L & Y
AP 2 ()2 <l+1>

2£2l ( 1—u)log (1 —u) du]
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Taking k£ = [ + 1, and adding and substracting 1 (the zero-th term of this series),

R NG e

A PP
(g ()"
- 5 (3) (S )

- (5 E)

Substitution of /; in equation (7.12) completes the proof. O

7.3.1 The cumulative distribution function

The bivariate ¢cdf H € F (F,F), F(z) =1 —exp(—z), x > 0, can be obtained via

the corresponding copula C' (u, v):

C(u,v) = /u/vc(s,t)dsdt

_ / / ( gj) o (6T —3) Jo (€ \/—t)> dsdt

= uv —|—Z£J ) \/1—uJ1( \/1—u)\/1—vJ1( \/1—1))

for 0 < u,v < 1. Since V1 —u= /1 —F(z) =exp(—z/2),

_ 4p; S (§exp (—x/2)) Ji (§jexp (—y/2))
B =FOFEW g™ oG e

for z,y > 0.

7.3.2 Some finite dimensional densities

The density and correlations when only the first few terms are positive can be evalu-
ated by using the following table showing the five first positive roots v;,&; of Jy, Ji,

4
and some approximate values of Jy (&), (; = (%‘ﬁ) <§3> )
J J
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v &1 (&) G
2.4048 | 3.8317 | —0.40276 | 0.9003846
5.5201 | 7.0156 0.30012 | 0.0359185
8.6537 | 10.1735 | —0.24970 | 0.0374122

11.7915 | 13.3237 0.21836 | 0.0065056
14.9309 | 16.4706 | —0.19647 | 0.0080629

U | W N .

Table 7.1: First roots of the Bessel function of the first kind and other related values

Figure 7.5: Bessel functions of the first kind, Jy (black line), J; (red line)

One-dimensional

When only the first correlation p; is positive, this family reduces to

) = £ ) |1+ 2 (e (5) ) o (e ()]

for z;y > 0. The density of the corresponding copula is

c(u,v) =1+ ﬁ(]o (51\/1 — u) Jo (51\/1 — v) . (u,v) €10, 1]2.

It is easy to check that

Py (GVT =) S (VT = ]: -
(u,vs)léﬁ),l]Q[ JO (51)2 0(§1 u) O(fl U) JO (51)

is attained at u = 0,0 = 1. Then c(u,v), as well as h(z,y), is a density iff p; <
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Example 7.3.2 The function

hea) =10 ) |1- hie)a (e () ) (e (2))]

for x,y >0 is a density h € F (f, f). The correlation of (X,Y) is
Cor (X,Y) = p1(1 = 0.36264.

(see Table 7.1).

Two-dimensional

Unfortunately, for N = 2, conditions (7.9), (7.10) are computationally difficult. In

particular, (7.10) is equivalent to

——Jo (&V1—u) — Jo (&vV1—u) <1,

P2
o (51) Jo (&2)°
uniformly in 0 < u < 1. Since Jy (&ﬂ) is monotonic and decreasing in the
interval [0, & ], while Jy (§2 \/H) is not, we have chosen as a candidate for extremum

2
the value attained at u € [0,1] such that Jy (&2v/1—u) =0, ie, at u=1— <§—Q> :

being v, the second positive root of Jy (see Table 7.1). The ﬁrst root v; has been
2
7 (5 2<]0 (51\/1 - u) is negative when u = 1— <£_2) ,

so the condition is satisfied without restrictions. Hence, a necessary condition derived

neglected because the first term —

from the general condition (7.10) is

2
P clem < DE) (6o
Jo(6)? (€1§ ) B = Jo (gl§—§>

7.4 Diagonal family with logistic marginals

In this section we construct a bivariate family with logistic marginals.

Proposition 7.4.1 Let X, Y be r.v.’s with standard logistic distribution, i.e., with
density given by
fla)= 2D
(14 exp (—x))
Let L;(t), t € [0,1] be the j — th shifted Legendre polynomial on [0,1], and F(z) =
1/(14exp(—x)) the cdf. Let{p,} be a decreasing sequence of non-negative real numbers
such that 1 > py > pg > ... > 0. Then

z € R.
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1. The function

h(z,y)=f(z) f(y) : r,y e R (7.13)

1+ ij Ly (F (x)) L (F (y))

1s the density of a diagonal family with logistic marginals iff

sup [— Z p;iL; (u) L; (v)] <1. (7.14)

(u,0)€[0,1) j=1

Fach p; is the correlation between the j — th standardized principal components

Fy (X) = L; (F (X)), E; (Y),

p; = Cor (L; (F (X)), L; (F (Y))).

2. These coefficients must satisfy the condition
N
— Y V2 + 1L (w) <1, (7.15)
j=1

uniformly in u € [0, 1].

3. The correlation coefficient of (X,Y) is given by

N

3 4k —1
Cor(X)Y)=— ——— P2k 1 7.16
( ) 2 ; K2 (2 = 1>2P2k 1 (7.16)
PROOF. The eigenfunctions of the covariance kernel (6.3) when the marginals are

logistic are
p; (1) = ¢; L (F (1) f (1),

241 Thus the j — th principal component is

JG+1)

where ¢; =

b'e
BO) = [ el (P f d
0
¢; L (F (X))
= o |PEFX)-1) - (-1].

where P; is the j — th Legendre polynomial on [—1,1]. The mean and variances are
i = — (—1)j Cj, \j = ﬁ and, hence, the j — th standardized principal component
is

P(X) = V2j+1P(2F (X) 1)

— Li(F(X)).
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Substitution of F; in (6.4) gives (7.13). Conditions (7.14) and (7.15) are obtained
from direct application of Theorem 7.1.1.

To prove 3) we compute I; as in Theorem 7.1.1: let F () = u, x = log (1) . Then

! u
I = 1 L; (u) du.
1= [ e (1) B

In computing this integral we find I, = /3, I, =0, I = %, 1,=0, 1= ‘{—1_51, I =0,
etc. In general we have
1 (—1y VL if 5 g odd,
li=vatl (ﬁ) B { Oj(jH) , if; is even.
By taking j = 2k — 1 only the odd terms take part:
il , 1= (=1 \\’
Cov(X,Y) = ; (W (W)) Pj
2 4k -1
= ;mp%—l,
and since Var (X) = %2, equation (7.16) holds. 0

7.4.1 The cumulative distribution function

The integrals of the Legendre polynomials can be expressed in closed form for all
j > 1 (see 5.5). Let us denote

or, equivalently,

The cumulative distribution function for the density (7.13) is

H(r,y)=F(2) F (5) + épj Li(F@) L (F(y), ayeR,

and the corresponding copula is

J

N
C(u,v) =uv+ 3 pj L (u) L (v), u,v € [0,1].
j=1
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That is, this is the Generalized FGM family (see Section 5.2), Chapter 5). For in-
stance, if N =1

C(u,v)=uv[l+3p; (u—1)(v—=1)], u,v € [0,1],
and if N =2
C(u,v) =uv [1+3p; (u—1)(v—1)45py (2u* = 3u+1) (20* = v+ 1)] ,

u,v € [0,1].

7.4.2 Some finite dimensional densities

The shifted Legendre polynomials are defined on [0, 1]. The first three are

Li(u) = V3Q2u—1), Ly(u) = V5 (6u® — 6u+1),
Ly(u) = V7(20u® —30u® +12u—1).

Figure 7.6 shows these polynomials:

b2

L

- o
=
b
L)

£

Figure 7.6: First three shifted Legendre polynomials

One-dimensional

If only the first canonical correlation is strictly positive, we obtain the well known
FGM family of distributions. Let F’ (z) = f (z) be the common density of two r.v.’s
X, Y which follow a standard logistic distribution. The function

hiz,y)=f(@) f) L +3e 2F (@) -1)2F (@) -1)], zyeR
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with parameter § = 3p; is a bivariate density h € F (f, f) iff p; < % This function is
obtained from (7.13) taking N = 1. Then it is obvious that

sup  [=3p1 (2u—1)(2v—1)] = 3py,
(u,0)€[0,1]

which is attained at u = 0, v = 1. Then (7.14) holds iff

6] _ 1
= — < = fel|-1,1].
P1 3 = 37 [ ) ]
The density of the corresponding copula is
c¢(u,v)=143p; u—1)2v—-1), u,v € [0,1].

The correlation coefficient of (X,Y) is
9
Cor (X,Y) = —p1.
T

Hence the bound for Cor (X,Y) is 2 ~ 0.30396, lower than the bound for the FGM

copula (which is ).

Example 7.4.2 Figures 7.7 and 7.8 show these densities when p; = é

Figure 7.7: FGM density: py = 3
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1 na ve 04 0l 03 04 05 08 1

Figure 7.8: Density of the FGM copula

Two-dimensional

If only the first and second canonical correlations are positive then we obtain the

family

hiz,y) = f(z)f(y)[1+3p1 (2F (z) —1)(2F (y) — 1)
+5p5 (6F (2)? — 6F (2) + 1) (6F (y)* — 6F (y) + 1)],

x,y € R, where (p1, p2) must satisfy the necessary condition (7.15) if the marginals
are standard logistic. Then —v/3p; Ly (u) — v/5paLs (u) < 1, equivalent to

30pou® + (6p1 — 30p2) u + (1 — 3p; + 5pg) > 0.

