Classification and Discrimination

Nicholas Brust

Looking to allocate a sample X into a population group.

Methods

Classifcation Methods

Methods for classification Include the following.

- Minimizing the ECM
- Minimizing the TPM
- Fishers Model
- Logistic Regression
- Deep Learning Models.

Fisher Discriminant Rule

An Allocation Rule Based on Fisher's Discriminant Functions ${ }^{5}$
Allocate \mathbf{x}_{0} to π_{1} if

$$
\begin{aligned}
\hat{y}_{0} & =\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)^{\prime} \mathbf{S}_{\text {pooled }}^{-1} \mathbf{x}_{0} \\
& \geq \hat{m}=\frac{1}{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right) \mathbf{S}_{\text {pooled }}^{-1}\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)
\end{aligned}
$$

or

$$
\hat{y}_{0}-\hat{m} \geq 0
$$

Allocate x_{0} to π_{2} if

$$
\hat{y}_{0}<\hat{m}
$$

or

$$
\hat{y}_{0}-\hat{m}<0
$$

Discrimination Example SAS

```
title 'Two Sample Discriminant Analysis';
*)
latalines;
;'ve usscrım uaLa-vaikょupu method=normal pool=yes manova wcov pcov listerr crosslisterr;
class group;
55 var x1 x2 x3 x4;
56 run;
```


프츠를
Two Sample Discriminnant Anayssis
verabe

$$
\begin{array}{lll}
n_{1}=31 & n_{2}=28 & n_{3}=26 \\
\overline{\mathbf{x}}_{1}=\left[\begin{array}{r}
3.40 \\
561.23
\end{array}\right] & \overline{\mathbf{x}}_{2}=\left[\begin{array}{r}
2.48 \\
447.07
\end{array}\right] & \overline{\mathbf{x}}_{3}=\left[\begin{array}{r}
2.99 \\
446.23
\end{array}\right]
\end{array}
$$

$$
\overline{\mathbf{x}}=\left[\begin{array}{r}
2.97 \\
488.45
\end{array}\right] \quad \mathrm{s}_{\text {pooled }}=\left[\begin{array}{rr}
00361 & -2.0188 \\
-2.0188 & 3655.9011
\end{array}\right]
$$

Our goal with the TPM rule is to use the distance from the mean of each group in order to place our sample.

This data is uses GPA and GMAT to determine the admission status of individuals applying to graduate school.

TPM Example Continued

X0 is a sample student with minimizing at D3 we find the student right on the edge of admission.

$$
\begin{aligned}
& \text { With } \mathbf{x}_{0}^{\prime}=[3.21,497], \text { the sample squared distances are } \\
& \begin{aligned}
D_{1}^{2}\left(\mathbf{x}_{0}\right) & \left.=\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{1}\right)\right)_{\text {pooted }}\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{1}\right) \\
& =[3.21-3.40,497-561.23]\left[\begin{array}{rr}
28.6096 & .0158 \\
.0158 & .0003
\end{array}\right]\left[\begin{array}{c}
3.21-3.40 \\
497-561.23
\end{array}\right] \\
& =2.58 \\
D_{2}^{2}\left(\mathbf{x}_{0}\right) & \left.=\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{2}\right)\right)_{\text {pocked }}^{\prime-1}\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{2}\right)=17.10 \\
D_{3}^{2}\left(\mathbf{x}_{0}\right) & \left.=\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{3}\right)\right)_{\text {ppookd }}\left(\mathbf{x}_{0}-\overline{\mathbf{x}}_{3}\right)=2.47
\end{aligned}
\end{aligned}
$$

Logistic regression

The Method

This is an approach where at least some of the variables are qualitative and in its simplest form works well with data labeled in a binary fashion.

An example of this would be Male or Female. Or in code 0 or 1.

The Model

Where normally we would just use a linear model in this case we will consider the ratio of ${ }^{3}$ the classes: odds = p or 1-p

Deep Learning Networks

Neurons

A neuron is Simply a function applied to the data followed by an activation function.

A group of these functions applied to the data is called a layer.

Linear Neuron

- Applies a linear transformation to the data.

$$
y=x \mathbf{A}^{\top}+\boldsymbol{\beta}
$$

Activation Functions

- Relu applies a rectified linear unit function which takes the max between input value and 0.
- Sigmoid Function applies:

Layers

Groups of neurons strong together to either apply a linear Function(Linear, BiLinear, etc.), Activation function(Sigmoid, ReLU), or Convolutional(We will talk about this later).

Loss functions and Optimizers

Loss Functions:

- MSE Loss:
- Cross Entropy Loss
- L1 Loss:

Optimizers:

- Adam
- Adagrad
- Stochastic Gradient Descent

The Basic Algorithm

Forward Pass: Sends the data forward through the layers in order to get a prediction.

Backward Propagation: through the forward pass we calculate loss and then propagate it backwards through the network.

Repeat.

Logistics Regression and Neural Net on the Iris Dataset

The Data

THe Iris data set is a set of 150 observations of 3 different species of Iris plant, with Four Features(Sepal length and width, Petal length and Width). Using an 80/20 data split to construct a training and testing data set.

Logistic Regression Using SAS Demo

Results

Using the Iris dataset with the code shown to the left we created a model using the training data that was able to place each testing data in its proper place.

```
proc surveyselect data = Iris out=shuffled rate=1 outorder=random;
Data Train
    set shuffled (obs = 120)
Data Test;
set shuffled (firstobs=121 obs=150);
; run;
proc sgplot Data = Ir15;
scatter x = sw y = pw / group= type markerattrs=(symbol = circlefilled size = 10);
xaxis label="Sepal Width";
yaxis label="Petal Width";
run;
proc logistic data=train outmodel=irislr;
model type = pW 5W sl pl;
; run;
proc logistic inmodel=irislr;
score data=Test(drop=type) out=score;
run;
data final;
    merge score Test;
    if I_type-type =0 Then answer = 1;
    else answer = 0;
run;
```


Shallow Neural Network Using Python Demo

Results

Using a neural net I was able to create the same results using 4 linear layers and the relu activation function. Using those we successfully placed most of the data into the right class.

Computer Vision

Image Data: What an Image is made of.

Image data is high dimensional data with many features and is an interesting data type when it comes to classifications.

Feature Extraction(A New Type of Layer)

How do we teach a computer what is in an image. It all starts with methods of feature extraction. We have seen this before with PCA which can be done on images. However we have other Methods of extracting features.

Convolutional Neural Nets

Convolutional Layer: Breaks up our Image into smaller images and pulls out features.

Pooling Layer: Reduces Dimensions by combining outputs of CL.

Dense Layer: Is similar to our original NN which produces an answer to the question.

Difficulties of Computer Vision

Computer VIsion takes a lot of data in order to have good results.
It can also take a lot of time in order completely create a brand new model. That is why it is a very common practice to use another model to start and edit the last Layer. This is also known as transfer learning. Or applying a model pre created to complete a new task.

Any Questions?

