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1.1 Introduction

Shape based statistical methods for medical imaging started around the early nineties (see Bookstein (1991), Dry-

den and Mardia (1998)) and the first nonparametric methods started being used slightly later. A classical medical

imaging library that was heavily used in developing nonparametric tests in medical imaging was the one resulting

from the Louisiana Experimental Glaucoma Study (LEGS), consisting of two types of imaging outputs: Heidelberg

Retina Tomograph (HRT) images, and stereo pairs of images of the back of the eye (see Burgoyne et al. (2000)).

The LEGS images are from Rhesus monkeys retinae. Tragically, the animals survived all the experiments, only

to fall victims of the hurricane Katrina in 2005. In each of the individuals in the LEG study, an increased internal

ocular pressure (IOP) was induced in one eye, while the other eye was left as control. Both eyes were imaged, and

for each individual in the study, a complete set of observations, both HRT and stereo pairs were stored. The stereo

pairs consisting in four optic nerve head (ONH) images were processed only in 2008 or later. They consisted in

two images of the control eye (A) and two of the treated eye (B). Section 1.2 is dedicated to a review of results

of nonparametric shape data analysis for HRT and stereo LEGS library data. HRT image data allows a recovery

of the similarity shape information, therefore, for such data, the analysis is performed on the space Σk3 of direct

similarity shapes of k-ads in 3D , known as Kendall shape space . Along these lines, we recall results from Derado

et al. (2004) and from Bhattacharya and Patrangenaru (2005). For the stereo LEGS data, the camera parameters

are unknown, thus only 3D projective shape data could be recovered. A 3D projective shape change analysis due

to Crane and Patrangenaru (2011) is therefore pursued in this part of section 1.2.

In Section 1.3 we focus on the important task of recovery of 3D data from CT scans of the human skull. This

task includes pre-processing and post-processing steps for CT images. The pre-processing step consists of the

extraction the boundary of the bone structure from the CT slices while the post-processing step consists of 3D

reconstruction of the virtual skull from these bone extractions. Given that the bilateral symmetry of the skulls
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allows for a 3D size-and-reflection shape analysis on a manifold, therefore in Section 1.4, we briefly introduce

the general nonparametric bootstrap on manifolds methodology, based on extrinsic means and extrinsic sample

covariance matrices computations. Next, in Section 1.5 we introduce in detail the 3D size-and-reflection shape

space SRΣk3,0, as orbifold (space of orbits of the action of the orthogonal group O(3) on centered k-ads in gen-

eral position in R3. The Schoenberg embedding, the Schoenberg extrinsic mean, and the asymptotic behavior of

the Schoenberg sample mean are also given in this section, for which the main reference is Bandulasiri et al.

(2009). In Section 1.6 we present preliminary results for skull shape analysis based on bootstrap distributions

of the Schoenberg’s sample mean size-and-reflection shape for a selected group of k anatomical landmarks, and

report a confidence region for the Schoenberg mean configuration of the corresponding k-ads on the midface.

The third part of the paper is dedicated to examples of nonparametric analysis on homogeneous spaces applied to

MRI brain imaging. The first example, following results from Osborne et al. (2013) is given in Section 1.7. There

a two sample test for DTI intrinsic means, based on their nonparametric methodology was applied to a concrete

DTI small data set previously analyzed by Schwartzman et al. (2008), consisting of a voxelwise comparison of

spatially registered DT images belonging to two groups of children, one with normal reading abilities and one

with a diagnosis of dyslexia. The data provides strong evidence of differences between the intrinsic means of the

two groups. The second example, in Section 1.8 is on the infinitely dimensional homogeneous space of direct

similarity shape of contours, in the context of neighborhood hypothesis testing on manifolds, as it was recently

developed in Ellingson et al. (2013). As an illustrative application, a test is carried out to see how far is the average

direct similarity shape of contours of the mid section of corpus callosum in elderly people from Albert Einstein’s,

at the time when he just passed away.

1.2 Shape analysis of the Optic Nerve Head

Since glaucoma is a disease affecting the 3D appearance of the ONH region due to high IOP, it leads to a change

in the 3D shape of this region. Given the small sample size of the LEGS data, any analysis has to undergo a

drastic dimension reduction. For shape data, a first step in the dimension reduction consists in a selection of a

few significant anatomical landmarks. In the case of HRT outputs, each “image” was presented in the form of a

series of 256× 256 2D arrays of ONH height values from a plane spanned by the ridge of the ONH cup. Due to

the increased IOP, as the soft spot where the ONH enters the eye is pushed backwards, eventually, the optic nerve

fibers that spread out over the retina to connect to photoreceptors and other retinal neurons can be compressed

and be damaged. Two processed images of the ONH cup surface before and after the IOP increment are shown in

Figure 1.1.
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Figure 1.1 Change in the ONH topography from normal (left) to glaucomatous (right)
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Regarding landmark based dimension reduction analysis, assume the position vectors of these landmarks are

X1, . . . , Xk, k ≥ 4. Two configurations of landmarks have the same Kendall shape, if they can be superimposed

after a direct similarity. The Kendall shape of the configuration x = (x1, . . . , xk) is labelled o(x) and the space

Σkm, of shapes of configurations of k points in Rm at least two of which are distinct introduced in Kendall (1984)

is the Kendall shape space of k-ads in m dimensions.

We now return to the shape of an ONH region, which resembles a “cup” in the shape of half an ellipsoid with

an ellipse shaped margin. Following Patrangenaru et al. (2000), in Bhattacharya and Patrangenaru (2005) four

landmarks were used; the first three, denoted by S, T, and N were chosen to be the “top, left and right” points on

this ellipse, i.e. (when referring to the left eye) Superior, Templar and Nose papilla (see Derado et al. (2004)). The

fourth landmark, V, was called vertex, the deepest point inside the ellipse bordering the ONH cup; therefore, in

Figure 1.2 Landmarks on the ONH for HRT outputs

Bhattacharya and Patrangenaru (2005) the data analysis was carried out on the shape space of tetrads, Σ4
3, which

is topologically a 5 dimensional nonstandard sphere, according to Kendall et al. (1999), pp.33. On the other hand,

it is known that if a probability distribution on Σkm has small support outside a set of singular points, any dis-

tance that is compatible with the orbifold topology considered is not relevant in data analysis (Dryden and Mardia

(1998), p.65) as the data can be linearized. Therefore for practical considerations, distances that are derived using

a partition of unity and Euclidean distances in various coordinate domains of Σ4
3 are useful for such distributions.

