Generalized Liquid Association Analysis for Multimodal Neuroimaging

Jing Zeng

Department of Statistics Florida State University

International Conference on Econometrics and Statistics June 26, 2021 Joint work with Dr. Lexin Li and Dr. Xin Zhang Preprint: https://arxiv.org/abs/2008.03733

イロト イボト イヨト イヨト

Motivating application

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - の久ぐ

Jing Zeng |

Multimodal data analysis

Backgound:

■ Imaging modality: X-ray, Computed Tomography (CT), positron emission tomography (PET), Magnetic resonance imaging (MRI).

 Multimodal data analysis: Each subject has more than one imaging modality.

《曰》 《圖》 《注》 《注》

Multimodal data analysis

Backgound:

- Targets on Alzheimer's disease (AD) and normal aging.
- Amyloid-beta and tau are two hallmark proteins of AD. The **spatial patterns** of accumulations of amyloid-beta and tau are closely associated, and such association patterns are highly affected by the **subject's age**.

(a) Amyloid-beta ($X \in \mathbb{R}^{60}$) (b) Tau ($Y \in \mathbb{R}^{26}$) (c) Age ($Z \in \mathbb{R}$: average 77.5 SD 6.2)

- Goal: Find how and where in the brain the associations of the two proteins change the most as age varies. (dynamic association)
- This talk: Statistical framework for studying the three-way association of $X \in \mathbb{R}^{p_1}$ and $Y \in \mathbb{R}^{p_2}$ given $Z \in \mathbb{R}^{p_3}$.

Methodology

・ロト ・御ト ・ヨト ・ヨト

12

Univariate Liquid Association (K.C. Li 2002)

• Suppose that univariates $X, Y, Z \in \mathbb{R}$ have mean zero and variance one. The association between X and Y given Z is measured by the function

$$g(z) = \mathcal{E}(XY \mid Z = z).$$

• To capture the changes in g(z),

$$LA(X, Y \mid Z) = E\{\frac{d}{dZ}g(Z)\} \in \mathbb{R}.$$

• When Z is normal, the estimation is simple, thanks to Stein's Lemma,

$$\mathbf{E}\{\frac{d}{dZ}g(Z)\} = \mathbf{E}\{Zg(Z)\} = \mathbf{E}(XYZ).$$

• Particularly useful in discovering co-expressed gene pairs that are regulated by another gene.

イロト 不得下 イヨト イヨト 二日

Dimension reduction model with sparsity

• Dimension reduction model: For multivariates $X \in \mathbb{R}^{p_1}$, $Y \in \mathbb{R}^{p_2}$, $Z \in \mathbb{R}^{p_3}$, we seek the linear combinations of X and Y that change the most as (the linear combination of) Z varies. Assume that

$$\mathrm{E}(\boldsymbol{X}\boldsymbol{Y}^{\top} \mid \boldsymbol{Z} = \boldsymbol{z}) = \boldsymbol{\Gamma}_{1}\boldsymbol{f}(\boldsymbol{\Gamma}_{3}^{\top}\boldsymbol{z})\boldsymbol{\Gamma}_{2}^{\top},$$

where $\Gamma_k \in \mathbb{R}^{p_k \times r_k}$, $r_k < p_k$, are semi-orthogonal basis matrices and $\boldsymbol{f} : \mathbb{R}^{r_3} \to \mathbb{R}^{r_1 \times r_2}$ is unknown latent function.

- Reduce $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ to $\boldsymbol{\Gamma}_1^{\top} \boldsymbol{X}, \boldsymbol{\Gamma}_2^{\top} \boldsymbol{Y}, \boldsymbol{\Gamma}_3^{\top} \boldsymbol{Z}$ without loss of information.
- **Sparsity**: Assume that each Γ_k has s_k non-zero rows. The row-wise sparsity indicates that only some entries of X and Y are dynamically associated.

