
The origins of the stick breaking representation for
Dirichlet priors

Jayaram Sethuraman
Department of Statistics
Florida State University
Tallahassee, FL 32306

sethu@stat.fsu.edu

December 28, 2017





Figure : Born: April 30, 1924, Delhi, India. Died: June 7, 1997, Chicago,IL



Abstract

• The stick breaking construction of the Dirichlet process has a
nearly appeared as early as Ferguson (1973)!

• For a special case, I saw this construction from studying the
Blackwell and MacQueen (1973) paper.

• It appeared in a published form in Sethuraman (1994), where
I incorrectly said that it was discovered when I was teaching a
seminar course on Dirichlet processes in Spring 1979.

Jim Lynch has jagged my memory and it was in Fall 1978.
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What is the Dirichlet process?

The Dirichlet process or Dirichlet is prior is the distribution of a
random probability measure P on R1 which can serve as a prior
distribution for the standard nonparametric problem –
X1,X2, . . . ,Xn are i.i.d. P.

So it is also a probability measure on the space of all probability
distributions P on R1.



Probability measures

What is a probability measure on the real line (X ,B) with its Borel
σ-field?
It is a function P on B such that

P(X ) = 1, 0 ≤ P(A) ≤ 1 for all A ∈ B, and

P(∪∞1 Ai ) =
∞∑
1

P(Ai )

for each collection of disjoint subsets {A1,A2, . . . } in B.

Can we verify this for the normal distribution? How many times do
we have to verify this? Can a carefully chosen number of countable
verifications do?
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Examples of probability measures

Let x1, x2, . . . be distinct points in X . Then P = δx1 , P = δx2 , . . .
are examples of probability measures (degenerate) and are points
in P.
P = p1δx1 + p2δx2 + . . . is also a (discrete) probability measure, if .
. . . . . .
What is the class P of all probability measures?



Examples of probability measures

Alternatively, we can define probability measures by defining real
random variables and looking at their distributions (which will arise
from some grand daddy space).
Thus X (ω) ≡ x1,X (ω) ≡ x2, . . . have degenerate probability
distributions.
How do we define random variables to get other discrete
distributions? Random variables require a grand daddy space to
begin with.



Random probability measures

For the nonparametric Bayes problem we should be considering
measures, Q, which are random probability measures, that is,
probability measures Q on (P, C), the space of probability
measures on (X ,B). (Define C suitably.)

Or, we can just consider a random variable (defined on some grand
daddy space) P = P(ω), also called random probability measure,
on (X ,B); then its distribution Q will be a nonparametric prior.
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Random probability measures

Let P1, P2, . . . be probability measures, that is, points in P.
Then P ≡ δP1 , P ≡ δP2 , . . . are random probability measures
(discrete).
Simpler still, P = δδx1 = δx1 (for short) is a discrete random
probability measure.
P =

∑∞
1 piδxi is also a discrete random probability measure.

P =
∑∞

1 pi (ω)δXi (ω) is a random probability measure and its
distribution Q is a nonparametric prior.
This will give only a small class of nonparametric priors.
Fortunately, the Dirichlet prior is in this class.
However, what is the class of all nonparametric priors?



Assertions concerning Dirichlet priors

There is a random probability measure P with distribution
D(α, β(·)) called the Dirichlet prior (process) with parameters α
and β(·).
Its main properties are

1 Under P, the distribution of (P(A1), . . . ,P(Ak)) is the finite
dimensional Dirichlet distribution D(αβ(A1), . . . , αβ(Ak)) for
measurable partitions (A1, . . . ,Ak) of R1.

2 The posterior distribution of P given X1 is

D((α + 1),
β(·)+δX1 (·)

α+1 ).

3 The random probability measure P is a discrete probability
measure.

It first appeared in three papers in 1973 - Ferguson, Blackwell, and
Blackwell-MacQueen.



Assertions concerning Dirichlet priors

There is a random probability measure P with distribution
D(α, β(·)) called the Dirichlet prior (process) with parameters α
and β(·).
Its main properties are

1 Under P, the distribution of (P(A1), . . . ,P(Ak)) is the finite
dimensional Dirichlet distribution D(αβ(A1), . . . , αβ(Ak)) for
measurable partitions (A1, . . . ,Ak) of R1.