In Dryden and Mardia (1998), pp.78-80, five coordinates, that were called later called DM coordinates by Bhat-

tacharya and Patrangenaru (2005), were defined on the generic subset of Kendall shapes of nondegenerate tetrads

in Σ4
3, and labeled v1, . . . , v5. The five DM coordinates proved useful in detecting a significant glaucomatous

means shape “difference” due to increase IOP, as shown in Bhattacharya and Patrangenaru (2005). Nevertheless,

since it was preferable to have a single medical measurement to detect glaucoma from HRT outputs, Derado et

al. (2004) defined a glaucoma index, and showed that this index is useful in mean shape change detection. Due

to its simplicity, the landmark based glaucoma index method, is cited in the medical literature (see Hawker et al.

(2007), Sanfilippo et al. (2009)).

In the case of stereo data of the back of the eye, which is the most common imaging data for eye disease

detection, Crane and Patrangenaru (2011) developed a landmark based projective shape analysis approach. They

analyzed data from LEGS consisting of fifteen independent complete paired observations of stereo pairs. Figure

1.3 displays the fifteen independent stereo pairs of observations. Unlike with HRT data, which is 3D from the

outset, in the case of stereo imaging, one has to retrieve the 3D structure of the landmarks configuration from
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Figure 1.3 Optic Nerve Head region data

its stereo pair images. The problem of reconstruction of a 3D configuration of points from a pair of its ideal

noncalibrated camera images was solved by Faugeras (1992) and Hartley et al. (1992), who showed that:

Theorem 1.2.1 A finite configuration C of eight or more points in general position in 3D can be reconstructed

from the coordinates of the images of these points in two ideal noncalibrated digital camera views, and the

reconstruction R is unique up to a projective transformation in 3D.

This projective ambiguity in Theorem 1.2.1 was reinterpreted in Sughatadasa (2006), Patrangenaru et al. (2010),

Crane and Patrangenaru (2011) as follows

Corollary 1.2.2 The projective shapes of the 3D configurations of points R and C in Theorem 1.2.1 are identical.

Among reconstruction algorithms, Crane and Patrangenaru (2011) suggested using the eight point algorithm in

Ma et al. (2006) (p. 121), for a conveniently selected camera internal parameters matrix, or the refined eight point

algorithms for the estimate of the fundamental matrix (Ma et al. (2006), p. 188, p. 395), (Hartley and Zisserman

(2004), p.282). For details on the reconstruction of the projective shape of a 3D configuration from the pixel

coordinates of two of its digital images, see Patrangenaru et al. (2010) and the references therein. In Crane and

Patrangenaru (2011) coordinates of nine landmarks on the approximate elliptic contour of the ridge of the ONH

were recorded, as well as those of certain blood vessels junctions and estimated location of the deepest points.

These included the landmarks considered for HRT data. They were S(superior), I(inferior), N(nasal), T(templar),

V(vertex-the deepest point of the ONH cup), SM(mid-superior), IM(mid-inferior), NM(mid-nasal) and TM(mid-

templar), and their positions in the ONH cup are schematically displayed in the Figure 1.4. Note that projective

shape analysis can be performed using different approaches, by representing a projective shape on a certain

projective shape space. The most recent approach, due to Kent and Mardia (2012) has the advantage of being

independent of the landmarks labels. On the other hand, the projective frame approach (Mardia and Patrangenaru

(2005), Patrangenaru et al. (2010)) has the advantage of being rooted in projective geometry and computationally

faster; no 3D projective shape analysis was so far published using the approach in Kent and Mardia (2012).

Moreover in 3D, the projective shape space obtained via the projective frame approach has a Lie group structure,

thus allowing a two sample test for mean projective shape change in matched pairs to be reduced to a one sample

test. For such reasons, in their projective shape analysis of mean glaucomatous projective shape change, Crane

and Patrangenaru (2011) used a projective frame approach, by selecting the projective frame π = (N, T, S, I, V ).

For the analysis, the projective coordinates (defined in Mardia and Patrangenaru (2005)) of the remaining four

landmarks [h1,ji], [h2,ji], [h3,ji], [h4,ji], j = 1, 2, i = 1, . . . , 15 were computed with respect to this frame. To test

if there is a difference between the extrinsic mean projective shape change from the configuration in the control

eye and the treated eye, given the small size of the sample Crane and Patrangenaru (2011) computed the bootstrap

statistics T ∗
s , s = 1, 2, 3, 4, in Patrangenaru et al. (2010) for the four RP 3 marginals for 20, 000 resamples. The
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Figure 1.4 Nine anatomical landmarks of the ONH for one stereo image

histograms for the bootstrap distributions of T ∗
s , s = 1, 2, 3, 4 corresponding to the marginal axes are displayed in

Figure 1.5 (see also Crane and Patrangenaru (2011)). The values of the statistics Ts, s = 1, 2, 3, 4 under the null
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Figure 1.5 Histograms for the bootstrap distributions of T ∗

s
, s = 1, 2, 3, 4 for 20,000 resamples.

hypothesis of no projective shape change are :

T1 = 1474.7, T2 = 2619.9, T3 = 860.2, T4 = 1145.7, and since the T1, T2, T3 and T4 are much larger than the

corresponding cutoffs given above, there is a significant mean projective shape change due to the increased IOP

in the treated eye.