This second degree polynomial in u takes only positive values iff the discriminant of

the equation is non-positive, i.e., iff
(6p1 — 30p2)* — 4-30p2 (1 — 3py + 5pa) < 0,

equivalent to

2

s () |
1/3 1/25  —

This condition is satisfied by the pairs of canonical correlations p; > ps lying in the

area represented by Figure 7.9:
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057
041
031
Znd can. corr. ]
021

0.1

B TT T T T T T T T T TT 1111
u Dl 02 03 04 05
1st can. corr.

Figure 7.9: First and second canonical correlations for logistic margins

If N = 2 Pearson’s correlation coefficient has the same expression as in the one-
dimensional case, but with higher bound:

9 3V3
Cor (X.Y) = —5pi < ;—{ ~ 0.52648.

Example 7.4.3 If p; = %, P2 = % the function

3 2 2
c(u,v)=1+%(2u—1)(2v—1)+(6u —6u+1) (60 —6v+1),

u,v € [0,1], is the density of a copula corresponding to a bivariate distribution with
logistic marginals:

hey) = f(x)f(y)[1+%(2F(x)—1)(2F(y)—1)+

+ (6F (2)* — 6F (x) + 1) (6F (y)* — 6F (y) +1)],

x,y € R. Figure 7.10 below is the density c (u,v).
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na U'ﬁuﬂ'.4 [ R ] Df4vlil'ﬁ o 1
Figure 7.10: Density: p1 = %, P2 = %

Remark 7.4.4 It is evident that py = Cor (Ly (F (X)), Ly (F(Y))) is Spearman’s
rho, since the first shifted Legendre polynomial is linear in F'. This known result is in

accordance with the expansion
ps (X,Y) = ZpZ-Cor (a; (X),F (X)) Cor(b;(Y),G(Y)), (7.17)
i=1

(see [18]). If (X,Y) is a random vector with density belonging to the family defined

by the expansion
h(z,y)=f(x)f(y) |1+ ijLj (F(2)L; (F ()|, zyekR,

and we substitute the standardized principal components, L;(F), for the canonical

variables in (7.17), we obtain

ps (Xa Y) = Z piCOT (Lz (X) ) F (X)) Cor (Ll (Y) 7F (Y))

= Zpi5i1 = pP1-
i=1

7.5 Diagonal family with Pareto marginals

In this last section we construct a family with Pareto marginals.

Proposition 7.5.1 Let X,Y be two r.v.’s with Pareto distribution with density given
by f(z) =327 L00) (). Thus X (andY') follows the Pareto(a, ) distribution with
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parameters o = 3,0 = 1. Let n); be the j —th positive root of the equation x = tan (x).
Then:

1. The expansion

h(z,y) = f(z) f(y) (7.18)

2 . .
1 +jzlpj 3ST2(77]) rsin (n;/z) ysin (n;/y)

x,y > 1, with 0 < p; < 1, for j > 1, is a bivariate density with Pareto(3,1)

marginals iff

N 5 ,
sin 1 —wu)sin 1—w
SUp Z & 7)] \/—3) (77] \/—) <L (7.19)
(u,v)€[0,1]? i1 sin () V1 — uy/1—wv

Each p; 1is the correlation coefficient between the j — th standardized principal
components F; (X) = \/gX sin (n,;/X) /sin (n;), £ (Y),

= Cor (Xsin(n;/X),Y sin(n;/Y)).

2. These coefficients must satisfy the condition

-2 l pin;sin (n;v/1 — ) 1
3 = sin? () V1 —u —

(7.20)

uniformly in u € [0, 1].

3. The correlation coefficient is given by

al 1—cos (n;)\’
Cor (X,Y)=8)> p; <7J) . (7.21)
2.0 ity

PrROOF. The eigenfunctions of the covariance kernel (6.3) when marginals are
Pareto(3,1) are

©; (t) = a, (sin (n;/t) — %COS (nj/t)) . t>1

[un

1
where a; = 27, * (2n; — sin (27;))" % . Since n; = tan (1;) , and sin (2a) = 2sina cos
we have a; = 23 (n;sin (n;))~". Thus the j — th principal component is

* 1
B = [ (s - peosia/n) a
1

= a; (Xsin(1;/X) — sin (n;))
= 22 (p;sin (n;)) " (X sin (;/X) — sin (n;)).
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Finally, as p; = —V/2 /n;, and \; =3/ 77]2-, the j —th standardized principal component
is

2 X sin (n;/X)

3 sin(y)

As in the previous constructions, substitution of F}; in (6.4) gives (7.18). Then 1) and
2) follow from Theorem 7.1.1.

From Var (X) = Var(Y) = 2, Pearson’s correlation coefficient is

Fi(X) =

4
Cor(X¥) =3 Dot

where I; is given by (7.3):

2
(1—u) s 1
/\/7 u) sin nj(l—u)é>du
sin (1)

- 77] Sm(m) (1 o8 <n])) !

and (7.21) follows. m

7.5.1 The cumulative distribution function

The cdf H (z,y) = [} [/ h(s,t)dsdt, is given by:

H (z,y)=F(x) F(y)+ Z : Op; /j s % sin (n;/s) ds /yt_3sin (n;/t)dt

=t sin? (n;) 1

Integration by parts, taking u = s~', dv = s~ %sin (n,/s) gives

/lm ssin (1;/s)ds = (s—lw} - /j e

nj 1y
_cos (n;)  cos(n;/z) N (sin (77]-/3)}m
1 X 77J2’ 1
_ cos(ny) _ cos(ny/x)  sin(n;/x) _ sin(n;)
U 1) m U

where the first and the last terms of this sum are equal since 7; = tan (n;) . Thus

Hiey) = P F)+Y o0

x (“iﬂ (n;/x) — nj cos (m/ﬂf)) (ysin (n;/y)

)

—ym cos (773'/3/))
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x,y > 1. The change of variables F (r) = u = 1 — 273, F (y) = v gives the corre-
sponding copula

C(u,v) = uv+ Z 6p] sm 77(]1) = (Sin (,?/]i _1—7: . — n; cos (n; \S/E)>

X (Sm (17]_1 _1?}_ v) — n; cos (n; m)> ,

u,v € [0,1].

7.5.2 Some finite dimensional densities

Several examples illustrate different cases which appear when considering a finite set

of strictly positive canonical correlations. There is not a closed form for the solutions

2
of x = tan (z). Approximate values are given below, where (; = <2fzfns;“ ) .
J J

nj = tan (n;) | sin (n;) G
4.49341 | —0.9761 | 0.77017
7.72525 0.9917 | 0.12943
10.9041 | —0.9958 | 0.10101
14.0662 0.9975 | 0.00438

=W N .

Table 7.2: First roots of x = tan (z), and other related values

One-dimensional

If only the first canonical correlation is non-null then condition (7.19) is satisfied iff

—2p; sin (771 v1— u) sin (771 v1— v)

sup <1

(wv)e0,1? | 3 sin? il <

Since

sin (mv/1 —u
min (771 ) =sinn; <0,

u€(0,1] V1 —u
and the minimum is attained at v = 0, while
sin (771 v1— v)

max = >0,

ve[0,1] 1 —w
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and the maximum is attained at v = 1, (7.19) is satisfied iff %2% < 1, equivalent
to .
—3sin (1)

~ (0.3258.
2n1

p1 <

From Table 7.2 we can compute the correlation coefficient from (7.21):

1—cos (m)\”
Cor(X,Y) = 8m (7 )
My sin (1)
— 0.61614p,.

Hence, if N =1 the bound for the correlation is 0.20074.

Example 7.5.2 FEzpansion (7.18) with p; = 0.3258 > py = 0, gives

he) = £ 70 |1+ 255 wsinln/o) ysin (/)|
T ll + 0'2;72 xsin (n;/x) ysin (nl/y)} , T,y > 1,

sin®

that is the density of a 1-dimensional diagonal distribution with marginals Pareto(3,1).
Figure 7.11 shows the density of the corresponding copula

L 20.3258 sin (1 v/1 — u) sin (/1 — v)
3sin® ()  V1—u JVi—-v

T T i . T T
1] Dﬁuﬂﬁ oz 02 D#vﬂﬁ

Figure 7.11: Density c (u,v)(Pareto marginals): p; = 0.3258
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Two-dimensional

The complexity of this function, when two positive correlations are considered, has
not so far allowed us to find the values p;, po which satisfy neither condition (7.19),
nor condition (7.20). We give a less general necessary condition, obtained when the

second term of the sum vanishes?, i.e., taking v/1 —u = %;“0 = 37—’; Then we have

5 . ]-7
3 = sin® (n;) V1 —u
2 punne sin 2m /1) _
3sin? (1) 27 -
3 sin”
;< TS () g 5706,

i sin (27 /7o)

As in the previous case, from Table 7.2 we can compute the correlation coefficient
from (7.21):

Cor (X,Y) = 8(pi(1+ p2(2)
= 0.61614p; 4+ 0.10355p5.

We cannot compute the bound in this case but it is clearly higher than the correlation

in the one-dimensional case, as the following example shows.

Example 7.5.3 Let us consider py = 0.5 > py = 0.1 > p3 = 0. Ezpansion (7.18)
gives a 2—dimensional bivariate diagonal density with marginals Pareto (3,1). The

graph below shows the density of the corresponding copula:

0.5-2 sin (/1 —u)sin (m¥/1—0)
3sin? (n1) /1 —u V1i—v
0.1-2 sin UQM) sin (772 V1 — v)
e (172) /1 —u V1—v

c(u,v) =1+ +

(u,v) € [0,1]%.