2 The posterior distribution of P given X1 is

D((α + 1),
β(·)+δX1 (·)

α+1 ).

3 The random probability measure P is a discrete probability
measure.

It first appeared in three papers in 1973 - Ferguson, Blackwell, and
Blackwell-MacQueen.



Assertions concerning Dirichlet priors

There is a random probability measure P with distribution
D(α, β(·)) called the Dirichlet prior (process) with parameters α
and β(·).
Its main properties are

1 Under P, the distribution of (P(A1), . . . ,P(Ak)) is the finite
dimensional Dirichlet distribution D(αβ(A1), . . . , αβ(Ak)) for
measurable partitions (A1, . . . ,Ak) of R1.

2 The posterior distribution of P given X1 is

D((α + 1),
β(·)+δX1 (·)

α+1 ).

3 The random probability measure P is a discrete probability
measure.

It first appeared in three papers in 1973 - Ferguson, Blackwell, and
Blackwell-MacQueen.



Assertions concerning Dirichlet priors

There is a random probability measure P with distribution
D(α, β(·)) called the Dirichlet prior (process) with parameters α
and β(·).
Its main properties are

1 Under P, the distribution of (P(A1), . . . ,P(Ak)) is the finite
dimensional Dirichlet distribution D(αβ(A1), . . . , αβ(Ak)) for
measurable partitions (A1, . . . ,Ak) of R1.

2 The posterior distribution of P given X1 is

D((α + 1),
β(·)+δX1 (·)

α+1 ).

3 The random probability measure P is a discrete probability
measure.

It first appeared in three papers in 1973 - Ferguson, Blackwell, and
Blackwell-MacQueen.



Summary

• What is the stick breaking construction?

• Details from Ferguson (1973)
• First definition of a DP
• Alternate definition of DP

• As an aside “What about Blackwell (1973)?”

• Details from Blackwell and MacQueen (1973)
• Nonparametric priors and exchangeable random variables;

Pólya urn sequences
• The stick breaking construction when β is non-atomic

• Sethuraman construction of Dirichlet priors

• Misconceptions about the stick breaking construction

• Some properties of Dirichlet priors



The stick breaking construction - I
Let V = (V1,V2, . . . ) be i.i.d. Beta(1, α) random variables.

Define
p1 = V1, p2 = (1− V1)V2, p3 = (1− V1)(1− V2)V3, . . . .

This has been called “stick breaking”. It was known in the
literature much long ago as the “RAM” model or as the model
with V1,V2, . . . as (discrete) failure rates.

The distribution of the random discrete distribution
p = (p1, p2, . . . ) is also known as the GEM(α) or GEM(V)
(Griffith-Engen-McCloskey) distribution.

The distribution of (p1, p2, . . . , pn, (1− p1 − · · · − pn)) is not any
simple finite dimensional Dirichlet distribution – its pdf is
proportional to

(1− p1 − · · · − pn)1−α

(1− p1)(1− p1 − p2) . . . (1− p1 − · · · − pn)
.

Connor and Mosimann (1969).
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The stick breaking construction - II

Let Z = Z1,Z2, . . . be i.i.d. β(·). For measurable sets A, define

P(A) = P(p,Z)(A) =
∑

pj I (Zj ∈ A) =
∑

pj δZj
(A).

This is the stick breaking construction of a random probability
measure P(·) whose distribution is D(α, β(·)).



The stick breaking construction - II

Let Z = Z1,Z2, . . . be i.i.d. β(·). For measurable sets A, define

P(A) = P(p,Z)(A) =
∑

pj I (Zj ∈ A) =
∑

pj δZj
(A).

This is the stick breaking construction of a random probability
measure P(·) whose distribution is D(α, β(·)).



Ferguson

The Ferguson paper



Ferguson (1973) – I

The Annals of Statistics of 1973, Issue 2 contains the famous
paper of Ferguson. It also contains two other famous papers, one
by Blackwell and another by Blackwell and MacQueen - all dealing
with Dirichlet processes.

In the first three sections of his paper, Ferguson defined the
Dirichlet process D(α, β(·)) as the distribution of a random
probability measure P for which

(P(A1), . . . ,P(Ak)) ∼ D(αβ(A1), . . . , αβ(Ak))

for all finite measurable partitions (A1, . . . ,Ak).

