THE UNIVERSITY OF CHICAGO Graduate School of Business

Business 41912, Spring Quarter 2002, Mr. Ruey S. Tsay

Solutions to Midterm

- 1. Make use of properities of multivariate normal distribution and that of matrix to answer this question.
 - (a) What is the distribution of $\boldsymbol{X} = (Z_1, Z_2)'?$ Answer: $\boldsymbol{X} \sim N_2 \left(\begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} \right).$
 - (b) What is the conditional distribution of Z_1 given that $Z_3 = 3$? Answer: Z_1 and Z_3 are independent so that $Z_1|Z_3 \sim N(3,2)$.
 - (c) Find a linear combination $y = \mathbf{C}' \mathbf{X}$ such that $\mathbf{C}' \mathbf{C} = 1$ and $\operatorname{Var}(y)$ is as large as possible. What is the value of the resulting $\operatorname{Var}(y)$? Answer: The eigenvalues of the covariance matrix of \mathbf{X} are 3 and 1. Specifically, let \mathbf{A} be the covariance matrix of \mathbf{X} . Solve the equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$ to obtain the two eigenvalues. The eigenvectors are $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})'$ and $(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}})'$, respectively. Consequently, $\mathbf{C} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})'$ and $\operatorname{Var}(y) = 3$.
 - (d) What are the eigenvalues of Σ ? Answer: From the block diagonal structure of Σ . The eigenvalues are 3, 1, 2.
 - (e) Find the squared root matrix of Σ .

Answer: Again, from the block diagonal structure of Σ , we can find the squared root of the covariance matrix A of X first, which is

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}.$$

From the zero covariance matrix between X and Z_3 , the last eigenvector is (0, 0, 1)'. Therefore, the squared root of Σ is

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}+1}{2} & \frac{\sqrt{3}-1}{2} & 0\\ \frac{\sqrt{3}-1}{2} & \frac{\sqrt{3}+1}{2} & 0\\ 0 & 0 & \sqrt{2} \end{bmatrix}.$$

(f) Consider the linear regression model

$$Z_1 = \beta_0 + \beta_1 Z_2 + \beta_2 Z_3 + \epsilon,$$

where $E(\epsilon) = 0$ and ϵ is uncorrelated with Z_3 and Z_2 . Find the values of β_0 , β_1 and β_2 .

Answer: This question can be answered in several ways. I show two approaches. **Simple approach**: Note that Z_1 and Z_3 are independent so that $\beta_2 = 0$ and the regression becomes a simple linear regression. Consequently, $\beta_1 = \frac{\text{Cov}(Z_1, Z_2)}{\text{Var}(Z_2)} = 1/2 = 0.5$ and $\beta_0 = E(Z_1) - \beta_1 E(Z_2) = 3 - 0.5 \times 2 = 2$.

Tedious approach: Use the following properties: (a) E(XY) = Cov(X, Y) + E(X)E(Y). (b) $E(X^2) = \text{Var}(X) + [E(X)]^2$. (c) Z_3 is independent of Z_1 and Z_2 .

Taking the expectation of the model, we have $E(Z_1) = \beta_0 + \beta_1 E(Z_2) + \beta_2 E(Z_3)$. Multiplying the equation of Z_2 and taking expectation, we have $E(Z_1Z_2) = \beta_0 + \beta_1 E(Z_2^2) + \beta_2 E(Z_2) E(Z_3)$. Similarly, multiplying the model by Z_3 and taking expectation, we have $E(Z_1)E(Z_3) = \beta_0 + \beta_1 E(Z_2)E(Z_3) + \beta_2 E(Z_3^2)$. Solve the three lienar equations, we obtain $\beta_0 = 2$, $\beta_1 = 0.5$ and $\beta_2 = 0$.

- 2. Use results of Chapter 5.
 - (a) Construct at 95% confidence interval of the stiffness. You may use $t_{29}(0.975) = 2.045$.

Answer: $18.605 \pm 2.045 \times \sqrt{12.4055/30}$, i.e. (17.29, 19.92).

(b) Test the null hypothesis $H_o: \boldsymbol{\mu} = (20, 10)'$ vs $H_a: \boldsymbol{\mu} \neq (20, 10)'$. You may use $F_{2,28}(0.95) = 3.34$ to perform the test. Draw your conclusion. Answer: Use Hotelling T^2 in Eq. (5.4) on page 211,

$$T^2 = n(\boldsymbol{x} - \boldsymbol{\mu}_0)' \boldsymbol{S}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_0) = 23.637.$$

The critical value is $\frac{(n-1)p}{n-p}F_{p,n-p}(0.95) = 6.919$. Thus, reject the null hypothesis.

