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1 Introduction
Fréchet (1948) noticed that for data analysis purposes, in case a list of numbers would not give a meaningful
representation of the individual observation under investigation, it is helpful to measure not just vectors, but
more complicated features, he used to call “elements”, and are nowadays called objects. As examples he
mentioned “the shape of an egg taken at random from a basket of eggs”. A natural way of addressing this
problem consists of regarding a random object X as a random point on a complete metric space (M, ρ) that
often times has a manifold structure (see Patrangenaru and Ellingson (2015)). Important examples of objects
that arise from electronic image data are shapes of configurations extracted from digital images, or from
medical imaging outputs. For such data, the associated object considered are points on Kendall shape spaces
(see Kendall (1984), Dryden and Mardia (1998)), or on affine shape spaces (see Patrangenaru and Mardia
(2003), Sughatadasa (2006)), on projective shape spaces (see Mardia and Patrangenaru (2005), Patrangenaru
et al. (2010)). Other examples of object spaces are spaces of axes (see Fisher et al. (1996), Beran and Fisher
(1998)), spaces of directions (see Watson (1982)) and spaces of trees (see Billera et al. (2001), Wang and
Marron (2007), Hotz et al. (2013)). The afore mentioned object spaces have a structure of compact symmetric
spaces (see Helgasson (2001)), however, the use of a Riemannian distance on a symmetric space for the goal
of mean data analysis, including for regression with a response on a symmetric space, is a statistician choice,
as opposed to being imposed by the nature of the data.
Therefore for practical purposes, in this paper we consider object spaces provided with a “chord” distance
associated with the embedding of an object space into a numerical space, and the statistical analysis performed
relative to a chord distance is termed extrinsic data analysis. The expected square distance from the random
object X to an arbitrary point p defines what we call the Fréchet function associated with X :

(1.1) F(p) = E(ρ2(p,X)),

and its minimizers form the Fréchet mean set. When ρ is the “chord” distance onM induced by the Euclidean
distance in RN via an embedding j :M→ RN , the Fréchet function becomes

(1.2) F(p) =

∫
M
‖j(x)− j(p)‖20Q(dx),

where Q = PX is the probability measure on M, associated with X. In this case the Fréchet mean set is
called the extrinsic mean set (see Bhattacharya and Patrangenaru (2003)), and if we have a unique point in
the extrinsic mean set of X, this point is the extrinsic mean of X, and is labeled µE(X) or simply µE . Also,
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given X1, . . . , Xn i.i.d random objects from Q, their extrinsic sample mean (set) is the extrinsic mean (set)
of the empirical distribution Q̂n = 1

n

∑n
i=1 δXi .

In this paper we will assume that (M, ρ) is a compact metric space, therefore the Fréchet function is bounded,
and its extreme values are attained at points onM. We are now introducing a new location parameter for
X.

DEFINITION 1.1. The set of maximizers of the Fréchet function, is called the extrinsic antimean set. In case
the extrinsic antimean set has one point only, that point is called extrinsic antimean of X, and is labeled
αµj,E(Q), or simply αµE , when j is known.

The remainder of the paper is concerned with geometric descriptions, explicit formulas and computations
of extrinsic means and antimeans. Simple inference problems for extrinsic means and antimeans are also
investigated. The paper ends with a discussion on future directions in extrinsic antimean analysis.

2 Geometric description of the extrinsic antimean
Let (M, ρ0) be a compact metric space, where ρ0 is the chord distance via the embedding j : M → RN ,
that is

ρ0(p1, p2) = ‖j(p1)− j(p2)‖ = d0(j(p1), j(p2)),∀(p1, p2) ∈M2,

where d0 is the Euclidean distance in RN .