2Taking ¢/1 —u = an we obtain a negative value, so the condition is trivially satisfied.
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Figure 7.12: Density ¢ (u,v) (Pareto marginals): py = 0.5, ps = 0.1

Here Cor (X,Y) = 0.31843

7.6 Summary

Table 7.3 summarizes the main properties of the constructed joint bivariate densities

h (x,y): for every marginal variable we give the correlation of the family, the necessary

and sufficient condition for A to be a density if N = 1, and a necessary condition if

N =2.

Marginal distribution | Cor (X,Y) N =1 N =2
_1)?
Uniform (0,1) % ch\;l (;’,j’“_‘11)4 o < % o (le/g) < %
N 2
Ezxponential (1) S p; (%ﬁéﬂ”) p1 < 0.40276 | py < 0.61198
=1 )
N 1\2
C . L (dk— 2 _1
Logistic (0) 3 1;1 %:)21) p<i 10/_13 n (Pi/;S) <1
p
Pareto (3,1) 8N ps (;;g;’;{;;;;) pr < 0.3258 | py < 0.52706

Table 7.3: Some properties of the constructed bivariate densities
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7.7 Testing independence

Suppose that h is the density of a cdf H, of the form
k
h(z,y) = c(0) exp {Z 0;L; (F () L; (G (y))} : (7.22)
j=1

where 6 = (01, ...,0;)", ¢ () is a normalizing constant and L; (¢) are the shifted Legen-
dre polynomials on [0,1]. If the marginal cdf’s F,G are known, Kallenberg and
Ledwina (1999, [62]) showed that the null hypothesis of independence (Hy : 0 = 0 vs.
H; : 0 #0) is rejected by the score test for large values of

n

& 2
Z {% Z L (F(X;) L; (G (Yi))} , (7.23)
j=1 i=1
where (X;,Y;), ¢ = 1,....,n are iid as (X,Y). Thus this test is based on the cor-
relations Cor (L; (F (X)), L; (G(Y))), j = 1,...,k. If k = 1, this is a test on the
significance of Spearman’s correlation coefficient pg. Notice that variables L; (F' (X))
are uncorrelated and standardized, but they are only principal components if X is
standard logistic. Cuadras (2002, [16]) suggests that the score test for independence
should be based on L; (F (X)) only if marginals are logistic. Otherwise, the principal
components Fj, G; should replace L; (F' (X)). For instance, the statistic

k n 2
1 1
—= D 5o (& exp (—Xi/2)) Jo (5 exp (—Yi/2)) (7.24)
jzl{\/ﬁizljo(éj)z : ’
is proposed as a score test when marginals are known to be exponential with unit
mean. For example, if the true bivariate family is given by (7.22) with exponential
marginals with unit mean, n = 25, £ = 1, significance level of 0.05, the test for

independence proves to be uniformly more powerful using (7.24) than using (7.23).



Concluding remarks

We have developed the theoretical framework required to extend the Related Metric
Scaling techniques to the continuous approach. Next step must be to formulate this
extension explicitely, using the formulae obtained in Chapter 3 for the joint and the

intersection kernels, from the Distance Based methodology.

The covariance between functions of two random variables, fixing one of the mar-
ginal variables, has been used in the definition of the intersection between kernels.
We have obtained a variety of properties of the covariance between functions of two
random variables, joined by a symmetric and PQD bivariate distribution. Most of
these properties are obvious. Our purpose has been to present most of the expected
properties of this inner product, and to relate them with the joint distribution func-
tion. We hope that other researchers find these presentation useful. As an application
of the properties of the covariance, we have proved the addequacy of a new affinity
measure between functions, which depends on H. We have defined and studied the
main properties of the H—affinity. A number of functions and joint parametric fam-
ilies of distributions have been studied. We expect to find further results involving

other sets of functions and distributions, relevant in Probability and Statistics.

The dimension of a joint distribution H € F (F,G) has been defined by means
of the H—affinity. The cardinality of the set of eigenvalues of the covariance kernel
H (z,y) — F (z) G (y) may determine this dimension. If H can be represented via a
diagonal expansion, the number of non-null canonical correlations gives the dimension
of H. It has been obtained for some parametric families and we expect to obtain the
dimension of other distributions. The dimension of a joint distribution is null if there
is stochastic independence, and infinite countable if H is the Fréchet upper bound.
Hence, the dimension may be viewed as another “measure” of dependence between

two random variables.

Finally, we have applied the diagonal expansion method to construct some specific

133
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diagonal families via principal components. We have given necessary and sufficient
conditions for the densities in the one-dimensional case. Our research is now focused
in the case of two non-null canonical correlations. When H can be represented by
means of a diagonal expansion, we have found that the maximum correlation increases
if the dimension (the number of non-null correlations) is higher. We think that this
method may be useful to simulate bivariate samples with fixed correlations and given
marginals. This method also suggests that the standardized principal components
may improve some independence tests and goodness-of-fit tests as well. We expect
to confirm this via simulation studies. The non-symmetric case has not been studied

yet.
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Resum/Summary

Introduccid

L’interés per comprendre les lleis que regeixen els fenomens de l'univers podriem
dir que és una caracteristica de la naturalesa racional de I’home. Partint de la simple
observacié del fenomen, la radé procura esbrinar el cém, el quan i el perque es produeix.
El coneixement de les lleis que regeixen la Natura permet a 'home exercir un cert
domini sobre aquésta. L’home pot volar, per exemple, gracies a haver conegut les
lleis de la gravitacié universal, de la mecanica, de la hidrodinamica, etc. Aquestes
lleis son molt complexes perque la realitat ho és: la caiguda lliure d'un cos que es
troba a una certa alcada ve determinada per la forca d’atraccié que exerceix la terra
sobre aquést; 1'energia, lligada a la forca d’un cos que es desplaca, la podem calcular
mitjancant el producte de la massa d’aquest cos, ’alcada a la qual es troba en la seva
caiguda i 'acceleracié gravitatoria (els fisics ens han dit que val 9.8 m/s?). Si tenim
en compte el fregament de I'aire que s’oposa a la caiguda lliure del cos, els calculs es
compliquen, pero s’ajusten més a la realitat. La caiguda lliure d’un cos es regeix per
lleis majoritariament “deterministes”. Sabem amb total certeza que si deixem anar
la poma que portem a la ma, aquésta es desplacara fins a terra amb un moviment
uniformement accelerat; i aixo passara sempre que repetim ’experiencia de deixar

anar la poma.

D’altres fenomens, en canvi, no observen aquest comportament. No totes les
pomes d'un arbre assoleixen el mateix pes malgrat créixer a la mateixa branca, haver
rebut el mateix sol, etc. La variabilitat del pes d’'una poma ens adverteix que som
davant de fenomens de naturalesa diferent, no determinista. Abans de veure la poma
i posar-la sobre una bascula no podem saber quan pesa; en canvi, estem segurs que
caura si la deixem anar a l'aire. Diem que el Pes és una variable aleatoria (en el sentit
de I'Estadistica). Si hem estat pesant la collita sencera d’'un camperol i hem pogut

saber el pes de totes i cadascuna de les pomes, i hem averiguat que el pes mitja ha
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estat de 200 grams, allo que és raonable esperar és que una poma qualsevol pesi uns
200 grams. La freqiiencia amb la qual es presenten uns valors de pes concret ens fa
intuir allo que és més “probable”. Cal estudiar la llei (de probabilitat) que regeix
cada fenomen, deixant de banda d’altres variables que complicarien excessivament el
model. Una vegada caracteritzada la llei de probabilitat d’una sola variable, podrem
calcular la probabilitat que la variable prengui un valor concret, o valors menors o
igual que un valor donat. La funcié que assigna a qualsevol nombre real, diguem-li x,
la probabilitat que una variable (per exemple, el Pes) prengui valors menors o iguals
que x s’anomena funcio de distribucio de la variable. El comportament en probabilitat
de les variables aleatories ve perfectament explicat per llur funcié de distribucid. Si
assignem el valor 0 al resultat de sortir cara en llencar una moneda, i 1 si surt creu,
la funcié de distribucié val 0 per tota x < 0, val % si0<zx<l,ivallsix >1.
Si assignem el valor 0 al resultat de sortir parell en llencar un dau, i 1 si surt senar,
la funcié de distribucié val exactament el mateix que en I'exemple anterior. S’han
trobat models generals als quals s’ajusten moltes variables des d'un punt de vista
experimental. Aixi, s’ha descrit la funcié de distribucié de probabilitat de variables
que prenen valors en un conjunt numerable o finit (com les dels darrers exemples) i
també de variables que s’anomenen continues perque poden prendre infinits valors dins
d’un conjunt no numerable (i llur funcié de distribucié també és continua). La més
coneguda és la llei Normal, i va ser la distribucié més utilitzada fins aproximadament
I’any 1930. Després, en créixer la recerca en ambits on predominaven dades amb un
comportament que dificilment podia ajustar-se al model Normal, es van obtenir les
funcions de distribucié d’altres lleis univariants (uniforme, Cauchy, Gamma, Laplace,
Pareto, Weibull, etc.). Les variables amb un comportament en probabilitat segons
algun d’aquests models tenen totes la mateixa forma en la seva distribucio, i només
es diferencien per la localitzacié d’aquestes dades, o la seva dispersié en torn a la

mitjana.