It is worth noting that while tests statistics for mean glaucomatous Kendall shape change based on HRT

outputs, including tests for mean glaucoma index change in Derado et al. (2004) are easier to compute, most

ophthalmologists cannot afford an HRT, while any ophthalmologist has access to stereo cameras designed for eye

fundus imagery; thus tests for mean projective shape change due to glaucoma onset might be more useful for onset

of glaucoma detection.
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1.3 Extraction of 3D data from CT scans

In this section, our main focus is on preprocessing and post-processing steps of CT images.

1.3.1 CT Data Acquisition

The CT images were taken using a computed tomography device (CT scanner). This was done for twenty-eight

individuals. A computed tomography (CT) scan uses X-rays to make detailed pictures of structures inside of the

body. A CT scan is used to study all parts of the human body. In this study, one CT scan in our data set consists of

about 100+ X-rays of the head above the mandible per individual. Figure 1.6 displays an example of one CT scan

of an individual in our data set.

Figure 1.6 CT Scan of an Individual

1.3.2 Object Extraction

Numerous methods of thresholding and segmentation have been developed for object extraction from 2D for 3D

display Harris and Camp (1984), Robb (1996), Serra et al. (1997), Sher (1977). Surface rendering (Gibson et al.

(1998), Heffernan and Robb (1985), Herman and Liu (1977), Lorensen and Cline (1987), and Robb (1994)) and

volume rendering (Cabra et al. (1994), Drebin et al. (1988), Kaufman et al. (1993), Levoy (1988), Pflesser et al.

(1998), Robb (1994), and Robb and Barillot (1989)) are two different techniques that have traditionally enabled

the visualization of 3D biomedical volume data (images). Both techniques produce a visualization of selected

structures in 3D volume data (images), but one should note that the methods involved in these techniques are quite

different, and each has its advantages and disadvantages. Selection between these two approaches is often based on

the particular nature of the biomedical image data, the application to which the visualization is being applied, the

desired result of the visualization, and computational resources. Here we focus on surface rendering techniques.

Surface rendering, when based on a sequence of stacked 2D images, requires the extraction of contours (the edge

of the intersection of the object with each slice, in our case of 2D slice level the skull surface). Then a tiling

algorithm is applied that places surface patches (or tiles) at each contour point and with hidden surface removal

and shading, the surface is rendered visible. The advantage of this technique lies in the relatively small amount

of contour data, resulting in a fast 3D rendering (reconstruction) speeds. The disadvantages may vary depending

on object extraction (or segmentation) software or algorithms. Ideally, one would like to extract all objects of
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interest from 3D volume data (images) quickly and accurately. In other words, the extracted object should be a

good representation of the original object inside of the image. Here we explored various segmentation methods in

order to extract the bone structure from the CT slices and then perform 3D reconstruction of the virtual skull from

these bone extractions.

Segmentation: Minimizing the Geodesic Active Contour

Segmentation is a well studied area and it is usually formulated as the minimization of a cost/energy function

subjected to some constraints. Segmenting 3D image volumes slice by slice using image processing techniques is

a lengthy process and requires a post-processing step to connect the sequence of 2D contours into a continuous

surface (3D reconstruction). Caselles et al. (1997) introduced the Geodesic Active Contour (GAC) algorithm, as

an enhanced version of the snake model of (Kass et al. (1988)). The GAC algorithm is defined as the following

variation problem:

min
C

{EGAC [C]} , where EGAC [C] =

∫ |C|

0

g(|∇I(C(s))|)dl. (1.3.1)

In (1.3.1) |C| is the Euclidean length of the curve C and dl the Euclidean element of arc. The edge detection

function, g ∈ (0, 1] in Eq. 1.3.1 has the following meanings: values close to 0 are at strong edges in the image

I whereas, values close to 1 are not at edges in the image I . |∇I| acts as a edge detector. In particular, ∇I
is the gradient of the gray level along the curve C(s) Caselles et al. (1997). A (local) minimal distance path

between given points is a geodesic curve. To show this (Caselles et al. (1997)) used the classical Maupertuis

principle from dynamical systems (Caselles et al. 1997) which essentially explains when an energy minimization

problem is equivalent to finding a geodesic curve in a Riemannian space (see also Milnor (1963)). Typically, to

find the global optimal solution of equation 1.3.1, graph based approaches are commonly used which rely on

partitioning of a graph that is built based on the image I . Unfortunately, such approaches can lead to major

systematic discretization error problems. Appleton and Talbot (2006) presented an approach that minimizes the

GAC energy using continuous maximal flows. The amazing gain from their approach is that it does not suffer

from any discretization errors. Bresson et al. (2005) produced a different approach, which uses the weighted Total

Variation. The weighted Total Variation or simply weighted TV is defined as

TVg(u) =

∫

Ω

g(x)|∇u|dx. (1.3.2)

TVg(u) is the weighted gradient of u. The active contour C is a level-set of a function u : [0, a]× [0, b] → R.

In other words, u is an implicit representation of the active curve C, since C coincides with the set of points

u = constant. Bresson et al. showed that under certain conditions, namely if u is a characteristic function 1C then

Eq. (1.3.2) is equivalent to EGAC in (1.3.1). The details are provided in Bresson et al. (2005). In order to find

the geodesic curve, the corresponding steepest-descent flow of Eq. (1.3.2) is computed. If we allowed u to vary

continuously in [0, 1], then Eq. (1.3.2) becomes a convex function, meaning that one can compute the global

minimizer of it. Unger et al. (2008) proposed the following variational image segmentation algorithm:

min
u∈[0,1]

{ESeg} where ESeg =

∫

Ω

g(x)|∇u|dΩ +

∫

Ω

λ(x)|u − f |dΩ. (1.3.3)