REMARK 2.1. Recall that a point y ∈ RN for which there is a unique point p ∈M satisfying the equality,

d0(y, j(M)) = inf
x∈M

‖y − j(x)‖0 = d0(y, j(p))

is called j-nonfocal. A point which is not j-nonfocal is said to be j-focal. And if y is a j-nonfocal point, its
projection on j(M) is the unique point j(p) = Pj(y) ∈ j(M) with d0(y, j(M)) = d0(y, j(p)).

With this in mind we now have the following definition.

DEFINITION 2.1. (a) A point y ∈ RN for which there is a unique point p ∈M satisfying the equality,

(2.1) sup
x∈M

‖y − j(x)‖0 = d0(y, j(p))

is called αj-nonfocal. A point which is not αj-nonfocal is said to be αj-focal.

(b) If y is an αj-nonfocal point, its projection on j(M) is the unique point z = PF,j(y) ∈ j(M) with
sup
x∈M

‖y − j(x)‖0 = d0(y, j(p)).

For example if we consider the unit sphere Sm in Rm+1, with the embedding given by the inclusion map
j : Sm → Rm+1, then the only αj-focal point is 0m+1, the center of this sphere; this point also happens to
be the only j-focal point of Sm.

DEFINITION 2.2. A probability distribution Q onM is said to be αj-nonfocal if the mean µ of j(Q) is
αj-nonfocal.

The figures below illustrate the extrinsic mean and antimean of distributions on a complete metric spaceM
where the distributions are j-nonfocal and also αj-nonfocal.

THEOREM 2.1. Let µ be the mean vector of j(Q) in RN . Then the following hold true:

(i) The extrinsic antimean set is the set of all points x ∈M such that supp∈M ‖µ− j(p)‖0 = d0(µ, j(x)).

(ii) If αµj,E(Q) exists, then µ is αj-nonfocal and αµj,E(Q) = j−1(PF,j(µ)).
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Figure 1: Extrinsic mean and extrinsic antimean on a 1-dimensional topological manifold (upper left: regular
mean and antimean, upper right: regular mean and sticky antimean, lower left: sticky mean and regular
antimean, lower right : sticky mean and antimean

Proof. For part (i), we first rewrite the following expression;

(2.2) ‖j(p)− j(x)‖20 = ‖j(p)− µ‖20 − 2 〈 j(p)− µ, µ− j(x) 〉+ ‖µ− j(x)‖20

Since the manifold is compact, µ exists, and from the definition of the mean vector we have

(2.3)
∫
M
j(x) Q(dx) =

∫
RN

yj(Q)(dy) = µ.

From equations (2.3), (2.2) it follows that

(2.4) F(p) = ‖j(p)− µ‖20 +

∫
RN

‖µ− y‖20j(Q)(dy)

Then, from (2.4),

(2.5) sup
p∈M

F(p) = sup
p∈M

‖j(p)− µ‖20 +

∫
RN

‖µ− y‖20 j(Q)(dy)

This then implies that the antimean set is the set of points x ∈M with the following property;

(2.6) sup
p∈M

‖j(p)− µ‖0 = ‖j(x)− µ‖0.

For Part (ii) if αµj,E(Q) exists, then αµj,E(Q) is the unique point x ∈ M, for which equation (2.6) holds
true, which implies that µ is αj-nonfocal and j(αµj,E(Q)) = PF,j(µ).
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DEFINITION 2.3. Let x1, ...., xn be random observations from a distribution Q on a compact metric space
(M, ρ), then their extrinsic sample antimean set, is the set of maximizers of the Fréchet function F̂n associ-
ated with the empirical distribution Q̂n = 1

n

∑n
i=1 δxi , which is given by

(2.7) F̂n(p) =
1

n

n∑
i=1

‖j(xi)− j(p)‖20

If Q̂n has an extrinsic antimean, its extrinsic antimean is called extrinsic sample antimean, and it is denoted
aX̄j,E .