Una vegada 'estudi de les distribucions univariants ha assolit un cert nivell, la ne-
cessitat de comprendre millor les interrelacions entre les variables porta a que s’estudii
el model de probabilitat d’un conjunt de variables. Si es tracta de només dues vari-
ables aleatories X i Y, es parla de la distribucié bivariant del vector aleatori (X,Y).
La funcié de distribucié bivariant modela d’alguna manera la relacié de dependencia
entre dues variables. La mesura de dependencia més utilitzada és la covarianca en-
tre les variables. Aquésta es defineix com ’esperanca del producte de les diferencies
entre cada variable i la seva esperanca. Aquesta mesura de dependéncia depén de les

unitats de cada variable, i s’estandarditza dividint per ’arrel quadrada del producte
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de les covariances de cadascuna de les variables amb ella mateixa (la varianca de cada
variable). Aquést és 'anomenat coeficient de correlacié de Pearson. L’'index obtingut
és adimensional, pren valors entre —1 i 1, assoleix aquests maxims quan hi ha una
relacié lineal entre les variables i per aixo es considera una mesura de dependencia
lineal. D’altres tipus de dependencia tenen molt d’interés: la dependencia que poden
presentar variables que només prendran dos possibles valors, i el comportament en
probabilitat de les quals s’estudia en una taula de freqiiencies (o de contingencia) 2 x 2;
el cas d’independencia estocastica, en el qual la probabilitat d’una variable no s’afecta
en absolut per la de 'altra; o el concepte de dependéncia positiva (o negativa), és a
dir, que valors “grans” d’una variable tendeixen a anar units (probabilisticament) a

valors grans (o petits) de 'altra variable.

Tal i com va passar amb les distribucions univariants, durant molt de temps el
model bivariant que ha predominat ha estat el Normal Bivariant. Les caracteristiques
d’aquest model el fan molt facil d’utilitzar, i bona part de les tecniques estadistiques
d’analisi assumeixen normalitat (uni o bivariant) en les dades. Malgrat aixo, aquesta
assumpcié és molt dificil de verificar i, fins i tot, de sostenir en moltes situacions
experimentals en les quals apareixen dades clarament no normals. Actualment s’han
descrit molts models multivariants, els quals ajusten bé dades experimentals, tal com
han pogut comprovar diversos investigadors. Els primers treballs en els quals es con-
strueixen distribucions bivariants, fixant les distribucions de cada variable per separat
(és a dir, les marginals) sén de Hoeffding (1940, [52]) i Fréchet (1951, [42]); aquest
darrer troba les fites superior i inferior per la classe (el conjunt) de totes les distribu-
cions bivariants amb les mateixes marginals. Aquesta classe rep el nom de classe
de Fréchet. Kimeldorf i Sampson (1975, [65]) proposen cinc condicions que hauria
de satisfer qualsevol familia uniparametrica de distribucions. Hi ha moltes families,
a més de la Normal Bivariant, satisfent aquestes condicions, i s’utilitzen en molts
camps d’experimentacié: la familia Farlie-Gumbel-Morgenstern (FGM), Ali-Mikhail-
Haq, Frank, Cuadras-Augé, etc. Donada una familia parametrica de distribucions,
cal conéixer quin és el rang de dependencia que cobreix. També interessa saber si la

dependencia entre les variables augmenta quan ho fa el valor del parametre.

L’estudi de la distribucié conjunta de dues variables, per tant, pertany a I’ambit
de T'estudi de les relacions multivariants. L’objecte principal de I'Estadistica és es-
tablir conclusions sobre fenomens poblacionals a partir de mostres de dades, amb una
certa confianca. Aleshores, plantejarem models poblacionals. Amb aquesta perspec-
tiva, ens hem plantejat ’estudi de la dependencia entre dues variables aleatories a

partir de la covarianca als diferents nivells en els quals es treballa en Estadistica. En
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primer lloc, una mostra de cada variable aleatoria ens permet obtenir una matriu de
dades amb p columnes (una per cada variable), i on cada fila conté les dades d'un
sol individu; la matriu té un nombre finit de files, tantes com individuus formen la
mostra. Si estudiem tota la poblacié i la variable pot prendre valors en un conjunt
no numerable (continu), tindrem una matriu infinita o, millor, una funcié de dues
variables o nucli. En el cas que tinguem dues matrius obtingudes del mateix conjunt
d’individuus, o bé, dos nuclis definits sobre el mateix espai en el cas continu, podem
estudiar la relacié entre aquestes dues matrius, o entre aquests dos nuclis, mitjancant
alguna operacié que ens permeti obtenir la seva covarianca. A un nivell diferent, po-
dem estudiar la covarianga entre dues variables aleatories i, també, entre qualsevol
parella de funcions d’aquestes variables. Naturalment, la dependeéncia entre aquests
objectes (matrius, nuclis, funcions de variables aleatories) esta inserida en la funcié
de distribucié conjunta de les dues variables. Si hem estat capacos de construir una
familia de distribucions bivariants, amb un o més parametres multivariants, haurem
d’estudiar si aquest parametre és veritablement un parametre de dependencia, els seus

possibles valors, etc.

Aquésta ha estat la motivacié d’aquesta tesi. A continuacié presentem un resum
dels principals resultats d’aquest treball, seguint ’ordre que acabem d’introduir. Hem
treballat amb matrius, nuclis i funcions de variables aleatories lligades per una dis-
tribucié conjunta que té la propietat adicional de ser simetrica i amb dependencia
quadrant positiva (PQD); aleshores, les matrius estudiades sén simetriques i semi-
definides positives, els nuclis també ho sén, i les propietats que s’obtenen de I'estudi
de la covarianga entre funcions i també la mesura d’afinitat que hem definit a partir
de la covarianca, son propietats valides en el cas que la distribucié conjunta sigui
simetrica i PQD. Finalment, hem construit distribucions bivariants simetriques a par-
tir de les expansions diagonals, i hem assumit que les correlacions canoniques també
son no negatives. En finalitzar la presentacié dels Resultats donarem les conclusions

principals que se n’han derivat.

Resultats

S’estudia, en primer lloc, la dependencia entre una classe de matrius, mitjancant
la definicié d'unes operacions unio i interseccio. Extendrem al cas continu aquests
mateixos conceptes, definint un producte entre funcions de dues variables (nuclis) i les
operacions unio i interseccio. Veurem que el producte de dos nuclis és, en particular, la

covarianca entre dues funcions, i estudiarem la covarianca entre funcions de variables
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aleatories i una mesura d’afinitat. Finalment, aplicarem el métode de les expansions
diagonals de Lancaster per construir distribucions bivariants simetriques utilitzant
com a variables canoniques les components principals de les variables (aquéstes s’han
pogut obtenir en quatre casos: uniforme, exponencial, logistica i Pareto). Estudiem
el rang de dependencia que cobreix cadascuna de les families construides. Per tal
d’agilitzar la lectura d’aquest resum, ens remetem al text original per les proves com-

pletes als resultats presentats.

Capitol 2. Dependencia entre una classe de matrius

Considerem el conjunt M, = {A | A matriu simdtrica n x n (s.)d.p.}. Es a dir,
A = A’ (la matriu trasposada d’A) i tots els valors propis sén estrictament posi-
tius (definida positiva, d.p.) o al menys n’hi ha un de nul (semidefinida positiva,
s.d.p.). Siguin X i Y matrius n X p amb p < n, i definim A = XX, B=YY".
Aleshores A,B € M,,. Per la simetria d’A i de B, existeixen (teorema de descom-
posicié espectral) matrius ortogonals U, V i matrius diagonals A = diag (A, ..., \n) ,

M = diag (u1, ..., ptn), tals que
A=UAU=> Auu), B=VMV' =) vy,
i=1 i=1

onu; iv;, ¢=1,..,n s6n les columnes ortonormals d’U i de V, respectivament.
. . . . . . r
Per ser s.d.p., existeixen les arrels racionals de la matriu, diguem-li As, r < s, per

qualssevol enters positius 7, s. En particular, I’arrel quadrada es pot expressar com

A% = UARU = Y Nuad,
i=1

Les operacions unié i interseccié de matrius
La intersecci6 A AB ilaunié AV B d’A,B € M,, es defineixen com
AAB = % (a*B!+BiAY),

AvVvB = A+B-AAB.

La segilient proposicié resumeix les propietats d’aquestes operacions.

Proposicié 1 Siguin A, B € M, 1 sigui 0 la matriu de zeros, nxn. La interseccio i la
unid d’A i B son també matrius nxn, simétriques, i la unid és, a més, (semi)definida

positiva. Les propietats son:
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1. Commutativitat:

AAB=BAA, AVB=BVA.

2. Ortogonalitat: AB = 0 si, i només si (sii)

AAB=0, AVB=A+B.

3. Igualtat: si A = B aleshores

AANA=A, AVA=A.

4. Element nul: la matriu de zeros és l'element nul per a la interseccio i el neutre
per a la unio:
AANO=0, AvVvO0o=A.

Una relacié d’equivaléncia
Siguin A, B € M,, i u € R", un vector tal que
Au = \u, Bu = pu,

per alguns A, 4 € R. Direm que u es un vector propi comi a A i a B, i es comprova
que A AB i AV B tenen el mateix vector propi u, i que /\%,u% A+ pu— )\%,u% son els
corresponents valors propis A ABi AV B.