Here the first term of the energy is the weighted TV of u as defined in Eq. (1.3.2), which minimizes the GAC

energy. The second term is used to incorporate constraints into the energy function. The variable f ∈ [0, 1] is

provided by the user and it indicates foreground (f = 1) and background (f = 0) seed regions. The spatially

varying parameter λ(x) is responsible for the interpretation of the information contained in f . Figure 1.7 displays

ten 3D reconstruction based on the method of Unger et al. (2008) summarized above.
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Figure 1.7 Select 3D Reconstruction Results via segmentation

1.4 Means on Manifolds

1.4.1 Consistency of the Frećhet sample mean

Consider a separable metric space (M, ρ) and a random object

X : (Ω,A,P) → (M,Bρ), (1.4.1)

Given a probability measure Q associated with a random object X on a metric space M with the distance ρ, a

natural index of location is the Fréchet mean (Fréchet (1948), Ziezold (1977)) which is the minimizer of

F (p) = E(ρ2(p,X)) =

∫

ρ2(p, x)Q(dx), (1.4.2)

if the minimizer is unique. The set of all such minimizers form the Fréchet mean set. Bhattacharya and

Patrangenaru (2005)) showed that if the Fréchet mean set has only one point (Fréchet mean), then the Fréchet

sample mean (set) is a strongly consistent estimator of the Fréchet mean. In this paper, we define the definition of

a distance between size-and-reflection shapes just like that presented in (Bandulasiri and Patrangenaru (2005) and

Bandulasiri et al. (2009)). The Fréchet mean is called extrinsic mean if the distance ρ is induced by an embedding

j :M → EN , and intrinsic mean if the distance ρ is induced by a Riemannian structure on M. Furthermore, the
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extrinsic (intrinsic) sample mean is a consistent estimator of the extrinsic (intrinsic) mean.

The projection map Pj : F
c → j(M) is defined as

Pj(p) = j(x) if d0(p, j(M)) = d0(p, j(x)), (1.4.3)

where d0 is the Euclidean distance and F c is the set of nonfocal points of M in EN . In Bhattacharya and

Patrangenaru (2003) it was shown that if X is a j-nonfocal random object on M, then the extrinsic mean is

given by

µj = j−1(Pj(E(j(X)))), (1.4.4)

where Pj is the projection on j(M). Furthermore, if we let X = (X1, . . . , Xn) be i.i.d. M -valued random

variables with nonfocal measure Q on (M, j) and if the mean j(X) of the sample j(X) = (j(X1), . . . , j(Xn))

is a nonfocal point, then the extrinsic sample mean is given by

Xj := j−1
(

PM (j(X))
)

. (1.4.5)

The extrinsic sample covariance matrix, which shows in the extrinsic T 2 asymptotic statistics (see Bhattacharya

and Patrangenaru (2005) ), is

Sj,E,n =

[

[

∑

d
j(X)Pj(eb) · ea(Pj(j(X)))

]

a=1,...,m

]

· Sj,n
[

[

∑

d
j(X)Pj(eb) · ea(Pj(j(X)))

]

a=1,...,m

]T

, (1.4.6)

where Sj,n = n−1
∑N
r=1(j(Xr)− j(X))(j(Xr)− j(X))T is the sample covariance and (ea(y), a = 1, . . . , N)

is an orthoframe field around Pj(j(X)), whose first m vectors are in Tyj(M), y ∈ j(M), and d
j(X)Pj is the

differential of Pj at the sample mean j(X).

1.4.2 Nonparametric Bootstrap

Efron’s nonparametric bootstrap methodology (Efron (1982) ) is extremely useful in data analysis on manifolds

where the sample is small. If {Xr}r=1,...,n is a random sample from the unknown distribution Q, and

{X∗
r }r=1,...,n is a bootstrap resample from {Xr}r=1,..,.n, then S∗

j,E,n is obtained from Sj,E,n substituting

X∗
1 , . . . , X

∗
n for X1, . . . , Xn. For example, if n is not large, from Bhattacharya and Patrangenaru (2005) it is

known that a 100(1 - α)% nonparametric bootstrap confidence region , for the extrinsic mean µj is given by

D∗
n,α := j−1(V ∗

n,α), where

V ∗
n,α = {µ ∈ j(M) : n‖S− 1

2

j,E,n tanPj(j(X))(Pj(j(X))− Pj(µ))‖2 ≤ d∗1−α}. (1.4.7)

Here tanp(v) is the tangential component of v with respect to the splitting TvE
N = TvM ⊕ (TvM)⊥ and d∗1−α

is the upper 100(1− α)% point of the values

n‖S∗
j,E,n

− 1

2 tan
Pj(j(X∗))(Pj(j(X

∗))− Pj(j(X)))‖2 (1.4.8)

among the bootstrap resamples. This region has coverage error Op(n
−2).

1.5 3D Size-and-Reflection Shape Manifold

1.5.1 Description of SRΣ
k
3,0

We consider configurations x = (x1, . . . , xk) which consist of k > 3 labeled points in 3D, called k-ads. These

k-ads are in general position ( i.e. the minimal affine subspace containing the landmarks in x spans R3) and they
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represents k locations on an object. Translation is removed by centering the k-ad x = (x1, . . . , xk) to

ξ = (ξ1, . . . , ξk), ξj = xj − x, ∀ j = 1, . . . , k. (1.5.1)

The set of all centered k-ads form a vector subspace L3
k ⊂ (R3)k =M(3, k;R) of dimension 3k − 3, where

L3
k = {ξ ∈M(3, k;R), ξ1k = 0}. (1.5.2)

The orthogonal group O(3) acts on L3
k on the left, via the action α given by α(A, ξ) = Aξ. The 3D size-and-

reflection shape [x]RS of a k-ad x is the O(3)-orbit of the corresponding centered configuration ξ under the

diagonal action αk(A, ξ) = (Aξ1, . . . ,Aξk) of the orthogonal groupO(3) on the set of all centered k-ads:

[x]RS = {Aξ : A ∈ O(3)} (1.5.3)

A k-ad is in general position if and only if {ξ1, . . . , ξk} spans R3. The 3D size-and-reflection shape space SRΣk3,0

is the set of all size-and-reflection shapes of k-ads in general position

SRΣk3,0 = {[x]RS , rank(x) = 3} (1.5.4)

This space is a manifold because the action of an orthogonal matrix on R3 is uniquely determined by its action on

a basis of R3, and a centered k-ad in general position includes such a basis (Bandulasiri and Patrangenaru (2005)).