THEOREM 2.2. AssumeQ is anαj-nonfocal probability measure on the manifoldM andX = {X1, ...., Xn}
are i.i.d random objects from Q. Then,

(a) If j(X) is αj-nonfocal, then the extrinsic sample antimean is given by aX̄j,E = j−1(PF,j(j(X))).

(b) The set (αF )c of αj-nonfocal points is a generic subset of RN , and if αµj,E(Q) exists, then the extrinsic
sample antimean aX̄j,E is a consistent estimator of αµj,E(Q).

Proof. (Sketch). (a) Since j(X) is αj-nonfocal the result follows from Theorem 2.1, applied to the empirical
Q̂n, therefore j(aX̄j,E) = PF,j(j(X)).
(b) All the assumptions of the SLLN are satisfied, since j(M) is also compact, therefore the sample mean
estimator j(X) is a strong consistent estimator of µ, which implies that for any ε > 0, and for any δ > 0,
there is sample size n(δ, ε), such that P(‖j(X) − µ‖ > δ) ≤ ε, ∀n > n(δ, ε). By taking a small enough
δ > 0, and using a continuity argument for PF,j , the result follows.

REMARK 2.2. For asymptotic distributions of the extrinsic sample antimeans see Patrangenaru et al.(2016).

3 VW antimeans on RPm

In this section we consider the case of a probability measure Q on the real projective space M = RPm,
which is the set of axes ( 1-dimensional linear subspaces ) of Rm+1. Here the points in Rm+1 are regarded
as (m + 1) × 1 vectors. RPm can be identified with the quotient space Sm/{x,−x}; it is a compact
homogeneous space, with the group SO(m + 1) acting transitively on (RPm, ρ0), where the distance ρ0
on RPm is induced by the chord distance on the sphere Sm. There are infinitely many embeddings of RPm

in a Euclidean space, however for the purpose of two sample mean or two sample antimean testing, it is
preferred to use an embedding j that is compatible with two transitive group actions of SO(m+ 1) on RPm,
respectively on j(RPm), that is

(3.1) j(T · [x]) = T ⊗ j([x]), ∀ T ∈ SO(m+ 1),∀ [x] ∈ RPm, where T · [x] = [Tx].

Such an embedding is said to be equivariant (see Kent (1992)). For computational purposes, the equivariant
embedding of RPm that was used so far in the axial data analysis literature is the Veronese-Whitney (VW)
embedding j : RPm → S+(m + 1,R), that associates to an axis the matrix of the orthogonal projection on
this axis ( see Patrangenaru and Ellingson(2015) and references therein ):

(3.2) j([x]) = xxT , ‖x‖ = 1,

Here S+(m+ 1,R) is the set of nonnegative definite symmetric (m+ 1)× (m+ 1) matrices, and in this case

(3.3) T ⊗A = TATT , ∀ T ∈ SO(m+ 1),∀ A ∈ S+(m+ 1,R)

REMARK 3.1. Let N = 1
2 (m + 1)(m + 2). The space E = (S(m+ 1,R), 〈 , 〉0) is an N -dimensional

Euclidean space with the scalar product given by 〈A, B〉0 = Tr(AB), where A, B ∈ S(m + 1,R).
The associated norm ‖ · ‖0 and Euclidean distance d0 are given by respectively by ‖C‖20 = 〈C, C〉0 and
d0(A,B) = ‖A−B‖0, ∀C,A, B ∈ S(m+ 1,R).
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With the notation in Remark 3.1 we have