Suposem que A, B comparteixen tots els vectors propis, és a dir existeixen A, M
matrius diagonals dels valors propis tals que A = UAU’, i B=UMU’. Podem
definir les segiients relacions d’equivalencia. Siguin A, B € M,,, amb vectors propis

n

normalitzats {w;}_,i {v;},_,, respectivament. Diem que A és equivalent a B sii

{w};_, ={v;},_,. Escriurem A ~ B. Indicarem la classe per
U ={M e M, | M =UAU’, per alguna matriu diagonal A > 0} .
El resultat obtingut per un sol vector propi, aplicat a tots els vectors propis u,,

de dues matrius A, B € [U], ens permet caracteritzar els valors propis de les matrius
unio i interseccié. En efecte, siguin A = UAU’ i B = UMU’ matrius de M,, amb
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A ~ B, i U, la matriu ortogonal (comuna) dels vectors propis, amb A i M diagonals.
Aleshores
AANB=UIU, AvVB=UXU,

onT =AZM:2 i ¥ =A+M — A?M:? sén diagonals.
Una relacié d’ordre parcial

Siguin A,B € M,,, A ~ B, amb valors propis {\;}_, i {u:},_,, respectivament, i
amb matriu comuna de vectors propis U. Direm que A és més petita que B, i notarem
aquest ordre parcial per A < B, si \; < p;, per totai = 1,...,n, on I'index 7 es refereix

a I’i—essim vector propi.

Com a conseqiiencia immediata es té el segiient resultat: siguin A, B € M,,, amb
A ~Bi A < B. Aleshores
(1)) ANAB~A (~B)itambé AVB ~ A (~B),
(1)) ASAANB<SAVB<B.

11 11
La prova es deriva de les desigualtats A\; < A2p? < A + p; — A2 < pg, que son
els valors propis de A, A A B, AV B i B, respectivament.

Finalment, s’obtenen alguns resultats sobre la traca de les matrius ordenades. La
traga d’una matriu quadrada (amb el mateix nombre de files que de columnes) és la
una matriu simetrica, es comprova que tr (A) = > " | \;, éssent {\;} el conjunt de
valors propis d’A. Cal observar que tots els valors propis sén no negatius, i d’aquest

fet es deriven facilment els resultats presentats:

Proposicié 2 Siguin A,B € M,, A ~ B, tals que A = UAU’, B=UMU’, on
A =diag (N\;), M = diag (u;). Aleshores:

(a) tr (A AB) = Xy A,

(8) tr (AVB) = S0, (At — Aaf ).

La prova s’obté dels valors propis de les matrius simetriques A A B, AV B. Ob-
servem que si A < B s6n matrius de M,,, aleshores, tr (A) < tr (B). Per tant es

prova que
tr(A)<tr(AANB)<tr(AvB)<tr(B).

Aquests resultats per matrius simetriques, semidefinides positives en general coin-

cideixen amb els obtinguts a [28] per les matrius de productes creuats, d’aquestes



152 SUMMARY

mateixes caracteristiques, associades a dues matrius de distancies obtingudes del
mateix conjunt de n objectes, mitjancant la definicié d’una distancia conjunta. Aque-
sta tecnica és el RMS (Related Metric Scaling). Aixi, hem establert una base teorica
que podria ser 1til en d’altres tecniques d’Analisi Multivariant basada en Distancies,

aixi com en la interpretacié geometrica del RMS.

Capitol 3. Extensions al continu

Presentem les operacions unié i interseccié entre nuclis simetris semidefinits positius,

establint la base per I'extensié al continu del Related Metric Scaling.

Calen algunes nocions preliminars. Siguin (2, F1, My) i (9, F2, My) dos espais
de mesura. Una funci6é de dues variables a valors reals, K (s,t), mesurable a ’espai
producte (21 x Qq, F; X Fy) s’anomena nucli. Es diu que K és simetric si per a cada
parella (z,y) € 1 x Qy, K (z,y) = K (y, ).

Si K és un nucli (simetric) de Hilbert-Schmidt, i.e.,

/ab/asz(S,t)dF(s)dF(t) < 00,

existeix una expansié en funcions propies de K, convergent en mitjana quadratica
respecte de la mesura producte dF (s) dF (t). Aixo és, existeix una base {¢;}, completa

i ortonormal a L?*([a,b], F), tal que
K (21, 22) = 30 Miki (1) & (22) (4)
i=0

on els conjunts numerables {\;} , {&;} de valors i funcions propies de K sobre F satisfan

/ € (21) K (21, 22) dF (21) = E[& (X2) K (X1, 22)] = M (22).

Direm que un nucli K es s.d.p. sii tots els seus valors propis no nuls sén estricta-
ment positius. Direm que és d.p. si tots els seus valors propis sén estrictament més
grans que 0 i els corresponents vectors propis formen un sistema ortonormal complet
(vegi’s [63]). Denotarem el conjunt dels nuclis continuus, simetrics i (s.)d.p. a X x X
per Ky« x. El Teorema de Mercer (vegi’s [11]) estableix que els nuclis d’aquest conjunt

es poden expandir com a (i) i que la serie convergeix absoluta i uniformement.

Introduim una classe de nuclis que apareix en el context de 'estudi assimptotic

dels U-estadistics. Un nucli K, simetric, es diu degenerat si I’esperanca matematica

By (K (2,Y)) = / K (x.y) dF ()
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és constant gairebé per tota x (g.p.t. ).

Com que treballem amb nuclis simetrics, també es pot definir per Ex (K (X, y)) =

¢, amb c constant, g.p.t. y.

Un nucli G € Lyyx és doblement centrat respecte d’una distribucié F' si per tota

parella z, 2’ € X:

Ex (G(X,2") = /XG(x,:E')dF(x):O,

Ex (G (z,X") = /XG(x,x') dF (') = 0.

Sigui (X, Y) un vector aleatori definit a X x )}, amb funci6 de distribucié conjunta
H i marginals F, G, respectivament. Aixi, H pertany a la classe de Fréchet F (F,G).
Notarem (X,Y) ~ H. Definim a continuacié el producte dels nuclis Ky € Kyxy i

K5 € Kyxy, que, com es veura, és la base de les operacions unio i interseccio.

Definicié 3 Sigui H € F (F,G) una funcid de distribucié bivariant absolutament
continua respecte de la mesura producte FG. Siguin K1 € Kyxx, Ko € Kyxy. L’
H—producte Ky % Ky és un nucli definit a X x Y com

(K x Ko) y (2,y) = Cov (K (x, X)), Ky (Y, y)) (i)

per tota parella (x,y) € X x Y, amb (X,Y) ~ H.

Teorema 4 Siguin K1 € Kyxx, Ky € Kyxy dos nuclis que satisfans les condicions
de la definicié del producte (ii), i considerem llur expansions en funcions i valors

Propis
K =3 \N&®¢&, Ko =" um; @ m;,
i=0 =0

on &®E&; expressa &; (x) & (x)) per cada parella (z,x') € X x X i analogament, n; @n;.
Aleshores, donat un vector aleatori (X,Y) ~ H, definit a X x ),

Kix Ky = 3 Ajs;Cou (& (X) 15 (V) & @ .

4,j=0

La prova d’aquest teorema es deriva de ortonormalitat dels conjunts {&;}, {n:},
el teorema de la Convergencia Dominada, que ens permet intercanviar la integral amb

les sumes infinites i, el teorema de Fubini, en el calcul de la covarianca (i7).
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Les operacions unio i interseccié de nuclis

Sigui K € Kyxx un nucli doblement centrat, amb K = i A& ® & per tota parella
(x,2") € X x X. L’arrel quadrada de K, que notarem K %Z,_ és el nucli de Ky definit
per K2 = i Ai%fi ® &;, amb i N\, < o0. Qualsevol arrel racional K=, m < n es
defineix anéfl:()tgament. -

Les definicions de I’H —producte i I’arrel quadrada ens permeten definir les opera-

clons unio 1 interseccid entre nuclis.

Siguin Ky, Ky € Kyxx. Sigui H € F (F, F') una funcié de distribucié simetrica,
amb rang de les variables marginals igual a X'. La interseccié K1 A Ky ilaunidé K1V K,

de K1, Ky € Kxxx es defineixen com

1 1 1 1 1
K\ANEy = agq*53+kg*Kﬁ,
K1VK2 == K1+K2—K1/\K2,

on % és I"H —producte (7).

Es obvi que K1 A Ky, K1V Ky també sén nuclis simetrics a X' x X'. La segiient

proposicio resumeix les propietats d’aquestes operacions.

Proposicié 5 Siguin K1, Ky € Kyxx 1 sigui Ko el nucli que val 0 g.p.t. (z,y) €
X x X, ie., Ko(x,y) =0. Lunié Ky V Ky és un nucli simétric semidefinit positiu.
En canvi, K1 N\NKy és simétric, pero no és s.d.p., en general. Les operacions interseccio

1 unio satisfan les propietats segients:

1. Commutativitat: per tota H € F (F, F)
KiNKy=K,2NKy, KV Ky=K,V K.
2. Element zero: per tota H € F (F, F), Ky és el neutre de la unio,
K AKy= Ko, KV EKy= K.

