Spectral Reflection Data (Page 355, Johnson and Wichern)

Obs 560nm 720nm Format
Species Spec.
Time Tim.
Amount
of Species
Rate of
Time
1 12.07 33.03 JL 1
2 11.03 32.37 JL 1
3 12.48 31.31 JL 1
4 12.12 33.33 JL 1
5 15.38 40.00 JL 2
6 14.21 40.48 JL 2
7 9.69 33.90 JL 2
8 14.35 40.15 JL 2
9 38.71 77.14 JL 3
10 44.74 78.57 JL 3
11 36.67 71.43 JL 3
12 37.21 45.00 JL 3
13 8.73 23.27 LP 1
14 7.94 20.87 LP 1
15 8.37 22.16 LP 1
16 7.86 21.78 LP 1
17 8.45 26.32 LP 2
18 6.79 22.73 LP 2
19 8.34 26.67 LP 2
20 7.54 24.87 LP 2
21 14.04 44.44 LP 3
22 13.51 37.93 LP 3
23 13.33 37.93 LP 3
24 12.77 60.87 LP 3
25 9.33 19.14 SS 1
26 8.74 19.55 SS 1
27 9.31 19.24 SS 1
28 8.27 16.37 SS 1
29 10.22 25.00 SS 2
30 10.13 25.32 SS 2
31 10.42 27.12 SS 2
32 10.62 26.28 SS 2
33 15.25 38.89 SS 3
34 16.22 36.67 SS 3
35 17.24 40.74 SS 3
36 12.77 67.50 SS 3



Spectral Reflection Data (Page 355, Johnson and Wichern)
Summary Statistics

The CORR Procedure

2 Variables: Y1 Y2

Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum Label
Y1 36 14.30139 9.43079 514.85000 6.79000 44.74000 560nm
Y2 36 35.78806 16.53036 1288 16.37000 78.57000 720nm Format Species Spec. Time Tim.

Pearson Correlation Coefficients, N = 36
Prob > |r| under H0: Rho=0
  Y1 Y2
Y1
560nm
1.00000
0.81308
<.0001
Y2
720nm Format Species Spec. Time Tim.
0.81308
<.0001
1.00000



Spectral Reflection Data (Page 355, Johnson and Wichern)
Multivariate Analysis of Variance

The GLM Procedure

Class Level Information
Class Levels Values
Species 3 JL LP SS
Time 3 1 2 3

Number of Observations Read 36
Number of Observations Used 36



Spectral Reflection Data (Page 355, Johnson and Wichern)
Multivariate Analysis of Variance

The GLM Procedure
Multivariate Analysis of Variance

E = Error SSCP Matrix
  Y1 Y2
Y1 76.658775 37.9299
Y2 37.9299 1769.642225

Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|
DF = 27 Y1 Y2
Y1 1.000000
0.102981
0.6020
Y2 0.102981
0.6020
1.000000



Spectral Reflection Data (Page 355, Johnson and Wichern)
Multivariate Analysis of Variance

The GLM Procedure
Multivariate Analysis of Variance

H = Type III SSCP Matrix for Species*Time
  Y1 Y2
Y1 795.80794444 375.96311944
Y2 375.96311944 193.54926111

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Species*Time
E = Error SSCP Matrix
Characteristic Root Percent Characteristic Vector V'EV=1
Y1 Y2
10.3813996 99.91 0.11426805 -0.00011191
0.0090999 0.09 -0.01128981 0.02389834

MANOVA Test Criteria and F Approximations for the
Hypothesis of No Overall Species*Time Effect
H = Type III SSCP Matrix for Species*Time
E = Error SSCP Matrix

S=2 M=0.5 N=12
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.08707032 15.53 8 52 <.0001
Pillai's Trace 0.92115522 5.76 8 54 <.0001
Hotelling-Lawley Trace 10.39049958 33.07 8 34.899 <.0001
Roy's Greatest Root 10.38139964 70.07 4 27 <.0001
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.

H = Type III SSCP Matrix for Time
  Y1 Y2
Y1 1275.2477389 2644.9273639
Y2 2644.9273639 5573.8057056

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Time
E = Error SSCP Matrix
Characteristic Root Percent Characteristic Vector V'EV=1
Y1 Y2
18.4568938 99.75 0.10469772 0.00751699
0.0453490 0.25 -0.04714907 0.02268563

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall Time Effect
H = Type III SSCP Matrix for Time
E = Error SSCP Matrix

S=2 M=-0.5 N=12
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.04916603 45.63 4 52 <.0001
Pillai's Trace 0.99198604 13.29 4 54 <.0001
Hotelling-Lawley Trace 18.50224287 118.89 4 30.19 <.0001
Roy's Greatest Root 18.45689384 249.17 2 27 <.0001
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.