(3.4) F([p]) = ‖j([p])− µ‖20 +

∫
M
‖µ− j([x])‖20 Q(d[x]),

and F([p]) is maximized ( minimized ) if and only if ‖j([p])− µ‖20 is maximized ( minimized ) as a function
of [p] ∈ RPm.
From Patrangenaru and Ellingson (2015, Chapter 4) and definitions therein, recall that the extrinsic mean
µj,E(Q) of a j- nonfocal probability measure Q on M w.r.t. an embedding j, when it exists, is given by
µj,E(Q) = j−1(Pj(µ)) where µ is the mean of j(Q). In the particular case when M = RPm, and j is
the VW embedding, Pj is the projection on j(RPm) and Pj : S+(m+ 1,R)\F → j(RPm), where F is
the set of j-focal points of j(RPm) in S+(m + 1,R). For the VW embedding, F is the set of matrices in
S+(m + 1,R) whose largest eigenvalues are of multiplicity at least 2. The projection Pj assigns to each
nonnegative definite symmetric matrix A with highest eigenvalue of multiplicity 1, the matrix vvT , where v
is a unit eigenvector of A corresponding to its largest eigenvalue.
Furthermore, the VW mean of a random object [X] ∈ RPm, [XTX] = 1 is given by µj,E(Q) = [γ(m+ 1)]
and (λ(a), γ(a)), a = 1, ..,m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-
values) of the mean µ = E(XXT ). Similarly, the VW sample mean is given by x̄j,E = [g(m + 1)] where
(d(a), g(a)), a = 1, . . . ,m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-
values) of the sample mean J = 1

n

∑n
i=1 xix

T
i associated with the sample ([xi])i=1,n, on RPm, where

xTi xi = 1,∀i = 1, n.
Based on (3.4), we get similar results in the case of an αj-nonfocal probability measure Q :

PROPOSITION 3.1. (i) The set of αVW -nonfocal points in S+(m + 1,R), is the set of matrices in
S+(m+ 1,R) whose smallest eigenvalue has multiplicity 1.

(ii) The projection PF,j : (αF )c → j(RPm) assigns to each nonnegative definite symmetric matrix A,
of rank 1, with a smallest eigenvalue of multiplicity 1, the matrix j([ν]), where ‖ν‖ = 1 and ν is an
eigenvector of A corresponding to that eigenvalue.

We now have the following;

PROPOSITION 3.2. Let Q be a distribution on RPm.

(a) The VW-antimean set of a random object [X], XTX = 1 on RPm, is the set of points p = [v] ∈ V1,
where V1 is the eigenspace corresponding to the smallest eigenvalue λ(1) of E(XXT ).

(b) If in addition Q = P[X] is αVW -nonfocal, then

αµj,E(Q) = j−1(PF,j(µ)) = [γ(1)]

where (λ(a), γ(a)), a = 1, ..,m + 1 are eigenvalues in increasing order and the corresponding unit
eigenvectors of µ = E(XXT ).

(c) Let [x1], . . . , [xn] be observations from a distributionQ on RPm, such that j(X) is αVW-nonfocal. Then
the VW sample antimean of [x1], . . . , [xn] is given by

axj,E = j−1(PF,j(j(x))) = [g(1)]

where (d(a), g(a)) are the eigenvalues in increasing order and the corresponding unit eigenvectors of

J =
1

n

n∑
i=1

xix
T
i , where xTi xi = 1,∀i = 1, n.

5



4 Two-sample test for VW means and antimeans projective shapes in
3D

Recall that the space PΣk
3 of projective shapes of 3D k-ads in RP 3, ([u1], ..., [uk]), with k > 5, for which

π = ([u1], . . . , [u5]) is a projective frame in RP 3, is homeomorphic to the manifold (RP 3)q with q = k − 5
(see Patrangenaru et al.(2010)). Also recall that a Lie group , is a manifold G, that has an additional group
structure � : G × G → G with the inverse map ι : G → G, ι(g) = g−1, such that both operations � and ι are
differentiable functions between manifolds.
Note that S3 regarded as set of quaternions of unit norm has a Lie group structure inherited from the
quaternion multiplication, which yields a Lie group structure on RP 3. This multiplicative structure turns
the (RP 3)q into a product Lie group (G,�q) where G = (RP 3)q (see Crane and Patrangenaru (2011), Pa-
trangenaru et al. (2014)). For the rest of this section G refers to the Lie group (RP 3)q . The VW embedding
jq : (RP 3)q → (S+(4,R))q (see Patrangenaru et al. (2014)), is given by

