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1. Make use of properities of multivariate normal distribution and that of matrix to answer
this question.

(a) What is the distribution of X = (Z1, Z2)
′?

Answer: X ∼ N2

([

3
2

]

,

[

2 1
1 2

])

.

(b) What is the conditional distribution of Z1 given that Z3 = 3?

Answer: Z1 and Z3 are independent so that Z1|Z3 ∼ N(3, 2).

(c) Find a linear combination y = C ′X such that C ′C = 1 and Var(y) is as large as
possible. What is the value of the resulting Var(y)?

Answer: The eigenvalues of the covariance matrix of X are 3 and 1. Specifically,
let A be the covariance matrix of X. Solve the equation |A− λI| = 0 to obtain
the two eigenvalues. The eigenvectors are ( 1√

2
, 1√

2
)′ and ( 1√

2
, −1√

2
)′, respectively.

Consequently, C = ( 1√
2
, 1√

2
)′ and Var(y) = 3.

(d) What are the eigenvalues of Σ?

Answer: From the block diagonal structure of Σ. The eigenvalues are 3, 1, 2.

(e) Find the squared root matrix of Σ.

Answer: Again, from the block diagonal structure of Σ, we can find the squared
root of the covariance matrix A of X first, which is
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.

From the zero covariance matrix between X and Z3, the last eigenvector is
(0, 0, 1)′. Therefore, the squared root of Σ is
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(f) Consider the linear regression model

Z1 = β0 + β1Z2 + β2Z3 + ε,



where E(ε) = 0 and ε is uncorrelated with Z3 and Z2. Find the values of β0, β1

and β2.

Answer: This question can be answered in several ways. I show two approaches.

Simple approach: Note that Z1 and Z3 are independent so that β2 = 0 and the

regression becomes a simple linear regression. Consequently, β1 = Cov(Z1,Z2)

Var(Z2)
=

1/2 = 0.5 and β0 = E(Z1)− β1E(Z2) = 3− 0.5× 2 = 2.

Tedious approach: Use the following properties: (a) E(XY ) = Cov(X,Y ) +
E(X)E(Y ). (b) E(X2) = Var(X) + [E(X)]2. (c) Z3 is independent of Z1 and
Z2.

Taking the expectation of the model, we have E(Z1) = β0 + β1E(Z2) + β2E(Z3).
Multiplying the equation of Z2 and taking expectation, we have E(Z1Z2) = β0 +
β1E(Z2

2 ) + β2E(Z2)E(Z3). Similarly, multiplying the model by Z3 and taking
expectation, we have E(Z1)E(Z3) = β0 + β1E(Z2)E(Z3) + β2E(Z2

3 ). Solve the
three lienar equations, we obtain β0 = 2, β1 = 0.5 and β2 = 0.

2. Use results of Chapter 5.

(a) Construct at 95% confidence interval of the stiffness. You may use t29(0.975) =
2.045.

Answer: 18.605± 2.045×
√

12.4055/30, i.e. (17.29,19.92).

(b) Test the null hypothesis Ho : µ = (20, 10)′ vs Ha : µ 6= (20, 10)′. You may use
F2,28(0.95) = 3.34 to perform the test. Draw your conclusion.

Answer: Use Hotelling T 2 in Eq. (5.4) on page 211,

T 2 = n(x− µ0)
′S−1(x− µ0) = 23.637.

The critical value is (n−1)p
n−p

Fp,n−p(0.95) = 6.919. Thus, reject the null hypothesis.

3. Use results of Chapter 6.

(a) Write x̄ = (x̄1, x̄2, x̄3)
′. What is the variance of x̄1 − x̄2?

Answer: Var(x̄1− x̄2) = Var(x̄1) + Var(x̄2) -2 Cov(x̄1, x̄2) =
101+80−2×63

40
= 1.375.

(b) Construct aC matrix for testing the hypothesisHo : µ1 = µ2 = µ3 vs Ha : µi 6= µj

for some i 6= j, where µi is the expectation of the i-th index.

Answer: There are many ways to construct C, a constrast matrix. For example,

C =

[

1 −1 0
1 0 −1

]

or

[

1 −1 0
0 1 −1

]

.

(c) Based on the C matrix of the prior question, compute D = CSC ′.

Answer: Based on the above choices of C, we have

D =

[

55 23
23 56

]

or D =

[

55 −32
−32 65

]
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(d) The inverse of a 2× 2 matrix A can be easily obtained as below:

A =

[

a b
b c

]

,⇒ A−1 =
1

ac− b2

[

c −b
−b a

]

.

Compute D−1.

Answer: D−1 =

[

0.0220 −0.0090
−0.0090 0.0216

]

or D−1 =

[

0.0255 0.0125
0.0125 0.0216

]

.

(e) Perform the hypothesis Ho : Cµ = 0 vs Ha : Cµ 6= 0. You may use F2,38(0.95)
= 3.24 to draw your conclusion.

Answer: For either choice of C, we have T 2 = 88.312. The critical value is
(n−1)(q−1)

n−q+1
Fq−1,n−q+1(0.95) = 6.65. Therefore, reject the null hypothesis.

4. This problem is concerned with Chapter 7.

(a) Is E(β̂) = β? Why?

Answer: Yes, because E(β̂) = E[(Z ′Z)−1(Z ′Y )] = E[(Z ′Z)−1Z ′(Zβ+ ε)] = β +
E[(Z ′Z)−1(Z ′ε)] = β.

(b) Let ej = yj − ŷj be the least squares residual, where ŷj = β̂0 + β̂1zj1 + β̂2zj2. Is
∑n

j=1 ej = 0? Why?

Answer: Yes, because the model contains a constant term. As such, the system
of least squares equation contains the equation

n
∑

j=1

(yj − β0 − β1zj1 − β2zj2) = 0,

which is obtained by taking the partial derivative of the sum of squares with
respect to β0. This is basically

∑n
j=1(yj − ŷj) =

∑n
j=1 ej = 0.

(c) (4 pts) Construct a least squares estimate of σ2.

Answer: Based on the assumption, Var(εj) = jσ2. Thus, a simple estimate of σ2

is 1
n−3

∑n
j=1

e2

j

j
. [You may use matrix notation to express the weights.]
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