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What is Multidimensional Scaling (MDS)
• A visual representation of distances or (dis)similarities between sets of 

objects.


• The primary objective is: to “fit” the original data into a low-dimensional 
coordinate system such that any “distortion” caused by the reduction in 
dimensionality is minimized. 


• “Distortion”: generally refers to similarities or dissimilarities (distances) among 
the original data points. 



Main approaches to MDS
• Classical/Metric MDS (quantitative data): Uses the actual magnitude of the 

original similarities.


• Non-Metric MDS ( non-quantitative data): Given N items, uses only rank 
orders of the N(N-1)/2 original similarities and not their magnitudes. 



Distance, Similarities, and Disimilarities
• Dissimilarities represent the distance between two objects. This can be 

measured directly, as in the distance between two states or countries, or 
approximated. MDS algorithms use dissimilarities directly.


• Similarities represent how close (in some sense) two objects are. Assuming 
no ties, similarities are arranged in a strictly ascending order. 


Here M = N(N-1)/2 and  is the smallest of the M similarities.si1k1



Distance, Similarities, and Disimilarities
• Similarities can be converted to dissimilarities using the formula:


where  represents a dissimilarity and  represents a similarity. dik sik



Classical/Metric MDS
• MDS takes as input an ( n x n ) dissimilarity (distance) matrix D containing the 

pairwise dissimilarities between all n data points.


• The matrix D must be symmetric and satisfy:


• The elements of D are denoted as:


 



Classical/Metric MDS
• Given a dissimilarity (distance) matrix D, MDS seeks to find

 such that


  as close as possible.  


• In classical MDS, we can get if we multiply  by

 on both sides and  . Let  be this new matrix.


• A solution  is then given by the eigendecomposition of , that is  
.
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Classical/Metric MDS
MDS Algorithm

1. Find matrix D and calculate the matrix 


2. From A calculate matrix B.


3. Then we have to find the largest p eigenvalues  of B and their 
corresponding eigenvectors  s.t. 


4. A p-dimensional spatial configuration of the N items/objects is derived from 
the rows of .
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Classical/Metric MDS
How to choose dimensions in classical MDS?

• We definitely want a small number of dimensions in order to have practical 
interpretations.


• Can be given by the rank of B or the number of nonzero eigenvalues.


• If B is positive semidefinite, then the number of nonzero eigenvalues gives the 
number of eigenvalues required for representing the distances .


• Calculation of the proportion of variation by p dimensions is given by:


,          P < 0.8 is a reasonable fit.
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Classical/Metric MDS
Distance Scaling
• Unlike classical MDS, Metric MDS is an optimization process minimizing the 

stress function and is solved by iterative algorithms. 


• Given a ( small ) dimension p and a monotone function , Metric MDS seeks to 
find an optimal data matrix  s.t.


  , as close as possible.


• This is now explicitly stated by 


f
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Non-Metric MDS