(4.1) jq([x1], . . . , [xq]) = (j([x1]), . . . , j([xq])),

with j : RP 3 → S+(4,R) the VW embedding given in (3.2), for m = 3 and jq is also an equivariant
embedding w.r.t. the group (S+(4,R))q.
Given the product structure, it turns out that the VW mean µjq of a random object Y = (Y 1, . . . , Y q) on
(RP 3)q is given by

(4.2) µjq = (µ1,j , · · · , µq,j),

where, for s = 1, q, µs,j is the VW mean of the marginal Y s.
Assume Ya, a = 1, 2 are random objects with the associated distributions Qa = PYa

, a = 1, 2 on G =
(RP 3)q. We now consider the two sample problem for VW means and separately for VW-antimeans for
these random objects.

4.1 Hypothesis testing for VW means
Assume the distributions Qa, a = 1, 2 are in addition VW-nonfocal. We are interested in the hypothesis
testing problem:

(4.3) H0 : µ1,jq = µ2,jq vs. Ha : µ1,jq 6= µ2,jq ,

which is equivalent to testing the following

(4.4) H0 : µ−12,jq
�q µ1,jq = 1(RP 3)q vs. Ha : µ−12,jq

�q µ1,jq 6= 1(RP 3)q

1. Let n+ = n1 + n2 be the total sample size, and assume limn+→∞
n1

n+
→ λ ∈ (0, 1). Let ϕ be the log

chart defined in a neighborhood of 1(RP 3)q (see Helgason (2001)), with ϕ(1(RP 3)q ) = 0. Then, under
H0

n
1/2
+ ϕ(Ȳ −1jq,n2

�q Ȳjq,n1
)→d N3q(03q,Σjq )(4.5)

Where Σjq depends linearly on the extrinsic covariance matrices Σa,jq of Qa.

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and the VW mean µa,jq are
included in the domain of the chart ϕ and ϕ(Ya,1) has an absolutely continuous component and finite
moment of sufficiently high order. Then the joint distribution

(4.6) V = n+
1
2ϕ(Ȳ −1jq,n2

�q Ȳjq,n1)

can be approximated by the bootstrap joint distribution of
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V ∗ = n+
1/2 ϕ(Ȳ ∗

−1
jq,n2

�q Ȳ
∗
jq,n1

)

From Patrangenaru et al.(2010), recall that given a random sample from a distribution Q on RPm, if Js,
s = 1, . . . , q are the matrices Js = n−1

∑n
r=1X

s
r (Xs

r )T , and if for a = 1, . . . ,m + 1, ds(a) and gs(a)
are the eigenvalues in increasing order and corresponding unit eigenvectors of Js, then the VW sample mean
Ȳjq,n is given by

(4.7) Ȳjq,n = ([g1(m+ 1)], . . . , [gq(m+ 1)]).

REMARK 4.1. Given the high dimensionality, the VW sample covariance matrix is often singular. Therefore,
for nonparametric hypothesis testing, Efron’s nonpivotal bootstrap is preferred. For nonparametric bootstrap
methods see eg. Efron(1982). For details, on testing the existence of a mean change 3D projective shape,
when sample sizes are not equal, using nonpivotal bootstrap, see Patrangenaru et al. (2014).

