THE UNIVERSITY OF CHICAGO Graduate School of Business

Business 424-01, Spring Quarter 2000, Mr. Ruey S. Tsay

Mid-term Exam

Notes:

- 1. Open book and notes. The exam time is 80 minutes.
- 2. Write your answers in a bluebook. Mark the solution clearly.
- 1. Let $\mathbf{Z} = (Z_1, Z_2, Z_3)'$ be a 3-dimensional Gaussian random variable with mean $\boldsymbol{\mu} = (-3, 4, 2)'$ and covariance matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}.$$

Consider the following questions or statements. If the statement is true, briefly justify it such as citing a result from the textbook. If the statement is false, please explain why.

- (a) $Z_1 + Z_3$ is independent of Z_2 .
- (b) $(Z_1, Z_3)'$ is independent of Z_2 .
- (c) Consider the simple linear regression model

$$Z_1 = \beta_0 + \beta_1 Z_3 + \epsilon,$$

where $E(\epsilon) = 0$ and ϵ is uncorrelated with Z_3 . Find the values of β_0 and β_1 .

- (d) What is the conditional distribution of Z_1 given that $Z_3 = 3$?
- (e) $Z_1 + Z_2$ is normally distributed with mean 1 and variance 3.
- 2. Consider the multivariate regression of Problem 7.25 on page 455 of the textbook. There are 17 observations, two dependent variables, and five predictors. All variables but $z_1(\text{GEN})$ and $z_4(\text{DIAP})$ were transformed by taking natural logarithm. The output of a multivariate regression is attached. Answer the following questions:
 - (a) Does gender (z_1) significantly affect the two response variables at the 5% significance level? You may use individual tests.
 - (b) What is the covariance between the two least squares estimates of the effects of gender?

- (c) Instead of using the ordinary least squares method, one may use the maximum likelihood (ML) method. What is the ML estimate of Σ , the covariance matrix of the error term?
- (d) Describe a method that can be used to test the hypothesis that the predictor z_4 (DIAP) can be removed from the model. [No numerical calculation is needed.]
- 3. A simple experiment collected two responses for two treatments. The data are as follows:

Treatment 1:
$$\begin{bmatrix} 3\\3 \end{bmatrix}, \begin{bmatrix} 1\\6 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}$$
.
Treatment 2: $\begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 5\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}$.

The sample means and covariance matrices are:

Trt 1:
$$\hat{\boldsymbol{x}}_1 = \begin{bmatrix} 2\\ 4 \end{bmatrix}$$
, $\boldsymbol{S}_1 = \begin{bmatrix} 1 & -1.5\\ -1.5 & 3 \end{bmatrix}$.
Trt 2: $\hat{\boldsymbol{x}}_2 = \begin{bmatrix} 3\\ 2 \end{bmatrix}$, $\boldsymbol{S}_2 = \begin{bmatrix} 2 & -1.33\\ -1.33 & 1.33 \end{bmatrix}$.

(a) What is \boldsymbol{S}_{pooled} ?

(b) Test $H_o: \mu_1 - \mu_2 = 0$ using a two sample approach with significance level $\alpha = 0.05$.

4. Consider a two-way multivariate analysis of variance (MANOVA) model

$$\boldsymbol{X}_{ij} = \boldsymbol{\mu} + \boldsymbol{\tau}_i + \boldsymbol{\beta}_j + \boldsymbol{e}_{ij}, \quad i = 1, \cdots, g; \quad j = 1, \cdots, b$$

where $\sum_{i=1}^{g} \boldsymbol{\tau}_{i} = \mathbf{0}$ and $\sum_{j=1}^{b} \boldsymbol{\beta}_{j} = \mathbf{0}$, \boldsymbol{e}_{ij} are independent $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ random vectors. Assume that \boldsymbol{x}_{ij} is the single observation for \boldsymbol{X}_{ij} .

- (a) Construct a MANOVA table for the model. You should give the formulas and degrees of freedom.
- (b) What additional assumption is needed (as compared with the case of n observations for X_{ij} , where n > 1) in order to make statistical inference?