イロト 不得 トイヨト イヨト ヨー ろんの

Generalized Liquid Association

• Generalized liquid association (GLA):

$$\boldsymbol{\Phi} = \mathrm{GLA}(\boldsymbol{X}, \boldsymbol{Y} \mid \boldsymbol{Z}) = \mathrm{E}\left\{\frac{d}{d\boldsymbol{Z}}\mathrm{E}(\boldsymbol{X}\boldsymbol{Y}^{\top} \mid \boldsymbol{Z})\right\} \in \mathbb{R}^{p_1 \times p_2 \times p_3}.$$

• With the dimension reduction model assumption,

$$\mathbf{\Phi} = \mathbf{\Phi} \times_1 \mathbf{P}_{\mathbf{\Gamma}_1} \times_2 \mathbf{P}_{\mathbf{\Gamma}_2} \times_3 \mathbf{P}_{\mathbf{\Gamma}_3},$$

where $\mathbf{P}_{\Gamma_k} = \Gamma_k \Gamma_k^{\top}$ is the projection matrix onto the column subspace of Γ_k .

• If **Z** is normal, then $\Phi = \Delta \times_3 \Sigma_{\mathbf{Z}}^{-1}$, where

$$\boldsymbol{\Delta} = \mathbf{E}(\mathbf{X} \circ \mathbf{Y} \circ \mathbf{Z}) \in \mathbb{R}^{p_1 \times p_2 \times p_3}.$$
 (1)

Estimate Γ_k 's by (sparse) tensor decomposition of Δ : (1) avoid the estimation of $\Sigma_{\mathbf{Z}}^{-1}$; (2) avoid the normality assumption.

イロト イボト イモト トモー シベル

Tucker decomposition

■ Tucker decomposition (for three-way tensor): $\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2 \times_3 \mathbf{A}_3$, where $\mathcal{G} \in \mathbb{R}^{r_1 \times r_2 \times r_3}$, $\mathbf{A}_k \in \mathbb{R}^{p_k \times r_k}$.

Figure 1: Tucker decomposition of $\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}_1 \times_2 \mathbf{A}_2 \times_3 \mathbf{A}_3$.

• Our optimization problem:

$$(\widehat{\boldsymbol{\Gamma}}_1, \widehat{\boldsymbol{\Gamma}}_2, \widehat{\boldsymbol{\Gamma}}_3) = \operatorname*{argmin}_{\mathbf{G}_1, \mathbf{G}_2, \mathbf{G}_3} \| \widetilde{\boldsymbol{\Delta}} - \widetilde{\boldsymbol{\Delta}} \times_1 \mathbf{P}_{\mathbf{G}_1} \times_2 \mathbf{P}_{\mathbf{G}_2} \times_3 \mathbf{P}_{\mathbf{G}_3} \|_F^2,$$

where $\widetilde{\mathbf{\Delta}} = n^{-1} \sum_{i=1}^{n} \mathbf{X}_i \circ \mathbf{Y}_i \circ \mathbf{Z}_i$ is the sample estimator.

• Challenges in theory and algorithm: non-convex and high-dimensional.

イロト 不得下 イヨト イヨト 二日

Algorithm: Sparse HOSVD

- 1. Input: The Tucker ranks $r_k \leq p_k$, and the sparsity parameters $(\eta_k, \tilde{\eta}_k), k = 1, 2, 3.$
- 2. Initialization:
 - 2.1 Compute the sample estimate \$\tilde{\Delta}\$ = n⁻¹∑_{i=1}ⁿ X_i ∘ Y_i ∘ Z_i. Obtain the initial active set: \$\tilde{I}_k^{(0)}\$ = {j : ||(\tilde{\Delta}_{(k)})_{[j,:]}||_{max} > η_k}.
 2.2 Let \$\tilde{\Delta}\$⁽⁰⁾ = \$\tilde{\Delta}\$ ×1 D_{\$\tilde{\cap}(0)\$} ×2 D_{\$\tilde{\cap}(0)\$} ×3 D_{\$\tilde{\cap}(0)\$}, compute the initial basis

2.2 Let
$$\mathbf{\Delta}^{(0)} = \mathbf{\Delta} \times_1 \mathbf{D}_{\widehat{I}_1^{(0)}} \times_2 \mathbf{D}_{\widehat{I}_2^{(0)}} \times_3 \mathbf{D}_{\widehat{I}_3^{(0)}}$$
, compute the initi
matrices by $\widehat{\mathbf{\Gamma}}_k^{(0)} = \text{SVD}\{\widetilde{\mathbf{\Delta}}_{(k)}^{(0)}\}, k = 1, 2, 3.$

 Repeat until the stopping criterion is met. When k = 1, let W = Δ̃ ×₂ (Γ̂₂^(t-1))[⊤] ×₃ (Γ̂₃^(t-1))[⊤].
 Update the active set: Î̂₁^(t) = {j : ||W₍₁₎||₂² > η̃₁}.
 Perform SVD: Γ̂₁^(t) = SVD{D_{Î̂₁}^(t)W₍₁₎} ∈ ℝ<sup>p_k×r_k.
</sup>

(The updates are similar when k = 2, 3.)