4.2 Hypothesis testing for VW antimeans
Unlike in the previous subsection, we now assume that for a = 1, 2, Qa are αVW-nonfocal. We are now
interested in the hypothesis testing problem:

(4.8) H0 : αµ1,jq = αµ2,jq vs. Ha : αµ1,jq 6= αµ2,jq ,

which is equivalent to testing the following

(4.9) H0 : αµ−12,jq
�q αµ1,jq = 1(RP 3)q vs. Ha : αµ−12,jq

�q αµ1,jq 6= 1(RP 3)q

1. Let n+ = n1 + n2 be the total sample size, and assume limn+→∞
n1

n+
→ λ ∈ (0, 1). Let ϕ be the log

chart defined in a neighborhood of 1(RP 3)q (see Helgason (2001)), with ϕ(1(RP 3)q ) = 03q. Then, from
Patrangenaru et al. (2016), it follows that under H0

n
1/2
+ ϕ(aȲ −1jq,n2

�q aȲjq,n1
)→d N3q(03q, Σ̃jq ),(4.10)

for some covariance matrix Σ̃jq .

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and the VW antimean
αµa,jq are included in the domain of the chart ϕ and ϕ(Ya,1) has an absolutely continuous component
and finite moment of sufficiently high order. Then the joint distribution

(4.11) aV = n+
1
2ϕ(aȲ −1jq,n2

�q aȲjq,n1)

can be approximated by the bootstrap joint distribution of

aV ∗ = n+
1/2 ϕ(aȲ ∗

−1
jq,n2

�q aȲ
∗
jq,n1

)

Now, from Proposition 3.2, we get the following result that is used for the computation of the VW sample
antimeans.

PROPOSITION 4.1. follows that given a random sample from a distributionQ on RPm, if Js, s = 1, . . . , q
are the matrices Js = n−1

∑n
r=1X

s
r (Xs

r )T , and if for a = 1, . . . ,m+1, ds(a) and gs(a) are the eigenvalues
in increasing order and corresponding unit eigenvectors of Js, then the VW sample antimean aȲjq,n is given
by

(4.12) aȲjq,n = ([g1(1)], . . . , [gq(1)]).
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5 Two sample test for lily flowers data
In this section we will test for the existence of 3D mean projective shape change to differentiate between two
lily flowers. We will use pairs of pictures of two flowers for our study.
Our data sets consist of two samples of digital images. The first one consist of 11 pairs of pictures of a single
lily flower. The second has 8 pairs of digital images of another lily flower.

Figure 2: Flower Sample 1

Figure 3: Flower Sample 2

We will recover the 3D projective shape of a spatial k-ad (in our case k = 13) from the pairs of images,
which will allow us to test for mean 3D projective shape change detection.
Flowers belonging to the genus Lilum have three petals and three petal-like sepals. It may be difficult to
distinguish the lily petals from the sepals. Here all six are referred to as tepals. For our analysis we selected
13 anatomic landmarks, 5 of which will be used to construct a projective frame. In order to conduct a proper
analysis we recorded the same labeling of landmarks and kept a constant configuration for both flowers.
The tepals where labeled 1 through 6 for both flowers. Also the six stamens (male part of the flower) ,were
labeled 7 through 12 starting with the stamen that is closely related to tepal 1 and continuing in the same
fashion. The landmarks were placed at the tip of the anther of each of the six stamens and in the center of the
stigma for the carpel (the female part).

Figure 4: Landmarks for Flower 1 and Flower 2

For 3D reconstructions of k-ads we used the reconstruction algorithm in Ma et al (2004). The first 5 of our
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13 landmarks were selected to construct our projective frame π . To each projective point we associated its
projective coordinate with respect to π. The projective shape of the 3D k-ad, is then determined by the 8
projective coordinates of the remaining landmarks of the reconstructed configuration.
We tested for the VW mean change, since (RP 3)8 has a Lie group structure (Crane and Patrangenaru (2011)).
Two types of VW mean changes were considered: one for cross validation, and the other for comparing the
VW mean shapes of the two flowers.
Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their mean change is

H0 : µ−11,j8
�8 µ2,j8 = 1(RP 3)8

Given ϕ, the affine chart on this Lie group, ϕ(1(RP 3)8) = 024, we compute the bootstrap distribution

D∗ = ϕ((Ȳ ∗1,j8,11)−1 �8 Ȳ
∗
2,j8,8)

We fail to reject H0, if all simultaneous confidence intervals contain 0, and reject it otherwise. We construct
95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to fail to reject the null,
if we have 0 in all of our simultaneous confidence intervals.

