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Multimodal data analysis

Backgound:
Imaging modality: X-ray, Computed Tomography (CT), positron
emission tomography (PET), Magnetic resonance imaging (MRI).

(a) X-ray (b) CT (c) PET (d) MRI

Multimodal data analysis: Each subject has more than one
imaging modality.
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Multimodal data analysis

Backgound:

Targets on Alzheimer’s disease (AD) and normal aging.
Amyloid-beta and tau are two hallmark proteins of AD. The
spatial patterns of accumulations of amyloid-beta and tau are
closely associated, and such association patterns are highly affected by
the subject’s age.

(a) Amyloid-beta (X ∈ R60) (b) Tau (Y ∈ R26) (c) Age (Z ∈ R: average 77.5 SD 6.2)

Goal: Find how and where in the brain the associations of the two
proteins change the most as age varies. (dynamic association)
This talk: Statistical framework for studying the three-way
association of X ∈ Rp1 and Y ∈ Rp2 given Z ∈ Rp3 .
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Univariate Liquid Association (K.C. Li 2002)

Suppose that univariates X,Y, Z ∈ R have mean zero and variance one.
The association between X and Y given Z is measured by the function

g(z) = E(XY | Z = z).

To capture the changes in g(z),

LA(X,Y | Z) = E{ d
dZ

g(Z)} ∈ R.

When Z is normal, the estimation is simple, thanks to Stein’s Lemma,

E{ d
dZ

g(Z)} = E{Zg(Z)} = E(XY Z).

Particularly useful in discovering co-expressed gene pairs that are
regulated by another gene.
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Dimension reduction model with sparsity

Dimension reduction model: For multivariates X ∈ Rp1 , Y ∈ Rp2 ,
Z ∈ Rp3 , we seek the linear combinations of X and Y that change
the most as (the linear combination of) Z varies. Assume that

E(XY > | Z = z) = Γ1f(Γ
>
3 z)Γ

>
2 ,

where Γk ∈ Rpk×rk , rk < pk, are semi-orthogonal basis matrices and
f : Rr3 → Rr1×r2 is unknown latent function.
Reduce X,Y ,Z to Γ>1 X,Γ>2 Y ,Γ

>
3 Z without loss of information.

Sparsity: Assume that each Γk has sk non-zero rows. The row-wise
sparsity indicates that only some entries of X and Y are dynamically
associated.

Jing Zeng | 7/17



Motivating application Methodology Multimodal PET analysis

Generalized Liquid Association

Generalized liquid association (GLA):

Φ = GLA(X,Y | Z) = E

{
d

dZ
E(XY > | Z)

}
∈ Rp1×p2×p3 .

With the dimension reduction model assumption,

Φ = Φ×1 PΓ1 ×2 PΓ2 ×3 PΓ3 ,

where PΓk = ΓkΓ>k is the projection matrix onto the column subspace
of Γk.
If Z is normal, then Φ = ∆×3 Σ−1

Z , where

∆ = E(X ◦Y ◦ Z) ∈ Rp1×p2×p3 . (1)

Estimate Γk’s by (sparse) tensor decomposition of ∆: (1) avoid the
estimation of Σ−1

Z ; (2) avoid the normality assumption.
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Tucker decomposition

Tucker decomposition (for three-way tensor):
X = G ×1 A1 ×2 A2 ×3 A3, where G ∈ Rr1×r2×r3 , Ak ∈ Rpk×rk .

Figure 1: Tucker decomposition of X = G ×1 A1 ×2 A2 ×3 A3.

Our optimization problem:

(Γ̂1, Γ̂2, Γ̂3) = argmin
G1,G2,G3

‖∆̃− ∆̃×1 PG1 ×2 PG2 ×3 PG3‖
2
F ,

where ∆̃ = n−1∑n
i=1 Xi ◦Yi ◦ Zi is the sample estimator.