- 3. Use results of Chapter 6.
 - (a) Write $\bar{\boldsymbol{x}} = (\bar{x}_1, \bar{x}_2, \bar{x}_3)'$. What is the variance of $\bar{x}_1 \bar{x}_2$? Answer: $\operatorname{Var}(\bar{x}_1 - \bar{x}_2) = \operatorname{Var}(\bar{x}_1) + \operatorname{Var}(\bar{x}_2) - 2 \operatorname{Cov}(\bar{x}_1, \bar{x}_2) = \frac{101 + 80 - 2 \times 63}{40} = 1.375$.
 - (b) Construct a C matrix for testing the hypothesis H_o: μ₁ = μ₂ = μ₃ vs H_a: μ_i ≠ μ_j for some i ≠ j, where μ_i is the expectation of the *i*-th index. Answer: There are many ways to construct C, a constrast matrix. For example,

$$C = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
 or $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.

(c) Based on the C matrix of the prior question, compute D = CSC'. Answer: Based on the above choices of C, we have

$$\boldsymbol{D} = \begin{bmatrix} 55 & 23 \\ 23 & 56 \end{bmatrix} \quad \text{or} \quad \boldsymbol{D} = \begin{bmatrix} 55 & -32 \\ -32 & 65 \end{bmatrix}$$

(d) The inverse of a 2×2 matrix **A** can be easily obtained as below:

$$\boldsymbol{A} = \left[egin{array}{cc} a & b \\ b & c \end{array}
ight], \Rightarrow \boldsymbol{A}^{-1} = rac{1}{ac-b^2} \left[egin{array}{cc} c & -b \\ -b & a \end{array}
ight].$$

Compute \boldsymbol{D}^{-1} .

Answer:
$$\boldsymbol{D}^{-1} = \begin{bmatrix} 0.0220 & -0.0090 \\ -0.0090 & 0.0216 \end{bmatrix}$$
 or $\boldsymbol{D}^{-1} = \begin{bmatrix} 0.0255 & 0.0125 \\ 0.0125 & 0.0216 \end{bmatrix}$.

(e) Perform the hypothesis $H_o: C\boldsymbol{\mu} = \mathbf{0}$ vs $H_a: C\boldsymbol{\mu} \neq \mathbf{0}$. You may use $F_{2,38}(0.95) = 3.24$ to draw your conclusion. Answer: For either choice of \boldsymbol{C} , we have $T^2 = 88.312$. The critical value is $\frac{(n-1)(q-1)}{n-q+1}F_{q-1,n-q+1}(0.95) = 6.65$. Therefore, reject the null hypothesis.

4. This problem is concerned with Chapter 7.

- (a) Is $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$? Why? Answer: Yes, because $E(\hat{\boldsymbol{\beta}}) = E[(Z'Z)^{-1}(Z'\boldsymbol{Y})] = E[(Z'Z)^{-1}Z'(Z\boldsymbol{\beta} + \boldsymbol{\epsilon})] = \boldsymbol{\beta} + E[(Z'Z)^{-1}(Z'\boldsymbol{\epsilon})] = \boldsymbol{\beta}$.
- (b) Let $e_j = y_j \hat{y}_j$ be the least squares residual, where $\hat{y}_j = \hat{\beta}_0 + \hat{\beta}_1 z_{j1} + \hat{\beta}_2 z_{j2}$. Is $\sum_{j=1}^n e_j = 0$? Why?

Answer: Yes, because the model contains a constant term. As such, the system of least squares equation contains the equation

$$\sum_{j=1}^{n} (y_j - \beta_0 - \beta_1 z_{j1} - \beta_2 z_{j2}) = 0,$$

which is obtained by taking the partial derivative of the sum of squares with respect to β_0 . This is basically $\sum_{j=1}^{n} (y_j - \hat{y}_j) = \sum_{j=1}^{n} e_j = 0$.

(c) (4 pts) Construct a least squares estimate of σ^2 .

Answer: Based on the assumption, $\operatorname{Var}(\epsilon_j) = j\sigma^2$. Thus, a simple estimate of σ^2 is $\frac{1}{n-3}\sum_{j=1}^n \frac{e_j^2}{j}$. [You may use matrix notation to express the weights.]