5.1 Results for comparing the two flowers
We would fail to reject our null hypothesis

H0 : µ−11,j8
�8 µ2,j8 = 1(RP 3)8

if all of our 24 confidence intervals would contain the value 0.

Figure 5: Bootstrap Projective Shape Marginals for lily Data

Simultaneous Confidence Intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (0.609514, 1.638759) (0.320515, 0.561915) (−0.427979, 0.821540) (0.055007, 0.876664)
y (−0.916254, 0.995679) (−0.200514, 0.344619) (−0.252281, 0.580393) (−0.358060, 0.461555)
z (−1.589983, 1.224176) (0.177687, 0.640489) (0.291530, 0.831977) (0.213021, 0.883361)
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Simultaneous Confidence Intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (0.060118, 0.822957) (0.495050, 0.843121) (0.419625, 0.648722) (0.471093, 0.874260)
y (−0.346121, 0.160780) (−0.047271, 0.253993) (−0.079662, 0.193945) (−0.075751, 0.453817)
z (0.198351, 0.795122) (0.058659, 0.619450) (0.075902, 0.569353) (−0.146431, 0.497202)

We notice that 0 is does not belong to 13 simultaneous confidence intervals in the table above. We then can
conclude that there is significant mean VW projective shape change between the two flowers. This difference
is also visible with the figure of the boxes of the bootstrap projective shape marginals found in Figure 5. The
bootstrap projective shape marginals for landmarks 11 and 12 we can also visually reinforce our choice of
rejection of the null hypothesis.

5.2 Results for cross-validation of the mean projective shape of the lily flower in
second sample of images

One can show that, as expected, there is no mean VW projective shape change, based on the two samples with
sample sizes respectively n1 = 5 and n2 = 6. In the tables below, 0 is contained in all of the simultaneous
intervals. Hence, we fail to reject the null hypothesis at level α = 0.05.

Figure 6: Bootstrap Projective Shape Marginals for Cross Validation of lily Flower

Simultaneous Confidence Intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (−1.150441, 0.940686) (−1.014147, 1.019635) (−0.960972, 1.142165) (−1.104360, 1.162658)
y (−1.245585, 2.965492) (−1.418121, 1.145503) (−1.250429, 1.300157) (−1.078833, 1.282883)
z (−0.971271, 1.232609) (−1.654594, 1.400703) (−1.464506, 1.318222) (−1.649496, 1.396918)

Simultaneous Confidence Intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (−1.078765, 1.039589) (−0.995622, 1.381674) (−0.739663, 1.269416) (−1.015220, 1.132021)
y (−1.126703, 1.140513) (−1.210271, 1.184141) (−1.324111, 1.026571) (−1.650026, 1.593305)
z (−1.092425, 1.795890) (−1.222856, 1.963960) (−1.128044, 1.762559) (−1.035796, 2.227439)
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5.3 Comparing the sample antimean for the two lily flowers
The Veronese-Whitney (VW) antimean is the extrinsic antimean associated with the VW embedding (see
Patrangenaru et al. (2010, 2014) for details). The VW antimean changes were considered for comparing the
VW antimean shapes of the two flowers. Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their
mean change are

H0 : αµ−11,j8
�8 αµ2,j8 = 1(RP 3)8

Let ϕ be the affine chart on this product of projective spaces, ϕ(18) = 08, we compute the bootstrap distri-
bution,

αD∗ = ϕ(aY
∗−1
1,j8,11 �8 aY

∗
2,j8,8)

and construct the 95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to
fail to reject the null, if we have 0 in all of our simultaneous confidence intervals.