Do you know such a random probability measure P exists before
positing some of its distributional properties as its definition?
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Ferguson (1973) – II

Ferguson showed that the posterior distribution given an
observation X from P is D(α + 1, β(·)+δX (·)+1

α+1 ).

Ferguson used a peculiar definition of what it means to say that X
is an observation from P.
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Ferguson (1973) – III

In Section 4 of his paper, Ferguson presents an alternative
definition of the DP.

A process {X (t), t ∈ [0, 1]} is a Gamma process with parameter α
if it has independent increments and the distribution of X (t) is
Gamma(αt). It will follow that X (0) = 0 and X (1) ∼ Gamma(α).

Let J1 ≥ J2 ≥ J3 · · · be the ordered jumps of this Gamma process.

The J =
∑

Ji = X (1) is finite and has distribution Gamma(α).
Let π1 = J1/J, π2 = J2/J, . . . .

Then π = (π1, π2, . . . ) is a random discrete probability measure
and is called the Poisson-Dirichlet distribution.
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Ferguson (1973) – IV

Let W = (W1,W2, . . . ) be i.i.d. β(·) and independent of π.
For measurable sets A, define

P(A) =
∑

πj I (Wj ∈ A) =
∑

πj δWj
(A).

As an aside, note that P(A) will be the same if the terms in this
summation are permuted, even if the permutation is random and
depends on π alone.

Ferguson showed that this random probability measure P has the
DP distribution D(α, β(·)).

This looks like the stick breaking definition but the stick is very
sticky.
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The Blackwell paper
The beautiful paper of Blackwell, Discreteness of Ferguson
Selections, in the same 1973 issue of the Annals of Statistics as the
classical Ferguson paper defines the Dirichlet process, the posterior
distribution and establishes that the corresponding random
probability measure is discrete.

It shows that a random probability measure P can be described
through a collection of independent r.v.’s (U1,U2, . . . ) in [0, 1].

The ideas of the proof can be used to construct random probability
measures that sit on the subset of continuous probability measures.

We can state the posterior distribution of (U1,U2, . . . ), (and thus
of P also), given an an observation X .

It does not give any hints for a stick breaking construction.

This paper also contains all the ideas of random probability
measures using Polyá trees – see Mauldin, Sudderth, Williams
(1992).
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This paper gives a definition of the DP in terms of Ployá
sequences.

A Polyá sequence is exchangeable sequence of random variables.
These authors re-establish de Finetti’s theorem for Polyá sequences
in a novel way and give more insights.

We will now give an expansive alternate treatment of the results of
this paper which will lead us to the stick breaking representation
for the case β(·) is non-atomic, short of the full stick breaking
construction.
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Re-reading Blackwell and MacQueen (1973) – I

The class of all nonparametric priors are the same as the class of
all exchangeable sequences of random variables!

This follows from an examination of De Finetti’s theorem (1931),
Blackwell and MacQueen (1973) as explained below. See also
Hewitt and Savage (1955), Kingman (1978).

Let X1,X2, . . . be an infinite sequence of exchangeable (def?)
sequence of random variables with a joint distribution Q.

Then, from De Finetti’s theorem (or reversed martingale theorem)

1. The empirical distribution functions Fn(x)→ F (x) with
probability 1 for all x . In fact, supx |Fn(x)− F (x)| → 0 with
probability 1.
(Note that F (x) is a random distribution function.)
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Re-reading Blackwell and MacQueen (1973) – II

2. The empirical probability measures Pn converge to a random
probability measure P weakly with probability 1.

3. Given P, X1,X2, . . . are i.i.d. P.

4. Let us denote the distribution of P under Q by νQ . This νQ is
a nonparametric prior – it is a pm on the space of pm’s on R1.

5. The class of all nonparametric priors arises in this fashion.

6. The distribution of X2,X3, . . . , given X1 is also exchangeable;
denote it by QX1 .

7. The limit P of the empirical probability measures of
X1,X2, . . . is also the limit of the empirical probability
measures of X2,X3, . . . . Thus the distribution of P given X1

(the posterior distribution) is the distribution of P under QX1

and, by mere notation, is νQX1 .
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Dirichlet prior based on a Pólya urn sequences

The Pólya urn sequence is an example of an infinite exchangeable
random variables.