4. **Output**: The estimated basis matrices $\widehat{\Gamma}_k$, k = 1, 2, 3, and $\widehat{\Delta} = \widetilde{\Delta} \times_1 \mathbf{P}_{\widehat{\Gamma}_1} \times_2 \mathbf{P}_{\widehat{\Gamma}_2} \times_3 \mathbf{P}_{\widehat{\Gamma}_3}$.

Consistency results

Theorem 1

Under mild assumptions, let $s = s_1 s_2 s_3$ and $p = p_1 p_2 p_3$. Assume that $\sqrt{s \log p/n} = o(1)$, with probability tending to one, 1. $\|\widehat{\Delta} - \Delta\|_F \to 0$; 2. $\max_{k=1,2,3} \|\mathbf{P}_{\widehat{\Gamma}_k} - \mathbf{P}_{\Gamma_k}\|_F \to 0$; 3. $\widehat{I}_k^{(t)} = I_k, \ k = 1,2,3, \ and \ t = 0,1,\ldots,t_{\max}$.

• Remark: In ultra-high dimensional setting, our method achieves consistency in variable selection and in the estimation of GLA tensor and the dimension reduction subspaces.

イロト 不良 トイヨト イヨト ヨー ろんの

Multimodal PET analysis

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - のへで

Multimodal PET analysis

Data description

- Part of the Berkeley Aging Cohort Study (ongoing project).
- -n = 81: sample size.
- $\mathbf{X} \in \mathbb{R}^{60}$: the amount of **amyloid-beta** at $p_1 = 60$ brain ROIs.
- $\mathbf{Y} \in \mathbb{R}^{26}$: the amount of **tau** at $p_2 = 26$ brain ROIs.
- $Z \in \mathbb{R}$: age; average 77.5 with SD 6.2.
- We use Tucker ranks $r_1 = r_2 = 1$ to identify the most age-dependent linear combinations in multimodal PET association.

イロト イロト イヨト イヨト 三日

Dynamic association plots

- GLAA provides a useful dimension reduction tool to help visualize the dynamic patterns.
- The association changes from negative to positive in later years.
- The spread of tau out of medial temporal lobes is accelerated by the presence of amyloid-beta at elder age.

Selected variables (regions)

Findings

Modality			Identified regions		
amyloid-beta	Entorhinal R	Entorhinal L	Hippocampus R	Hippocampus L	Amygdala R
	Orbitofrontal L	Posterior Cingulate L	Middle Frontal R		
tau	Entorhinal R	Entorhinal L	Hippocampus R	Parahippocampal R	Fusiform L
	Middle Temporal R	Middle Temporal L	Insula L	Rostral Anterior Cingulate R	

Table 1: Regions in the left hemisphere are denoted by "L", and regions in the right hemisphere are denoted by "R".

- Many of these regions are known to be closely related to AD.
- For both amyloid-beta and tau, the identified regions include **hippocampus** and **entorhinal cortex**.
- **Hippocampus** is one of the first brain regions to suffer damage from AD; and hippocampus atrophy is a well-known biomarker for AD.
- Entorhinal cortex, together with hippocampus, plays an important role in memories, and the atrophy in the entorhinal cortex is consistently reported in AD.

イロト 不得下 イヨト イヨト

Conclusion

- Scientifically, GLAA offers a unique angle for understanding the age-dependent patterns between amyloid-beta and tau in AD and normal aging.
- Statistically, we propose a new framework in the association analysis among three sets of variables. Specifically, our method has
 - a population dimension reduction model
 - a computationally scalable algorithm
 - solid theoretical properties in high dimensions
- Future research directions: handling discrete/categorical variables; extensions to non-linear relationships; etc.

Thank you!

イロト 不得下 イヨト イヨト 二日