3. Igualtat: si H assoleix la fita superior de Fréchet, HT, i K1 = Ko, i.e., g.p.t.
(x,y) € X x X, Ky (x,y) = Ky (z,y), aleshores

KiNKy =K =K,;, K| VKy=K, =K,
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4. Ortogonalitat: si X,Y son estocasticament independents (H (z,y) = F (z) F (y)
g.p.t. (x,y) € X x X), aleshores

KiNKy =Ky, KV K=K+ K.

La simetria dels nuclis interseccio i unié es deriva directament de la simetria dels
nuclis implicats. Fent servir raonaments analegs als utilitzats en el cas de matrius,
s’obté la no negativitat dels valors propis de la unié. La commutativitat se deriva
directament de la commutativitat de la suma de funcions mesurables a I’espai producte
i 2) també és directe. Es comprova que l'arrel quadrada només esta ben definida si
la covarianca entre les funcions propies dels nuclis és d;;, la delta de Kronecker. En
particular, si I’H —producte és respecte I’'H', K 2x K2 = K. Aleshores 3) és evident.
El calcul de la covarianga (del producte) de les funcions K (X, -), Ky (-, Y) déna 0 si
X 1Y so6n independents.

Una relacioé d’equivaléncia

Suposem que els nuclis simetrics s.d.p. K;, Ko comparteixen un conjunt numerable
(o finit) de funcions ortonormals {;} per alguns conjunts {\;}, {u;} de valors propis,

amb dimensions N; < Ny < 00, respectivament, en el sentit que
Ny N2
Ki=Y M&®&, K= &,
i=0 i=0

i assumint que A\g = pp = 0 podria no ser un valor propi d’aquests nuclis. Aleshores

direm que K; i K5 sén equivalents, i notarem K; ~ K.
Obviament, si N1 < Ny podem escriure la primera expansiéo com
No
Ki=X Nfi® fi,
i=0
on )‘Nl-‘rl = /\N1+2 = ... = /\N2 = 0.

Denotem la classe d’equivalencia dels nuclis de X' x X' que comparteixen les funcions

propies {&;}, i =0,..., N, per
N N
[€N]:{KE’CXxX|K=Z>\Z£i®§iZO, Z)\?<oo}.
i=0 i=0

Aixi, Ky ~ Ky sii Ky, Ky € [€x]. Siguin Ky, Ky € [€x] amb valors propis {\;}, {u:},

respectivament, amb > \; < oo, Y p; < 0o. Aleshores
i=0 i=0

Ky NKy € [(y] amb valors propis {/\f,uf} ,



156 SUMMARY

11
K,V K, € [€y] amb valors propis {)\i + i — A uf} :

Es comprova facilment que I’ H —producte és commutatiu si els nuclis comparteixen
les funcions propies. El calcul dels nuclis interseccié i unié prova directament el

resultat, utilitzant 'ortonormalitat de les funcions propies.

La dimensié dels nuclis

Es tenen les segiients propietats (vegi’s [11] per la prova):
Teorema 6 La dimensio dels nuclis satisfa les seglients propietats:

1. Un nucli continu, simeétric no nul posseix valors i funcions propies amb car-
dinalitat sz sii el nucli no es pot escriure com a suma finita del producte de

funcions de cada variable per separat.

2. Si el nucli K només té un nombre finit de valors propis Ay, Mg, ..., A, ha de tenir

dimensio finita i s’ha de poder representar com
K (s,t) = 32001 i (s) & (1)
Un nucli de dimensio finita només té un nombre finit de valors propis.

3. Tots els valors propis d’un nucli real simeétric son reals. El nombre de valors
propis no nuls d’un nucli és la seva dimensio. Si un nucli és definit positiu (tots
els valors propis son estrictament positius) la seva dimensio és infinita. Si K

és semidefinit positiu, la seva dimensio és finita.

Una relacié d’ordre parcial

Considerem K; ~ K, tals que dim (K;) = Ny < dim (K3) = Ny. Siguin {\;}, {@:},
els conjunts de valors propis respectius. Diem que K7 és més petit que Ks, i denotem
aquest ordre parcial per K1 < Ko, sii A; < i, i =0,1,..., Ny.

Proposicié 7 Siguin K, Ky dos nuclis de [£y], amb Ky < Ky. Aleshores

K S K AKy <K VK, < K.
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La prova es deriva de la relacié entre els valors propis d’aquests nuclis. Ky S Ks

equival a \; < pu;, Vi. Com a conseqiiencia, s’obté que
11 11
ANi SAPpE < ANt i — A2l <

La traga d'un operador lineal K de nucli K, mesurable respecta a una mesura u es

defineix com

tr(K,) = /XK(S,S) du(s) .

Denotem, simplement, ¢r (K,,) = tr (K). La traca d'un nucli K respecte d’'F' és la

suma dels valors propis del nucli respecte de la mesura F, tr (K) = > \;, on K pot
i=0

expandir-se com K = > \;§ ® &, per un conjunt apropiat de funcions propies {¢;},
i=0
ortonormals respecte d’F.

Proposicié 8 Siguin {\;},{u;} conjunts de valors propis de nuclis K1 ~ K. Les

traces son:

© 11
tr(Ky NEKs) = 3 AP,
=0

tr (K, V Ky) = tr(Ky)+tr(Ky) —tr (K AK,).

Es comprova facilment, per la positivitat dels valors propis, que si K1 < Ko,
aleshores tr (K;) < tr (Ks) i, per tant

tr (Kl) S tr (Kl /\KQ) S tr (Kl V KQ) S tr (KQ) .

Els resultats que hem obtingut per nuclis simetrics son els analegs als obtinguts
per matrius simetriques. Per tant, aquést és el marc teoric per extendre al continu el
Related Metric Scaling.

Hem vist que el producte entre nuclis que ens permet definir les operacions in-
terseccié 1 unié entre nuclis és la covarianca entre una funcié de la primera variable
i una altra funcié de la segona variable. Per tant, en el segiient capitol hem volgut

aprofondir en 'estudi de la covarianca entre funcions.

Capitol 4. Covarianca entre funcions i H-afinitat
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Cuadras (2002, [18]) generalitza el lema de Hoeffding (1940), que estableix cém es
pot expressar la covarianca en termes de funcions de distribucio, a la covarianca
entre funcions de variacié afitada. En aquest capitol ampliem les propietats d’aquest
producte quasi-escalar i definim una afinitat entre funcions, depenent d’H, la funcié

de distribucié conjunta.

El resultat de partida, provat a [18], és el segiient (V' A ([a, b]) representa el conjunt

de funcions de variaci6 afitada en [a,b] ).

Teorema 9 Si a(z) i f(y) son dues funcions definides sobre [a,b], [c,d], respectiva-

ment, tals que:

1. Les dues sén de variacié afitada, « € VA ([a,b]), € VA([e,d]),

2. E(|a(X)B(Y)]), E (la(X)]), E(|B(Y)]) < o0,

aleshores

Cov (a(X), B(Y)) = / / (H(z,y) — F(2)G(y)) da(x)dB(y).

Al conjunt de funcions de variacié afitada sobre un interval [a,b] C R, definim el

producte escalar

(a, )y = Cov (a(X), B(Y)).

H(z,y) és una distribucié conjunta simetrica i amb dependencia quadrant positiva

(PQD). Les propietats son les d'un producte quasi-escalar.

Proposicié 10 Siguin «, € BV ([a,b]), [a,b] € R. Notarem (-,-); = (-,-). Es

tenen les seqiients propietats:

1. Per tota o € BV ([a,b]), (-, ) i {(«a,-) sdn lineals:

(ray + sag, 1By +mfBa) = rl{ay, bi) +rm{ay, Ba) + sl {ag, B1) + sm{az, Ba) ,

onr,s,l,m€R. Si0 és la funcid constant igual a 0, aleshores (a,0) = (0, ) =
0.

2. {a, ) = (B,«) (simetria).

3. {a,a) > 0 (no negativitat).
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4. (o, B)y satisfa
(o, B3 < {a,a)y (8, 8)y (12)

amb igualtat sit
(a+tf,a+tB), =0

per alguna constant t.

Aquestes propietats es comproven aplicant la definicié del producte i les propietats

de la integral de Riemann-Stieltjes.
Una relacié d’equivaléncia

Sigui a € BV ([a,b]). Diem que v € BV ([a,b]) és equivalent a a i escrivim v ~ «
si existeix un nombre real g tal que v (x) = a(x) + g (g.p-t. = € [a,b]). La classe
d’equivaléncia que conté a « es nota [a]. La covarianca entre membres de dues classes
d’equivaléncia [a] i [] és la mateixa i qualsevol resultat s’ha de considerar valid
gairebé per tot membre de la classe. A més, els calculs se simplifiquen centrant les

variables aleatories, i.e., considerat ag € [a], amb E (ap (X)) = 0 i, analogament (.

Aquesta relacié d’equivalencia és un cas particular de la segilient: sigui o €
BV ([a,b]) una funcié de variacié afitada. Diem que £ és equivalent a o (§~a) si
existeixen nombres reals h, g tals que & (z) = ha (x) + g, g.p.t. x. Notarem la classe

d’equivalencia que conté a per [a]”.
Una afinitat entre funcions depenent d’H

Cuadras [18] exten el coeficient de correlacié entre funcions per

Cov(a(X),5(Y))
(Var(a(X))Var (3(Y)))

Cor(a(X),0(Y)) =

=

Var(a(X) = [} [} min {F (), F ()} = F () F (y)) da () da (y).

Aquesta correlacié pot existir fins i tot si la varianca és 0. Observi’s que (iv) és el

coeficient de correlacié de Pearson si a1 3 sén la funcié identitat.