Let β be a pm on R1 and let α > 0. Define the joint distribution
Pol(α, β) of X1,X2, . . . through

X1 ∼ β(·), X2|X1 ∼
αβ(·) + δX1(·)

α + 1

Xn|(X1, . . . ,Xn−1) ∼
αβ(·) +

∑n−1
1 δXi

(·)
α + n − 1

, n = 3, 4, . . .

This defines Pol(α, β) as an exchangeable probability measure. (It
takes just some effort to establish this.)



Dirichlet prior based on a Pólya urn sequences

We gave the posterior distribution even before obtaining a full
description of the prior.

Blackwell show that under νPol(α,β), the distribution of
(P(A1), . . . ,P(Ak)) is D(αβ(A1), . . . , αβ(Ak)) for any partition
(A1, . . . ,Ak) (by comparing moments).

That is, νPol(α,β) = D(α, β(·)).
In particular, for any A, P(A) ∼ Beta(αβ(A), αβ(Ac)). Can we
allow A = {X1} in the above?
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Dirichlet prior based on a Pólya urn sequences

• The conditional distribution of (X2,X3, . . . ) given X1 is

Pol(α + 1,
αβ+δX1
α+1 ).

• Thus posterior distribution of P given X1 is

νPol(α+1,
αβ+δX1

α+1
)which is equal to D(α + 1,

β+δX1
α+1 ).

• Though each Pn is a discrete rpm and the limit P in general
will be just a rpm.

• For the present case of a Pólya urn sequence, Blackwell and
MacQueen (1973) show that P({X1, . . . ,Xn})→ 1 with
probability 1 and thus P is a discrete rpm. (A little tricky. We
will show some details.)
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• For the present case of a Pólya urn sequence, Blackwell and
MacQueen (1973) show that P({X1, . . . ,Xn})→ 1 with
probability 1 and thus P is a discrete rpm. (A little tricky. We
will show some details.)



Dirichlet prior based on a Pólya urn sequences
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Dirichlet prior based on a Pólya urn sequences

The conditional distribution of P given X1 is D(α + 1,
β+δX1
α+1 ).

The conditional distribution of P({X1}) given X1 is

B(αβ({X1}) + 1), αβ(R1 \ {X1})).

This is tricky. Is P({X1}) measurable to begin with?

The conditional distribution of P({X1, . . . ,Xn}) given (X1, . . . ,Xn)
is Beta(αβ({X1, . . . ,Xn}) + n, αβ(R1 \ {X1, . . . ,Xn}))
and
E (P({X1, . . . ,Xn}c |X1, . . . ,Xn)) = αβ(R1\{X1,...,Xn})

α+n ≤ α
α+n → 0.

This means that P is a discrete random probability measure.
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The conditional distribution of P given X1 is D(α + 1,
β+δX1
α+1 ).

The conditional distribution of P({X1}) given X1 is

B(αβ({X1}) + 1), αβ(R1 \ {X1})).

This is tricky. Is P({X1}) measurable to begin with?

The conditional distribution of P({X1, . . . ,Xn}) given (X1, . . . ,Xn)
is Beta(αβ({X1, . . . ,Xn}) + n, αβ(R1 \ {X1, . . . ,Xn}))
and
E (P({X1, . . . ,Xn}c |X1, . . . ,Xn)) = αβ(R1\{X1,...,Xn})

α+n ≤ α
α+n → 0.

This means that P is a discrete random probability measure.



Dirichlet prior based on a Pólya urn sequences
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Dirichlet prior based on a Pólya urn sequences

This already gives a sticky stick representation. The random
probability measure P is discrete and sits on
{X1,X2 . . . } = {Y1,Y2, . . . } where Y1,Y2, . . . are the distinct
observations.
Thus

P(A) =
∞∑
1

P({Yi})δYi
(A).

However, we do not know the joint distribution of
(P({Y1}),Y1, . . . ).



Dirichlet prior based on a Pólya urn sequences

Let the probability masses of the random probability measure P be
π1, π2, . . . written in some order.