The dimension of SRΣk3,0 is 3k − 6. This space, SRΣk3,0, can be represented as a quotient space L3
k,0\O3/O(3),

where L3
k,0 is given by (1.5.2).

1.5.2 Schoenberg embeddings of SRΣ
k
3,0

Bandulasiri and Patrangenaru (2005) introduced the Schoenberg embedding of reflection shapes in higher

dimensions to perform an extrinsic analysis. The Schoenberg embedding of the size-and-reflection shape manifold

is J : SRΣk3,0 → S(k,R), given by

J([ξ]RS) = ξT ξ. (1.5.5)

The range of the Schoenberg embedding of SRΣk3,0 is the subset SMk,3 of k × k positive semidefinite symmetric

matrices A with rank(A) = 3, A1k = 0. Also Mk is the space of k × k symmetric matrices A with A1k = 0.

Dryden et al. (2008) and Bandulasiri et al. (2009) showed that if the map φ from Mk to S(k − 1,R), given by

φ(A) = HAHT , where (1k, H
T ) ∈ O(k), is an isometry, then ψ : SΣk3,0 → S(k − 1,R), given by

ψ([x]RS) = HξTξHT , (1.5.6)

is an embedding; the Schoenberg embedding and the embedding ψ induce the same distance on SRΣk3,0.

1.5.3 Schoenberg Extrinsic Mean on SRΣ
k
3,0

Let X be a random k-ad in general position which is centered as X0 = (X1 −X, . . . , Xk −X) ∈ (R3)k ≃
M(3, k;R).

Theorem 1.5.1 (Bandulasiri et al. (2009)) Assume C =
∑k

i=1 λieie
T
i is the spectral decomposition of C =

E(X0X0
T ), and vj =

√

λjej , j = 1, . . . , k. Obviously C1k = 0, C ≥ 0. Let ξ = V T , where

V = (v1v2v3). (1.5.7)

Then the extrinsic mean µJ size-and-reflection shape exists if λ3 > λ4 and µJ = [ξ]RS .
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Furthermore, if k = 4, then the projection Pψ is the identity map, and any distributionQ is ψ-nonfocal and ψ(µS)

is the mean µ of ψ(Q). The approach taken in Theorem 1.5.1 is the same as saying that, given C, ξ is a classical

solution in R3 to the MDS problem, as given in Mardia et al. (1979) in terms of the 3 largest eigenvalues of C.

For estimation purposes, let {x1, . . . ,xn} be a sample of k-ads in general position in R3, where xj =

(x1j , . . . , x
k
j ), for j = 1, . . . , n. The extrinsic sample mean size-and-reflection shape is [x]E = ˆ[ξ]RS , where ξ̂

is given by the eigenvectors corresponding to the 3 largest eigenvectors of

Ĉ =
1

n

n
∑

j=1

ξTj ξj (1.5.8)

assuming that λ̂3 > λ̂4, where λ̂1 ≥ · · · ≥ λ̂k are the eigenvalues of Ĉ . ξ̂ is the classical solution in R3 to the

MDS problem (Mardia et al. (1979), p. 397) for the matrix Ĉ. Note that ξj is the matrix obtained from xj after

centering (removing translation). If λ3 > λ4, then µJ = [µ]RS , and [µ̂MDS ]RS (see Bandulasiri et al. (2009)) is a

consistent estimator of [µ]RS . The asymptotic distribution of the extrinsic sample mean size-and-reflection shape

is given in Bandulasiri et al. (2009).

Related results are given in Dryden et al. (2008) and Kent (1994).

1.6 3D Size-and-Reflection Shape Analysis of the Human Skull

Here we give a comprehensive application of size-and-reflection shape space SRΣk3,0 of k-ads in general position

in 3D. One potential application is to surgery planning, where a natural approach is to take into account size in

addition to shape when analyzing the CT scan data. In this context, one performs a nonparametric analysis on the

3D data retrieved from CT scans of adults, on the on size-and-reflection shape space SRΣk3,0 of k-ads in general

position in 3D.

1.6.1 Confidence Regions for 3D mean Size-and-Reflection Shape Landmark Configurations

Once we obtained the 3D reconstruction of the virtual skull from the bone extractions, we proceed to perform

landmark based analysis based on the Schoenberg embedding. For the purpose of one analysis we were interested

in k = 9 and k = 17 matched landmarks around the eyes. The landmarks were registered on the reconstructed 3D

virtual skulls.

Here we consider nonparametric statistical analysis size-and-reflection shape data using landmarks in which

each observation x = (x1, . . . , x9) and x = (x1, . . . , x17) consists of 9 points and 17 points in R3 (See Figure

1.8). The landmark coordinates can be found in Appendix A and Appendix B of Osborne (2012), pages 74-77 and

78-84, respectively.

We remove translation by centering the k-ads x = (x1, . . . , x9) and x = (x1, . . . , x17) to

ξ = (ξ1, . . . , ξ9) and ξ = (ξ1, . . . , ξ17)

ξj = xj − x, ∀ j = 1, . . . , 9 and j = 1, . . . , 17.

The set of these centered k-ads lie in the vector subspace L3
9 ∈ (R3)9 and L3

17 ∈ (R3)17, respectively. The

dimensions of the manifolds SRΣ9
3,0 and SRΣ17

3,0 are 3k − 6, where k = 9, respectively k = 17.