Gracies a la desigualtat (ii7) a la Proposicié 10 podem definir un altre coeficient
Ag (a, 3), tal que A% («, 3) prengui valors entre 0 i 1. Aquest coeficient hauria de ser

una mesura de l'afinitat entre o i 3 respecte d’H.
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Definicié 11 Sigui H(x,y) una funcié de distribucid conjunta, simétrica en x,y, i
PQD. Siguin o, € BV ([a,b]). Aleshores Ay (., 3), definida per

(o B)
<O‘7 a)H <ﬁv 6>H

és I’H —afinitat entre les funcions o @ 8 o afinitat respecte d’H.

A (0, 8) =

La segiient proposicié resumeix les propietats de A% («, (3).
Proposicié 12 La mesura d’afinitat respecte d’H, Ay satisfa:

1. 0< A% < 1.

2. Si les variables aleatories X 1Y son estocasticament independents, aleshores
A2 =0,

3. Si a, B sén ortogonals respecte de (-, ), , aleshores A% = 0.

4. St = hfB+g, per algunes constants h,g € R, h # 0, i a,, B no son ortogonals re-
specte a (-, ), aleshores A3, =1 si X 1Y no son estocasticament independents;

altrament, A%, = 0.

5. L’H—afinitat entre funcions de variables aleatories és invariant sota el grup de
transformacions lineals.

La propietat 1 es deriva de la desigualtat (ii7) i la resta s’obtenen de les propietats

analogues de la covarianga entre variables aleatories.

També es comprova facilment que A% (a,a) = 1si H # F® F, que és un corol-lari

directe de la propietat 4.

Es tenen les fites segiients per (o, o), quan H és simetrica i PQD:

0= <a7 O5>F®F < <a7 a>H < <Oz, O4>H+ .

Si H = F ® F hi ha independencia. Considerem la funcié positiva, continua, i de
variacio afitada K
K=H"-FQF-(H-F®F)>0
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Se segueix que K € RS (a x «) . Definim

@ae= [ [ Kadatwiaty)

que és no negatiu, com hem dit. Només cal aplicar la linealitat de la integral de

Riemann-Stieltjes i s’obté
0< <a7a>K = <ava>H+ - <ava>H'

Per dltim, sigui Cor (a(X),B8(Y)) el coeficient de correlacié entre dues fun-
cions a (X)), (Y), i sigui A% (a, 3) la mesura d’H —afinitat. Aleshores Ay+(a, ) =

Cor (a(X), B(Y)) 1 Ay (e, B) < Afy (v, B).-
Capitol 5. H-afinitat i dimensié

Definim la dimensiéo d’H en termes del producte escalar i I’afinitat.

Definicié 13 Sigui @y = (¢,,1 € ) un conjunt de funcions reals de L*([a,b], F'), on
F és la mesura de probabilitat induida per la funcio de distribucio marginal F. La

dimensio d’H és #(Py) si aquest conjunt de funcions satisfa:

1. A% (0 0y) = 0,05 7, 1 A3 (0 0) = 1, 01,0, € Oy

2. A% (o, B) = 0 si o, B € By; on Lortogonalitat és respecte de (-, ) ;.

Clarament, si la dimensié és finita o numerable, aleshores #(®py) < #(Py+),
donat que (o, @)y < (a, @) y+ éssent H la fita superior de Fréchet. Llavors podriem

tenir (o, @)y = 0 perd (@, @) z+ # 0 per alguna a # 0.

Exemples de dimensions sén:

1. Dimensié6 0 si hi ha independencia estocastica.
2. Dimensi6 finita, n > 0 si H és la familia FGM generalitzada.

3. Dimensié numerable 3 si H és la fita superior de Fréchet, la familia de Re-

gressio, o bé, la familia Ali-Mikhail-Haq.

4. Dimensi6 continua s si H és la familia Cuadras-Augé.
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Conjunts ortonormals complets de funcions que apareixen en algunes expansions
de distribucions bivariants podrien satisfer les condicions per la Definici6 13. Per
exemple, suposem que H és una funcié de distribucié bivariant general, amb marginals
F, G (possiblement F' # G), la mesura dH(x,y) és absolutament continua respecte a

dF(z)dG(y) i que el coeficient de contingencia de Pearson ¢?, definit per

b pd
#+1= [ [ )2 /ar@ac)
és finit. Aleshores es té la segiient expansié

AH(z,y) — dF(@)AG(y) = 3 patn(a)bu(y)dF (2)AG(). (©

n>1
on p, sén les correlacions canoniques, ordenades en ordre decreixent, i a,(x), b,(y) sén
les funcions canoniques. Si I'expansié diagonal (v) existeix, la dimensié d'H ve de-
terminada pel nombre de variables canoniques amb correlacions canoniques positives.
En general, quan una distribucié H pot expandir-se mitjancant un sistema ortogonal
complet de funcions, el nombre d’aquestes funcions amb covarianca positiva donara

la dimensié d’H.

Finalitzem aquesta tesi aplicant el métode de I'expansié diagonal de Lancaster per
construir distribucions bivariants, utilitzant les components principals de les variables,

estandarditzades, que son, per construccio, variables canoniques.

Capitols 6 1 7. Construccié de distribucions diagonals via com-
ponents principals

S’ha generalitzat el métode de les expansions diagonals de distribucions bivariants
(Lancaster, 1958, [71]) utilitzant les dimensions principals de cada variable marginal.
Aquesta generalitzacié la proposa Cuadras al 2002. En un primer capitol donem la
base teorica del métode de les expansions diagonals (que es pot veure a [71], [54]), i
donem la base teorica de les components principals de les variables aleatories. Es com-
prova que les components principals estandarditzades de les variables X, Y, diguem-ne
F;,G; , farien el paper de funcions canoniques a;, b; a 'expansié (v). Aixi, en termes

de densitats conjunta h (z,y) i marginals f (z), ¢ (y) aquesta expansi6 equival a

hz,y) = f(x) g (y) 1+§ij ()G, ()] | (vi)

que és la representacié d'una distribucié bivariant amb densitats marginals f, g ([16],

[17]). El vector (de dimensid, pot ser, infinita) de coeficients de correlacié (p1, p2, -..)
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es pot escollir per a construir diverses distribucions amb aquesta representacié. Per
exemple, prenent py > pyi1 = 0, tenim que (vi) representa una familia diagonal
anidada N —parametrica de distribucions. Per tant, aquesta representacié proporciona
un métode per la construccié de distribucions bivariants amb marginals donades, via

components principals.

Per construccio, es tenen les segiients propietats:

1. {F; (X)}, {G; (Y)} sén successions de variables aleatories centrades i incorrela-

cionades entre si.
2. Cor (Fi(z),G;(y)) = pidij.
3. {p; }j és la successio de correlacions canoniques.

4. {F; (X),G; (Y)} és la successié de variables canoniques.

L’expansié (vi) ens permet d’obtenir la densitat ¢ (u,v) de la copula C (u,v) cor-

responent, de forma senzilla. Com

h(z,y) = f(x)g(y)c(F(z),G(y)),

n’hi ha prou amb aplicar el canvi de variables F' (z) = u, G (y) = v, aixi,

¢(u,v) =1+ ]Z_llij} (F~ (u) G; (GTH (v)) -

Cuadras i Fortiana ([26]) provaren que aquesta expansié pot veure’s com un cas partic-
ular de 'escalament ponderat continu (continuous weighted scaling). Cuadras ([17])
expressa aquesta expansio diagonal en termes de funcions de distribucio, i va introduir
una altra extensié d’aquest métode que consisteix a utilitzar les dimensions principals
de cada variable marginal com a conjunts de funcions ortogonals ([16]). Les com-
ponents principals (o direccions) s’han obtingut per X, uniforme a l'interval [0, 1],
X exponencial, X logistica i, finalment, X amb distribuci6 de Pareto («a,6), a > 2,
0 > 0. Vegi’s Cuadras i Fortiana, 1995 [25], Cuadras i Lahlou, 2000 [30], i Cuadras i
Lahlou, 2002 [31].

De cadascuna de les variables de les quals es coneixen les components principals
donem les components principals estandarditzades i, a partir d’aqui, obtenim la forma
general de la densitat bivariant en funcié d’aquestes, la corresponent distribucio, la
copula, i obtenim condicions necessaries i suficients per tal que la representacié diago-

nal correspongui veritablement a una densitat en el cas d'una sola correlacio canonica
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estrictament positiva, i condicions només necessaries en el cas de dues correlacions.
Obtenim també la correlacié de cada familia. En alguns casos, hem pogut identificar

les densitats obtingudes com a pertanyents a una familia coneguda.

Si ; sén les funcions propies del nucli de la covarianga associat al vector aleatori
(X,Y),
K (s,t) = min (F(s), F(t)) = F(s)F(t), s,t€l=a,b],

i fi(x) = f @;(t)dt, aleshores les components principals f; (X), llurs esperances
;1 variances Aj, ens permeten obtenir les components principals estandarditzades
F; (X) = (f; (X) — pj)/ ;. Aixi, substituint aquestes funcions a l'expansié diagonal
(vi) s’obtenen les families diagonals.

Aplicarem el segiient resultat general.