Given P, the probability mass P({X1}) = P({Y1}) arises by
picking an r with probability πr and setting P({Y1}) = πr .

Similarly, P({Y2}) arises by picking an s 6= r with probability
πs

(1−πr ) and setting P({Y2}) = πs and so on.

That is (P({Y1}),P({Y2}), . . . ) is a size biased permutation of
(π1, π2 . . . ), and hence, is invariant under size biased permutation.
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Dirichlet prior based on a Pólya urn sequences

From now on, assume that β is non-atomic.

The conditional distribution of P({X1}) given X1 is
B(αβ({X1}) + 1), αβ(R1 \ {X1}) = B(1, α) and does not depend
on X1 and thus X1 and P({X1}) are independent.

The distribution of X1 is β from the definition of the Polya
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Let Y1,Y2, . . . be the distinct values among X1,X2, . . . listed in
the order of their appearance.

Then Y1 = X1,

Y1,P({Y1}) are independent

and Y1 ∼ β,P({Y1}) ∼ B(1, α).
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Dirichlet prior based on a Pólya urn sequences

Consider the sequence X2,X3, . . . and remove all occurrences of X1

which is the same as Y1.

This reduced sequence is the Pólya urn
sequence Pol(α, β) and independent of Y1. Its first element is Y2.

As before, Y2 and P({Y2})
1−P({Y1}) are independent,

Y2 ∼ β, P({Y2})
1−P({Y1}) ∼ B(1, α).

Thus P({Y1}), P({Y2})
1−P({Y1}) ,

P({Y3})
1−P({Y1})−P({Y2}) , . . . are i.i.d. B(1, α),

i.e. GEM(α) (i.e. stick breaking)

and all these are independent of Y1,Y2,Y3 . . . which are i.i.d. β.
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Dirichlet prior based on a Pólya urn sequences

We already saw that P =
∑∞

1 P({Yi})δY1 .
Put pi = P(Yi ), i = 1, 2, . . . . Then P =

∑∞
1 piδYi

; i.e. we have
the Sethuraman stick breaking construction of the Dirichlet prior
(if β is non-atomic).

This is how we can turn around the article by Blackwell and
MacQueen (1973) to obtain the stick breaking result when β is
non-atomic.

Note that the statement of the stick breaking construction does
not to specify any properties of β!
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Sethuraman construction of Dirichlet priors

Let α > 0 and let β(·) be a pm on X .

We do not assume that β is non-atomic. Further more, restrictions
like X = R1 do not have to made.

Let V1,V2, . . . , be i.i.d. B(1, α) and let Z1,Z2, . . . be independent
of V1,V2, . . . and be i.i.d. β(·) and let p =GEM(V).



Sethuraman construction of Dirichlet priors
The stick breaking construction is

P(·) = P(p,Z)(·) =
∞∑
1

piδZi
(·)

It is clearly a discrete random probability measure.
We have the canonical identity

P = p1δZ1+(1−p1)
∞∑
2

pi
1− p1

δZi
= p1δZ1+(1−p1)P(p−1/(1− p1),Z−1)

where p−1,Z−1 have the obvious meanings.
The canonical identity shows that

P = p1δZ1 + (1− p1)P∗

where all the random variables are independent,
p1 ∼ B(1, α),Z1 ∼ β and the two rpm’s P,P∗ have the same
distribution.
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Sethuraman construction of Dirichlet priors

That is, we have a distributional equation for the distribution of P:

P
d
= p1δZ1 + (1− p1)P.

In Sethuraman (1994) we show that D(αβ) is a solution to this
equation, and also that, if there is a solution then it is unique.

In the canonical identity, we could have split with index R, (even a
random index R) instead of the index 1.

We will use this to obtain the posterior distribution.
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Sethuraman construction of Dirichlet priors

What about the posterior distribution?