Finally, in order to estimate the 3D size-and-reflection shape for the selected group of landmarks, we compute

the Schoenberg sample means. That is, we used 500 bootstrap resamples based on the original 20 skull

configurations (k = 9 and k = 17), represented by the 3 by k matrices (where k was the number of landmarks

selected in the analysis). For the purpose of one analysis we were interested in k = 9 and k = 17 landmarks
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Figure 1.8 Two groups of landmarks around the eye: Right image has k = 9 and the left image has k = 17

around the eyes region. Registered representations, for these mean size-and-reflection shapes yield the bootstrap

mean size-and-reflection shape configurations given in Figure 1.9 and Figure 1.10.

Figure 1.9 Bootstrap distribution for the Schoenberg sample mean configurations k = 9 based on 500 resamples

Figure 1.10 Bootstrap distribution for the Schoenberg sample mean configurations k = 17 based on 500 resamples

In addition, we provide a 90% simultaneous confidence limits for the 3D mean size-and-reflection shape

configuration are given in Tables 1.1 and 1.2. Similar tables, with 90% simultaneous confidence bounds for the 3D

mean size-and-reflection shape configuration of 17 landmarks given in Figure 1.8, based on the nonparametric

bootstrap distribution displayed in Figure 1.10, are given in Osborne (2012). For practical purposes, these

simultaneous confidence regions may be used for example to design helmets or other protection devices of the

midface area region of an average individual.
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Table 1.1 90% Lower Confidence Limit for the Bootstrap Distribution of the 3D

Sample Mean Size-and-Reflection Shape Configuration.

Landmark 1 2 3 4 5 6 7 8 9

x −45.76 −28.65 −9.75 −32.06 −0.90 7.84 27.15 40.79 26.28

y 10.10 −2.37 −5.91 0.27 −19.20 -3.84 0.86 10.04 −0.06

z −0.19 9.73 4.24 −11.67 −8.06 3.00 −12.70 −1.70 9.36

Table 1.2 90% Upper Confidence Limit for the Bootstrap Distribution of the 3D

Sample Mean Size-and-Reflection Shape Configuration.

Landmark 1 2 3 4 5 6 7 8 9

x −42.03 −24.44 −7.27 −28.29 0.41 10.19 30.65 44.52 30.30

y 11.85 −0.93 −3.39 1.82 −15.92 −1.69 2.52 12.83 4.17

z 1.43 11.12 5.93 −10.02 −5.73 4.83 −11.25 −0.32 13.08

Figure 1.11 DTI slice images of a control subject (left) and of a dyslexia subject (right).

1.7 DTI data analysis

In this section, we analyze the Diffusion Tensor Images (DTI) data according to the new methodology presented

in Osborne et al. (2013) using a concrete DTI example. The data was collected from two groups of children, a

group of 6 children with normal reading abilities and a group of 6 children with a diagnosis of dyslexia. Twelve

spatially registered diffusion MRIs (DT images) were obtained from the two groups of children, respectively. The

prognosis is generally helpful for individuals whose dyslexia is identified early, who have supportive family and

friends and a strong self-image, and who are involved in a proper remediation program. In Figure 1.11, we display

DTI slices including a given voxel recorded in a control subject and a dyslexia subject.

Commonly in DTI group studies, a typical statistical problem is to find regions of the brain whose anatomical

characteristics differ between two groups of subjects. Typically, the analysis consists of registering the DT images

to a common template so that each voxel corresponds to the same anatomical structure in all the images, and then

applying two-sample tests at each voxel.

Osborne et al. (2013) presented a nonparametric analysis of a single voxel at the intersection of the corpus

callosum and corona radiata in the frontal left hemisphere that was found in Schwartzman et al. (2008) to exhibit

the strongest difference between the two groups. Table 1 in Osborne et al. (2013) shows the data at this voxel for

all 12 subjects. The dij in the table are the entries of the DT on and above the diagonal (the below-diagonal entries

would be same since the DTs are symmetric).

For this analysis, the primary goal is to demonstrate that the nonparametric two-sample testing procedure in

Section 3 of Osborne et al. (2013) is able to detect a significant difference between of the generalized Frobenius

means of the clinically normal and dyslexia groups without increasing the dimensionality in the process. For

distances, other than Riemannian ones, on the set Sym+(3) of 3× 3 positive definite matrices, see Dryden et
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al. (2009). Namely, we are interested in detecting, on average, from Diffusion Tensor Images (DTI), dyslexia in

young children compared to their clinically normal peers, without making any distributional assumptions.

Given two independent populations with i.i.d. samples of random SPD matrices X1,1, X1,2, . . . , X1,n1
∈

Sym+(3) from the clinically normal population and X2,1, X2,2, . . . , X2,n2
∈ Sym+(3) from the dyslexia

population with sample sizes of n1 = 6 and n2 = 6 and the total sample size n = n1 + n2 = 12, where, for

a = 1, 2, Xa,1 ∼ µF,a, the sample generalized Frobenius mean for the clinically normal population and dyslexia

population is given by

x̄1,F =







0.6318 0.0046 −0.0924

0.0046 0.9863 −0.0873

−0.0924 −0.0873 0.7803






and x̄2,F =







0.6146 −0.0261 −0.1910

−0.0261 0.8118 −0.0901

−0.1910 −0.0901 0.9537






.

The test statistics T̂ and V , previously described in Osborne et al. (2013), are given by

T̂ =







0.9862 0.0000 0.0000

−0.0485 0.9067 0.0000

−0.1487 −0.0152 1.0781






and V =







−0.0139 0.0000 0.0000

−0.0513 −0.0980 0.0000

−0.1446 −0.0153 0.0752






.

In addition, let t̂ij and vij correspond to the entries of the test statistics T̂ and V on and below the diagonal (since

the test statistics T̂ and V are lower triangular matrices).

In order to test hypothesis 3.9 or hypothesis 3.10 from Osborne et al. (2013), for δ = I3, we repeatedly resample

observations from the original data and compute the generalized Frobenius sample mean for each respective group.