H = Type III SSCP Matrix for Species
  Y1 Y2
Y1 965.18117222 1377.6019139
Y2 1377.6019139 2026.8563722

Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SSCP Matrix for Species
E = Error SSCP Matrix
Characteristic Root Percent Characteristic Vector V'EV=1
Y1 Y2
13.0712473 99.75 0.10981860 0.00458854
0.0333424 0.25 -0.03353388 0.02345396

MANOVA Test Criteria and F Approximations for
the Hypothesis of No Overall Species Effect
H = Type III SSCP Matrix for Species
E = Error SSCP Matrix

S=2 M=-0.5 N=12
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.06877382 36.57 4 52 <.0001
Pillai's Trace 0.96119962 12.49 4 54 <.0001
Hotelling-Lawley Trace 13.10458966 84.21 4 30.19 <.0001
Roy's Greatest Root 13.07124729 176.46 2 27 <.0001
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.



Spectral Reflection Data (Page 355, Johnson and Wichern)
Multivariate Analysis of Variance

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Species Y1 LSMEAN LSMEAN Number
JL 21.5550000 1
LP 9.8058333 2
SS 11.5433333 3

Least Squares Means for effect Species
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: Y1
i/j 1 2 3
1   <.0001 <.0001
2 <.0001   0.0532
3 <.0001 0.0532  

Species Y1 LSMEAN 97.5% Confidence Limits
JL 21.555000 20.400530 22.709470
LP 9.805833 8.651364 10.960303
SS 11.543333 10.388864 12.697803

Least Squares Means for Effect Species
i j Difference Between
Means
Simultaneous 97.5% Confidence
Limits for LSMean(i)-LSMean(j)
1 2 11.749167 9.790794 13.707539
1 3 10.011667 8.053294 11.970039
2 3 -1.737500 -3.695873 0.220873

Species Y2 LSMEAN LSMEAN Number
JL 46.3925000 1
LP 30.8200000 2
SS 30.1516667 3

Least Squares Means for effect Species
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: Y2
i/j 1 2 3
1   0.0002 0.0001
2 0.0002   1.0000
3 0.0001 1.0000  

Species Y2 LSMEAN 97.5% Confidence Limits
JL 46.392500 40.845677 51.939323
LP 30.820000 25.273177 36.366823
SS 30.151667 24.604844 35.698490

Least Squares Means for Effect Species
i j Difference Between
Means
Simultaneous 97.5% Confidence
Limits for LSMean(i)-LSMean(j)
1 2 15.572500 6.163204 24.981796
1 3 16.240833 6.831537 25.650130
2 3 0.668333 -8.740963 10.077630



Spectral Reflection Data (Page 355, Johnson and Wichern)
Multivariate Analysis of Variance

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Bonferroni

Time Y1 LSMEAN LSMEAN Number
1 9.6875000 1
2 10.5116667 2
3 22.7050000 3

Least Squares Means for effect Time
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: Y1
i/j 1 2 3
1   0.7239 <.0001
2 0.7239   <.0001
3 <.0001 <.0001  

Time Y1 LSMEAN 97.5% Confidence Limits
1 9.687500 8.533030 10.841970
2 10.511667 9.357197 11.666136
3 22.705000 21.550530 23.859470

Least Squares Means for Effect Time
i j Difference Between
Means
Simultaneous 97.5% Confidence
Limits for LSMean(i)-LSMean(j)
1 2 -0.824167 -2.782539 1.134206
1 3 -13.017500 -14.975873 -11.059127
2 3 -12.193333 -14.151706 -10.234961

Time Y2 LSMEAN LSMEAN Number
1 24.3683333 1
2 29.9033333 2
3 53.0925000 3

Least Squares Means for effect Time
Pr > |t| for H0: LSMean(i)=LSMean(j)
Dependent Variable: Y2
i/j 1 2 3
1   0.3166 <.0001
2 0.3166   <.0001
3 <.0001 <.0001  

Time Y2 LSMEAN 97.5% Confidence Limits
1 24.368333 18.821510 29.915156
2 29.903333 24.356510 35.450156
3 53.092500 47.545677 58.639323

Least Squares Means for Effect Time
i j Difference Between
Means
Simultaneous 97.5% Confidence
Limits for LSMean(i)-LSMean(j)
1 2 -5.535000 -14.944296 3.874296
1 3 -28.724167 -38.133463 -19.314870
2 3 -23.189167 -32.598463 -13.779870