Let R be a random variable such Q(R = r |p) = pr , r = 1, 2, . . .
and let Y = ZR . Then

Q(Y ∈ A|P) = Q(Y ∈ A|(p,Z))

=
∑
r

Q(Y ∈ A,R = r |(p,Z))

=
∑
r

Q(Zr ∈ A)pr = P(A)

Thus Y is a like an observation from P and we need the
distribution of P given Y .
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The canonical identity gives

P = pRδY + (1− pR)P(p−R/(1− pR),Z−R)

= pRδY + (1− pR)P∗

where the conditional distribution of P∗ given (R,Y ) is
D(αβ).Conditional on Y , the distribution of P is that of

pRδY + (1− pR)P∗

which is D(α + 1, αβ+δYα+1 ), from standard identities of Dirichlet
distributions.
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Misconceptions on the stick breaking construction

It is amply clear that Sethuraman (1994) did not impose any
conditions on the base measure β(·) that it should be non-atomic.

Many papers continue to assert that Sethuraman (1994) assumes
that β(·) should be non-atomic.

Paisley (2010) says “We use a little-known property of the
constructive definition in (Sethuraman, 1994)” following my
personal assurance to him that he can use the stick breaking
construction to generate the Beta(a, b) distribution.

Let Z1,Z2, . . . be i.i.d. with Q(Z1 = 1) = 1− Q(Z1 = 0) = a
a+b

and (p1, p2, . . . ) be GEM(a + b).

P =
∑

pi I (Z1 = 1) ∼ Beta(a, b)
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Misconceptions on the stick breaking construction

Ferguson showed that the support of the D(αβ) is the collection of
probability measures in P whose support is contained in the
support of β.

If the support of β is R1 then the support of Dαβ is P.

We already saw that D(αβ) gives probability 1 to the class of
discrete pm’s.

D(αβ) is not itself a discrete probability measure.
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Some properties of Dirichlet priors

A simple problem is the estimation of the “true mean”, i.e.∫
xdP(x) from data X1,X2, . . . ,Xn which are i.i.d. P.

In the Bayesian nonparametric problem, P has a prior distribution
D(αβ) and given P, the data X1, . . . ,Xn are i.i.d. P.

The Bayesian estimate (under squared error loss function) of∫
xdP(x) is its mean under the posterior distribution, which is

α
∫
xdβ(x) + nX̄n

α + n
.

For this we need to assume that
∫
|x |dβ(x) <∞ and∫

x2dβ(x) <∞.
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Some properties of Dirichlet priors

However
∫
xdP(x) may be a well defined even when∫

|x |dβ(x) =∞!

Feigin and Tweedie (1989), and others later, gave necessary and
sufficient conditions for

∫
xdP(x) may be a well defined, namely∫

log(1 + |x |))dβ(x) <∞.

From our constructive definition,∫
|x |dP(x) =

∞∑
1

p1|Zi |.

The Kolmogorov three series theorem gives a simple direct proof of
this result. Sethuraman (2010).
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Some properties of Dirichlet priors

The actual distribution of
∫
xdP(x) under D(αβ) is a vexing

problem. Regazzini, Lijoi and Prünster (2003), Lijoi and Prünster
(2009) have the best results.

When β is the Cauchy distribution, it is easy from the constructive
definition that ∫

xdP(x) =
∞∑
1

piZi

where Z1,Z2, . . . are i.i.d. Cauchy, and hence
∫
xPd(x) is Cauchy.

One does not need the GEM property of (p1, p2, . . . ) for this; it is
enough for it to be independent of (Z1,Z2, . . . ). Yamato (1984)
was the first to prove this.



Some properties of Dirichlet priors

The constructive definition

P(·) =
∞∑
1

piδZi
(·)

leads to the inequality

||P −
M∑
1

piδZi
|| ≤

M∏
1

(1− pi ).

So one can allow for several kinds of random stopping to stay
within chosen errors. One can also stop at nonrandom times and
have probability bounds for errors. Mulliere and Tardella (1998)
has several results of this type.



Some properties of Dirichlet priors

The stick breaking construction of the random probability measure
P is replaced by to sequences of r.v.’s V and Z.

Instead of the posterior distribution of P given X , we could
consider the posterior distribution of (V,Z) given X .

This posterior distribution of P turns out to be another stick
breaking version where V and Z with (V1,V2, . . . ) independent
and (Z1,Z2, . . . ) independent; but not i.i.d.

This is the main virtue of the stick breaking construction.
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Some properties of Dirichlet priors

Current Bayes applications use the Dirichlet prior not for the
distribution F of the observed random variables but for the
distribution of latent variables that are used to model F .
This leads to a host of applications in very diverse fields.
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