The generalized Frobenius sample means are computed as described in Section 2 of Osborne et al. (2013). Figure

1.12 displays a visualization of the bootstrap distributions of the Generalized Frobenius sample means. There,

they used 10,000 bootstrap resamples and computed the bootstrap generalized Frobenius sample mean for each

respective group.
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Figure 1.12 Marginals of the bootstrap distribution for the generalized Frobenius sample means for d11, d22, d33, d12, d13,

and d23; clinically normal (light red) vs dyslexia (dark blue)

In addition, for each bootstrap resample, we calculate the Cholesky decomposition of the bootstrap generalized

Frobenius sample mean for each respective group and then proceed to calculate the bootstrap distribution of our

test statistics T̂ and V as described in equation 3.16 of Osborne et al. (2013). Figures 1.13 and 1.14 displays a

visualization of our non-pivotal bootstrap distribution of our test statistics T̂ and V .
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Figure 1.13 Bootstrap distribution of our test statistics T̂ : The images (1 - 3) in the first row correspond to the diagonal

entries of the matrices T̂ ∗: t11, t22, t33 and images (4 - 6) in the second row corresponds to the lower triangular off-diagonal

entries of the matrices T̂ ∗: t21, t31, t32

0 2000 4000 6000 8000 10000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 2000 4000 6000 8000 10000
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0 2000 4000 6000 8000 10000
−0.05

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000 10000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 2000 4000 6000 8000 10000
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0 2000 4000 6000 8000 10000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 1.14 Bootstrap distribution of our test statistics V : The images (1 - 3) in the first row correspond to the diagonal

entries of the matrices V ∗: v11, v22, v33 and images (4 - 6) in the second row corresponds to the lower off-diagonal entries of

the matrices V ∗: v21, v31, v32

Under the null hypothesis 3.10 of Osborne et al. (2013), δ = I3 on T+(3,R) or log(δ−1) = 03 on the vector

space T (3,R) of lower triangular 3× 3 matrices; however, after visually examining Figures 1.13 and 1.14, we

informally conclude that there is significant difference between the generalized Frobenius means of the clinically

normal and dyslexia group, since the T̂ ∗
22 and V ∗

22 values do not overlap with δ22 = 1, respectively with 03,22 = 0.

Moreover, we also observed that the distributions of T̂ ∗
33, V ∗

33 and T̂ ∗
31, V ∗

31 barely touch δ33 = 1, 03,33 = 0 and

δ31 = 0, 03,31 = 0.

These results are formally confirm at level α, that there is significant evidence that the clinically normal

and dyslexia children display on average different DTI responses. The result were obtained by constructing a

100(1− α)% - simultaneous bootstrap confidence intervals, as described in Remark 3.8 of Osborne et al. (2013),

for T̂ij and Vij . Tables 2 and 3 in Osborne et al. (2013) display the results of the Bonferroni 100(1− α)%-

simultaneous bootstrap confidence intervals for T̂ij and Vij at various significance levels: for example the 94%

simultaneous c.i. for T22 and T33 are (0.8488, 0.9600) respectively (1.0085, 1.1465), and the simultaneous c.i.

94% for V22 and V33 are (−0.1640− 0.0409) respectively (0.0084, 0.1367), both pointing to a significant mean
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difference between the two groups of children.

1.8 MRI data analysis of Corpus Callosum Image

Albert Einstein’s brain was removed shortly after his death (most likely without prior family consent), weighed,

dissected and photographed by a pathologist. Among other pictures, a digital scan of a picture of the General

Relativity creator’s half brain taken at the autopsy is displayed below. The Corpus Callosum (CC) connects the

two cerebral hemispheres and facilitates interhemispheric communication. It is the largest white matter structure

in the brain. We extracted the contour of the CC from this Einstein’s brain image, the shape of which would be set

at the center of a null hypothesis in our testing problem (see Figure 1.15).

Figure 1.15 Right hemisphere of Einstein’s brain including CC midsagittal section (left) and its contour (right).

Fletcher (2013) extracted contours of CC midsagittal sections from MRI images, to study possible age related

changes in this part of the human brain. His study points out certain age related shape changes in the corpus

callosum. Given that Einstein passed away at 76, we consider a subsample of corpus callosum brain contours from

Fletcher (2013), in the age group 64-83, to test how far is the average CC contour from Einstein’s. The data is

displayed in Figure 1.16.

Figure 1.16 Corpus callosum midsagittal sections shape data, in subjects ages - 65 to 83

We consider contours, boundaries of 2D topological disks in the plane. To keep the data analysis stable, and to

assign a unique labeling, we make the generic assumption that across the population there is a unique anatomical

or geometrical landmark starting point p0 on such a contour of perimeter one, so that the label of any other point p

on the contour is the ’counterclockwise’ travel time at constant speed from p0 to p. A regular contour γ̃ is regarded

as the range of a piecewise differentiable regular arclength parameterized function γ : [0, L] → C, γ(0) = γ(L),

that is one-to-one on [0, L). Two contours γ̃1, γ̃2 have the same direct similarity shape if there is a direct similarity

S : C → C, such that S(γ̃1) = γ̃2. Two regular contours γ̃1, γ̃2 have the same similarity shape if their centered
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counterparts satisfy γ̃2,0 = λγ̃1,0, for some λ ∈ C\0. Therefore Σreg2 , set of all direct similarity shapes of regular

contours, is a dense and open subset of P (H), the projective space corresponding to the Hilbert space H of all

square integrable centered functions from S1 to C. (see Ellingson et al. (2013)).
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Figure 1.17 Matched sampling points on midsagittal sections in for CC data (Einstein’s is the upper left CC).

We will use the neighborhood hypothesis testing method on the manifold of planar contours to test if the

average shape of the CC in a population of sixty five to eighty three years old people is close to the shape of

Einstein’s CC in the sense of Ellingson et al. (2013). Data in Figure 1.16 was used to test the hypothesis that the

mean CC shape is in a small ball of radius δ around the shape of Einstein’s CC (see Qiu et al. (2014)). Note that

Fletcher (2013), from which we borrowed the MRI data, tacitly assumes that the similarity shape is preserved

during the data acquisition. Likewise, frontal pinhole camera images of a planar scene are similarity preserving

(see Mardia and Patrangenaru (2005)); therefore, comparing similarity shapes from data collected using these two

methods makes sense.