Challenges in theory and algorithm: non-convex and high-dimensional.
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Algorithm: Sparse HOSVD

1. Input: The Tucker ranks rk ≤ pk, and the sparsity parameters
(ηk, η̃k), k = 1, 2, 3.

2. Initialization:
2.1 Compute the sample estimate ∆̃ = n−1

∑n
i=1 Xi ◦Yi ◦ Zi. Obtain the

initial active set: Î(0)k = {j : ‖(∆̃(k))[j,:]‖max > ηk}.
2.2 Let ∆̃(0) = ∆̃×1 D

Î
(0)
1

×2 D
Î
(0)
2

×3 D
Î
(0)
3

, compute the initial basis

matrices by Γ̂
(0)
k = SVD{∆̃(0)

(k)
}, k = 1, 2, 3.

3. Repeat until the stopping criterion is met.
When k = 1, let W = ∆̃×2 (Γ̂

(t−1)
2 )> ×3 (Γ̂

(t−1)
3 )>.

3.1 Update the active set: Î(t)1 = {j : ‖W(1)‖22 > η̃1}.
3.2 Perform SVD: Γ̂

(t)
1 = SVD{D

Î
(t)
1

W(1)} ∈ Rpk×rk .

(The updates are similar when k = 2, 3.)

4. Output: The estimated basis matrices Γ̂k, k = 1, 2, 3, and
∆̂ = ∆̃×1 PΓ̂1

×2 PΓ̂2
×3 PΓ̂3

.
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Consistency results

Theorem 1
Under mild assumptions, let s = s1s2s3 and p = p1p2p3. Assume that√
s log p/n = o(1), with probability tending to one,

1. ‖∆̂−∆‖F → 0;
2. maxk=1,2,3 ‖PΓ̂k

−PΓk
‖F → 0;

3. Î
(t)
k = Ik, k = 1, 2, 3, and t = 0, 1, . . . , tmax.

Remark: In ultra-high dimensional setting, our method achieves
consistency in variable selection and in the estimation of GLA
tensor and the dimension reduction subspaces.
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Multimodal PET analysis

Data description
– Part of the Berkeley Aging Cohort Study (ongoing project).
– n = 81: sample size.
– X ∈ R60: the amount of amyloid-beta at p1 = 60 brain ROIs.
– Y ∈ R26: the amount of tau at p2 = 26 brain ROIs.
– Z ∈ R: age; average 77.5 with SD 6.2.

We use Tucker ranks r1 = r2 = 1 to identify the most age-dependent
linear combinations in multimodal PET association.
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Dynamic association plots
GLAA
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GLAA provides a useful dimension reduction tool to help visualize the
dynamic patterns.
The association changes from negative to positive in later years.
The spread of tau out of medial temporal lobes is accelerated by the
presence of amyloid-beta at elder age.
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Selected variables (regions)

(a) amyloid-beta (b) tau

Figure 2: Identified brain regions for amyloid-beta and tau by GLAA.
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Findings

Modality Identified regions

amyloid-beta Entorhinal R Entorhinal L Hippocampus R Hippocampus L Amygdala R
Orbitofrontal L Posterior Cingulate L Middle Frontal R

tau Entorhinal R Entorhinal L Hippocampus R Parahippocampal R Fusiform L
Middle Temporal R Middle Temporal L Insula L Rostral Anterior Cingulate R

Table 1: Regions in the left hemisphere are denoted by “L”, and regions in the right
hemisphere are denoted by “R”.

Many of these regions are known to be closely related to AD.
For both amyloid-beta and tau, the identified regions include
hippocampus and entorhinal cortex.
Hippocampus is one of the first brain regions to suffer damage from
AD; and hippocampus atrophy is a well-known biomarker for AD.
Entorhinal cortex, together with hippocampus, plays an important
role in memories, and the atrophy in the entorhinal cortex is
consistently reported in AD.
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Conclusion

Scientifically, GLAA offers a unique angle for understanding the
age-dependent patterns between amyloid-beta and tau in AD and
normal aging.
Statistically, we propose a new framework in the association analysis
among three sets of variables. Specifically, our method has

a population dimension reduction model
a computationally scalable algorithm
solid theoretical properties in high dimensions

Future research directions: handling discrete/categorical variables;
extensions to non-linear relationships; etc.

Thank you!

Jing Zeng | 17/17


	Motivating application
	Methodology
	Multimodal PET analysis