Figure 7: Eight bootstrap projective shape marginals for antimean of lily data

Highlighted in blue are the intervals not containg 0 ∈ R.

simultaneous confidence intervals for lily’s landmarks 6 to 9
LM6 LM7 LM8 LM9

x (−1.02,−0.51) (−1.41, 0.69) (−1.14, 0.40) (−0.87, 0.35)
y (0.82, 2.18) (0.00, 0.96) (−0.15, 0.92) (−0.09, 0.69)
z (−0.75, 0.36) (−6.93, 2.83) (−3.07, 3.23) (−2.45, 2.38)

Simultaneous confidence intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13

x (−0.61, 0.32) (−0.87, 0.08) (−0.99, 0.02) (−0.84,−0.04)
y (−0.07, 0.51) (−0.04, 0.59) (0.06, 0.75) (0.18, 0.78)
z (−3.03, 1.91) (−5.42, 1.98) (−7.22, 2.41) (−4.91, 2.62)

In conclusion there is significant antimean VW projective shape change between the two flowers, showing
that the extrinsic antimean is a sensitive parameter for extrinsic analysis.
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6 Computational example for VW sample mean and VW sample an-
timean on a planar Kendall shape space

We use the VW-embedding of the complex projective space (Kendall shape space) to compare VW means
and VW antimeans for a configuration of landmarks on midfave in a population of normal children, based on
a study on growth measured from X-rays at 8 and 14 years of age( for data sets, see Patrangenaru and Elling-
son(2015, Chapter 1)). The figure 8 is from lateral X-ray of a clinically normal skull (top,with landmarks).
The figure 9 is the extrinsic sample mean of the coordinates of landmarks. You may find that with only a
rotation, figure 8 and figure 9 looks very similar, as the extrinsic mean, is close to the sample observations.
Here close is in the sense of small distance relative to the diameter of the object space.

Figure 8: The coordinates of first child’s skull image

Figure 9: Icon of extrinsic sample mean- coordinates based on children midface skull data

On the other hand, we also have a sample VW- antimean, the representative of which is shown in figure
10. The VW-antimean statistic is far t from the average, since according to the general results presented in
this paper, the chord distance between the sample VW antimean and sample mean in the ambient spaces is
maximized. The relative location of the landmarks is also different in antimean. The follow result gives the
coordinate of representatives (icons) of the VW mean and VW antimean Kendall shapes. Each coordinate of
an icon is a complex number.

VW - sample mean X̄E = (−0.0766+0.3066i,−0.4368−0.0593i, 0.2254+0.2786i, 0.3401+0.0298i, 0.2685−
0.4409i,−0.2110 + 0.1791i,−0.1676− 0.2939i, 0.0580 + 0.0000i).

VW - sample antimean aX̄E = (0.0752 − 0.4103i, 0.0066 − 0.4731i,−0.1244 + 0.0031i, 0.1213 +
0.1102i,−0.1015− 0.0422i,−0.0400 + 0.5639i,−0.2553 + 0.2485i, 0.3182 + 0.0000i).
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Figure 10: Icon of extrinsic sample antimean - coordinates based on children midface skull data

7 Discussion and thanks
In this paper we introduce a new statistic, the sample extrinsic antimean. Just as with the extrinsic mean,
the extrinsic antimean captures important features of a distribution on a compact object space. Certainly
the definitions and results extend to the general case of arbitrary Fréchet antimeans, however based on the
comparison between intrinsic and extrinsic sample means ( see Bhattacharya et al. (2012) ), for the purpose
of object data analysis (see Patrangenaru and Ellingson(2015)), it is expected that intrinsic sample antimeans
take way more time to compute than extrinsic sample means. Therefore future research will parallel research
on inference for extrinsic means. This includes results for stickiness of extrinsic means (see Hotz et al.(2013)).
The authors would like thank Harry Hendricks and Mingfei Qiu for useful conversations on the subject of
the stickiness phenomenon and antimeans and to the referee for useful comments that helped us improve the
paper.
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