Teorema 14 Siguin X,Y dues variables aleatories, idénticament distribuides (i.d.)
i absolutament continues amb funcio de distribucio marginal F. Amb el canvi de
variables F (z) = u, F (y) = v, escrivim la familia diagonal com la densitat de la
copula corresponent

clu0) =1+ pFf () F (0),

on F}(-) és Fjo F~' (). Aleshores:
1. ¢(u,v), aizi com la corresponent h (x,y), és una densitat si i només si

<1

sup [— Z piF (u) F (v)

(uw)€(0,1]? =1

2. Les correlacions canoniques han de satisfer la condicio necessaria

_ZPJF* FY 1) 17

uniformement en u € [0,1].

3. El coeficient de correlacio de Pearson és

Cor(X,Y) <Zp] )/Var X),

on
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La prova de 1) es basa en imposar la positivitat a la funcié ¢ (u,v). Prenent v = 1,
2) és conseqiiencia de 1). Finalment, com X 1Y sén i.d., les variances sén iguals, i el

calcul de la covarianca de (X,Y) amb el canvi de variables proposat permet obtenir

3).

A continuacio, aplicarem aquest resultat general a cadascuna de les components

principals que es coneixen, per tal d’obtenir les corresponents families diagonals.
Familia diagonal amb marginals uniformes

Siguin U,V variables aleatories amb distribucié uniforme a [0, 1], i.e., amb densitat
fu (u) = 1y (u). Sigui {p;} una succesié decreixent de reals no negatius tals que

1> p1 > pe > ... > 0. Aleshores

1. La funcié

N
c(u,v) = 1+ij 2 cos (jmu) cos (jmv), u,v € [0,1]
j=1

és la densitat d’una familia diagonal amb marginals uniformes a [0, 1] sii

N

sup | —2 Z pj cos (jmu) cos (jmv) | < 1.
(u,v)e[O,l]Q 7j=1

Cada pj és el coeficient de correlacié entre les j—essimes components principals
estandarditzades Fj (U) = —v/2cos (j7U), i F; (V),

p;j = Cor (cos (jrU) ,cos (j7V)) .

2. Aquests coeficients han de satisfer la condicié

N
—2) " pjcos (jmu) (<1)) <1,

j=1
uniformement en u € [0, 1].

3. El coeficient de correlacié de (U, V') ve donat per

96 o p
2k—1
(707‘(l],‘/) ::'%Z Eéz;t:—igz.
k=1
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Familia diagonal amb marginals exponencials

Siguin X, Y exponencials amb mitjana 1, i.e., amb la mateixa densitat donada per
f(z) = exp (=) Ljo,c] () . Siguin &; les j—essimes arrels positives de Jy, éssent Jy, J;

les funcions de Bessel de primera classe, amb 0 < p; < 1. Aleshores:

1. La funcié

h(z,y) = f(z) f(y)

o ()4 e (3))]

x,y > 0, és la densitat d’una familia diagonal h € (f, f) sii

sup [_Z J. Z,)QJO (fj\/ ) Jo (f V1-— U)] <1.

(u,0)€[0,1]

Cada p; és la correlacié entre les j—essimes components principals estandard-

itzades F (X) = Jo (€ exp (—X/2)) /Jo (&), 1 Fy (Y),

p; = Cor (Jo (& exp (=X/2)), Jo (§5 exp (=Y/2))) .

2. Aquests coeficients han de satisfer la condici6

. N Jo €JV )
Z Jo (&)°

— Y

uniformement en 0 < u < 1.

3. El coeficient de correlaci6 de (X,Y) ve donat per

A1 = J ()
corx.) =3 (M)

j=1
Familia diagonal amb marginals logistiques

Siguin XY variables aleatories amb distribucio logistica estandard, i.e., amb densitat
donada per
exp (~2)
f (:L‘) = 2
(1 +exp (—z))
Sigui L; (t), t € [0,1] el j—essim polinomi de Legendre traslladat al [0,1], 1 F(z) =

1/(1 + exp(—=x)) la funcié de distribucié. Sigui {p;} una succesié decreixent de reals

z € R.

no negatius tals que 1 > p; > py > ... > 0. Aleshores
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1. La funcié

h(z,y) = f(z)f(y) , x,yeR

14 ij Lj (F(x)) Lj (F (y))

és la densitat d’una familia diagonal amb marginals logistiques sii

sup [_ijLj (u) L; (U)] <1

(u,0)€[0,1]2 =1

Cada p; és la correlacié entre les j—essimes components principals estandard-

itzades F; (X) = L; (F (X)), i F; (Y),

pj = Cor (L; (F (X)), L; (F (Y))).

2. Aquests coeficients han de satisfer la condicié

N
=D rV2j+ 1L () < 1,
j=1

uniformement en u € [0, 1].

3. El coeficient de correlacié de (X,Y) ve donat per

N

3 4k — 1
COT (X Y) Z mpgkfl.

Familia diagonal amb marginals Pareto

Siguin X, Y dues variables aleatories amb distribucié de Pareto amb densitat donada
per f(z) = 327" 11,00 (z). Aixi X (i Y) segueix la distribucié de Pareto(c, 6) amb
parametres o = 3,60 = 1. Sigui 1, la j—essima arrel positiva de 'equacié x = tan (x).
Aleshores

1. L’expansio

N

h(z,y) = f(z) f(y) 1+ij %%2(77) zsin (n;/x) ysin (m/y)] :

z,y > 1,amb 0 < p; <1, per j > 1, és una densitat bivariant amb marginals
Pareto(3, 1) sii

-2 i p; sin 77]\3/1 — u) sin (77]\3/1 —v)
Sup 3 sin? (n;) V1 — ud/1

<1

(u,0)€[0,1]? j=1
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Cada pj és el coeficient de correlacié entre les j—essimes components principals
estandarditzades F; (X) = \/gX sin (n;/X) /sin (n;), 1 F; (Y),

= Cor (Xsin(n;/X),Y sin(n;/Y)).

2. Aquests coeficients han de satisfer la condici6

uniformement en u € [0, 1].

3. El coeficient de correlacié ve donat per

Cor (X,Y) zgipj <1—Ls(nj))z

n; sin (n;)

La segiient taula resumeix les propietats principals de les densitats bivariants h (x,y)
que hem construit. Per cada variable marginal donem la correlacié de la familia, la
condicié necessaria i suficient per tal que A sigui una densitat si N = 1, i una condicid

necessaria si N = 2.

Marginal Cor (X,Y) N=1 N =2
_1)?
Uniforme (0,1) % ngv 1 52’“’11) p1 < % P2+ (p21/§) < %
2
Ezponencial (1) Z P (4(512 Jfggg”) pr < 0.40276 | py < 0.61198
N 112
- _ 1 (4k— 2 -3
Logistica (0) % )y % o1 < % 1p_/13 i (Piﬂ%) <1
N 1—cos(n;) 2
Pareto (3,1) | 850, py (S20) | py 03258 | py < 052706

Taula 1. Distribucions diagonals amb marginals especifiques

Conclusions

La definicié de les operacions interseccié i unié entre matrius simetriques proporciona

un marc teoric que pot ser d’utilitat en el Related Metric Scaling. Aquestes operacions
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tenen algunes propietats similars a la interseccié i la unié de subespais vectorials (per
exemple, els generats per les columnes d’una matriu). Els aspectes teorics desenvolu-
pats en aquest treball podrien facilitar la interpretacié geometrica del RMS i podrien
obrir vies de recerca en un futur a tecniques multivariants semblants. Les operacions
aconsegueixen extraure l'estructura de dependencia subjacent a la informacié que es

presenta en un context multivariant.

Hem definit les operacions unié i interseccié entre nuclis a partir de la covarianca de
funcions de les variables marginals, obtenint els fonaments teorics que poden facilitar

I’'extensié al continu del Related Metric Scaling i qliestions relacionades.

S’ha definit la dimensié d’una distribuci6é conjunta H € F (F,G) mitjancant una
mesura d’afinitat que depén d’H. El cardinal del conjunt de valors propis del nu-
cli de la covarianca H (z,y) — F (z) G (y) podria determinar aquesta dimensié. Si
H pot representar-se mitjancant una expansié diagonal, el nombre de correlacions
canoniques no nul.les déna la dimensié d’H. Aquésta s’ha obtingut per diverses
families parametriques. La dimensié d’una distribucié conjunta es pot veure com una
certa “mesura” de dependencia entre dues variables aleatories: és nul.la quan hi ha
independencia estocastica, i és infinita numerable si H és la fita superior de Fréchet.
Si H es pot representar mitjangant una expansié diagonal, hem trobat que la maxima
correlacié augmenta quan la dimensi6 (el nombre de correlacions no nul.les) és més

gran.

Hem construit algunes families diagonals via components principals i hem donat
condicions necessaries i suficients per a les densitats en el cas de dimensié 1. La
nostra recerca actual se centra en el cas de dues correlacions canoniques. Aquest
métode suggereix que les components principals estandarditzades podrien millorar

alguns tests d’independencia i, també, de bondat d’ajustament.
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Construction of bivariate distributions...

ERRATA
(corrections are in bold)

page 80, line 23: (Proposition 4.3.2) ... Let a € BV ([a,b]) and 3 € BV ([a,b]).
page 83, lines 8-9: (Proposition 4.3.10) ... Then Ag+ (a, ) = Cor (a(X), 8 (X))

and
P’ (a, ) < A% (o, B).

page 100, line 13: ... and H can be expanded as

dH (z,y) = dF () dG (y) Zpiai (@) bi (y), (6.1)