The closest representatives of the VW sample mean of the shapes of contours of the CC midsections compared

to the shape of Einstein’s CC midsection are displayed in Figure 1.18. The overlaps of the two contours are

rare, which visually shows that the average CC contour shape is significantly different from Einstein’s. The 95%

bootstrap confidence region for the extrinsic mean CC contour, based on a conveniently selected icons is given in

Figure 1.19.

We set δ as the radius of the null hypothesis ball around Einstein’s CC contour shape, as a point p0 on P (H).

The maximum value for δ where the test is significant was found to be 0.1367, which is quite large taking into

account the fact that the diameter of any finite dimensional complex projective space with the VW metric, is√
2. The result is explained by the fact that Einstein’s brain halves had more interconnections than in an the

average sixty-five to eighty-three years old individual. This is reflected in the thicker shape appearance of his CC

midsection; when this shapes are regarded as points on the shape space P (H), p0 is a remote outlier of the cluster

of shapes of CC’s in the data due to the fact that these are thinner.
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Figure 1.18 Registered icons for 2D direct similarity shapes of CC midsections : sample mean (light red) vs Albert Einstein’s

(dark blue)

Figure 1.19 95% bootstrap confidence region for the extrinsic mean CC contour by 1000 resamples.
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Ma Y, Soatto S, Košecká S and Sastry SS 2006 An Invitation to 3-D Vision. Springer.

Mardia KV and Patrangenaru V 2005 Directions and projective shapes. Ann. Statist. 33, 1666–1699.

Mardia KV, Kent JT and Bibby JM 1979 Multivariate Analysis. Academic Press.

Milnor J 1963 Morse Theory. Princeton University Press.

20



Osborne D, Patrangenaru V, Ellingson L, Groisser D and Schwartzman A 2013 Nonparametric two-sample tests on homogeneous Riemannian

manifolds, Cholesky decompositions and diffusion tensor image analysis. Journal of Multivariate Analysis 119, 163–175.

Osborne DE 2012 Nonparametric data analysis on manifolds with applications in medical imaging. Electronic Theses, Treatises and

Dissertations. Paper 5085. http://diginole.lib.fsu.edu/etd/5085.

Patrangenaru V, Liu X and Sugathadasa S 2010 Nonparametric 3D projective shape estimation from pairs of 2d images - I, in Memory of W.P.

Dayawansa. Journal of Multivariate Analysis 101, 11–31.

Patrangenaru V, Thompson H and Derado G 2000 Large sample and bootstrap methods on for 3D shape change with applications to detection

of glaucomatous change in images of the optic nerve head. Abstracts of the Leeds Annual Statistics Research Workshop in honor of the 65th

birthday of Professor K.V.Mardia,

http://www.maths.leeds.ac.uk/Statistics/workshop/leeds2000 pp. 30–33.

Pflesser B, Tiede U and Hohne K 1998 Specification, modelling and visualization of arbitrarily shaped cut surfaces in the volume model.

Medical Image Computing and Computer-Assisted Intervention-MICCAI 1496, 853–860.

Qiu M, Patrangenaru V and Ellingson L 2014 How far is the corpus callosum of an average individual from albert einstein’s? Proceedings of

COMPSTAT-2014, The 21st International Conference on Computational Statistics, pp. 403–410, Geneva.

Robb R 1994 Three-Dimensional Biomedical Imaging-Principle and Practice. VCH Publishers, New York.

Robb R 1996 Visualization methods for analysis of multimodality images. In: Functional Neroimaging: Technical Foundations. Academics

Press, San Diego.

Robb R and Barillot C 1989 Interactive display and analysis of 3-d medical images. IEEE Trans. Med. Imag. 8(3), 217–226.

Sanfilippo PG, Cardini A, Hewitt AW, Crowston JG and Mackey DA 2009 Optic disc morphology–rethinking shape. Progress in Retinal and

Eye Research 28(4), 227–248.

Schwartzman A, Dougherty RF and Taylor JE 2008 False discovery rate analysis of brain diffusion direction maps. Annals of Applied Statistics

2, 153–175.

Serra L, Nowinsk W, Poston T, Hern N, Meng L, Guan C and Pillay P 1997 The brain bench: Virtual tools for stereotactic frame neurosurgery.

Medical Image Analysis 1(4), 317–329.

Sher L 1977 Graphics in space: See it now. Proceedings of NCGA 3, 101–160.

Sughatadasa SM 2006 Affine and projective shape analysis with applications. Ph.D. Dissertation, Texas Tech University.

Unger M, Pock T, Trobin W, Cremers D and Bischof H 2008 Tvseg - interactive total variation based image segmentation. Proceedings of the

British Machine Vision Conference (BMVC).

Ziezold H 1977 On expected figures and a strong law of large numbers for random elements in quasi-metric spaces.. Transactions of the

seventh Prague conference on information theory, statistical decision functions, random processes and of the eighth European meeting of

statisticians, Reidel, Dordrecht pp. 591–602.

21


	Nonparametric Data Analysis Methods in Medical Imaging
	Introduction
	Shape analysis of the Optic Nerve Head
	Extraction of 3D data from CT scans 
	CT Data Acquisition
	Object Extraction

	Means on Manifolds 
	Consistency of the Frechet sample mean
	Nonparametric Bootstrap

	3D Size-and-Reflection Shape Manifold
	Description of SR3,0k
	Schoenberg embeddings of SRk3,0
	Schoenberg Extrinsic Mean on SRk3,0

	 3D Size-and-Reflection Shape Analysis of the Human Skull 
	Confidence Regions for 3D mean Size-and-Reflection Shape Landmark Configurations

	DTI data analysis 
	MRI data analysis of Corpus Callosum Image
	References


